
THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339
www.theoryofcomputing.org

Width-Parameterized SAT:
Time-Space Tradeoffs

Eric Allender∗ Shiteng Chen† Tiancheng Lou†

Periklis A. Papakonstantinou† Bangsheng Tang†

Received August 8, 2012; Revised July 14, 2013; Published October 8, 2014

Abstract: Alekhnovich and Razborov (2002) presented an algorithm that solves SAT on
instances φ of size n and tree-width TW(φ), using time and space bounded by 2O(TW(φ))nO(1).
Although several follow-up works appeared over the last decade, the first open question of
Alekhnovich and Razborov remained essentially unresolved: Can one check satisfiability
of formulas with small tree-width in polynomial space and time as above? We essentially
resolve this question, by (1) giving a polynomial space algorithm with a slightly worse
run-time, (2) providing a complexity-theoretic characterization of bounded tree-width SAT,
which strongly suggests that no polynomial-space algorithm can run significantly faster, and
(3) presenting a spectrum of algorithms trading off time for space, between our PSPACE
algorithm and the fastest known algorithm.

First, we give a simple algorithm that runs in polynomial space and achieves run-time
3TW(φ) lognnO(1), which approaches the run-time of Alekhnovich and Razborov (2002), but

∗Supported by National Science Foundation grants CCF-0832787 and CCF-1064785.
†Supported by National Basic Research Program of China Grant 2011CBA00300, 2011CBA00301, and the National Natural

Science Foundation of China Grant 61033001, 61061130540, 61073174, 61250110577.

ACM Classification: F.1.3, F.2.2

AMS Classification: 68Q15, 68Q25

Key words and phrases: complexity theory, algorithms, complexity classes, circuit complexity, pa-
rameterized complexity, nondeterminism, CNF-DNF formulas, Boolean formulas, completeness, SAT,
time-space tradeoff, treewidth, pathwidth

© 2014 Eric Allender, Shiteng Chen, Tiancheng Lou, Periklis A. Papakonstantinou, and Bangsheng Tang
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2014.v010a012

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2014.v010a012

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

has an additional logn factor in the exponent. Then, we conjecture that this annoying logn
factor is in general unavoidable.

Our negative results show our conjecture true if one believes a well-known complexity
assumption, which is the SC 6= NC conjecture and its scaled variants. Technically, we base
our result on the following lemma. For arbitrary k, SAT of tree-width logk n is complete for
the class of problems computed by circuits of logarithmic depth, semi-unbounded fan-in and
size 2O(logk n) (SAC1 when k = 1). Problems in this class can be solved simultaneously in
time-space (2O(logk+1 n),O(logk+1 n)), and also in (2O(logk n), 2O(logk n)). Then, we show that
our conjecture (for SAT instances with poly-log tree-width) is equivalent to the question
of whether the small-space simulation of semi-unbounded circuit classes can be sped up
without incurring a large space penalty. This is a recasting of the conjecture that SAC1 (and
even its subclass NL) is not contained in SC.

Although we cannot hope for an improvement asymptotically in the exponent of time and
space, we introduce a new algorithmic technique which trades constants in the exponents:
for each ε with 0 < ε < 1, we give an algorithm in time-space(

31.441(1−ε)TW(φ) log |φ ||φ |O(1), 22εTW(φ)|φ |O(1)) .
We systematically study the limitations of our technique for trading off time and space, and
we show that our bounds are the best achievable using this technique.

1 Introduction

SAT is the prototypical NP-complete problem. In the real-world SAT instances tend to have structure.
Also, in practice SAT-solvers abort due to lack of memory. In this paper we provide conclusive,
asymptotically tight answers regarding time-space tradeoffs for SAT instances that are structured, where
this structure is quantified by tree-width.1

This restriction of SAT was studied by Alekhnovitch and Razborov [2] (for references prior to this
see within), who gave algorithms that work in time 2O(TW(φ))|φ |O(1) and in space 2O(TW(φ))|φ |O(1), where
TW(φ) is the tree-width of a CNF formula φ , and |φ |= n+m where n and m are the number of variables
and clauses, respectively. The authors of [2] state their results in terms of the branch-width of the formula,
which is within a constant factor of the tree-width. They conclude:

“The first important problem is to overcome the main difficulty of the practical implementa-
tion which is the huge amount of space used by width-based algorithms. . . . Thus we ask if
one can do anything intelligent in polynomial space to check satisfiability of formulas with
small branch-width?”

The question raised by Alekhnovich and Razborov is a major issue in practical SAT-solving. Modulo
complexity assumptions we fully answer this question.

1A formal definition of tree-width can be found in Section 2, an informal exposition is found earlier in Section 1.2.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 298

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

1.1 Our contribution and techniques

We devise a simple space-efficient algorithm for SAT instances in CNF, which runs in time

3TW(φ) log |φ ||φ |O(1)

and space
|φ |O(1) .

This is the first algorithm with running time exponential in the tree-width of the incidence graph (unlike [4]
which is just on the primal graph) of arbitrary CNF instances (unlike [19] which is just for k-CNFs), that
runs in polynomial space. Compared to the question of [2] this algorithm suffers a log |φ | factor in the
exponent of the running time. Our work revolves around this logarithmic factor. First, we conjecture that
it cannot be removed:

Conjecture 1.1. Let A be an algorithm for SAT that runs in time 2TW(φ)δ (|φ |)|φ |O(1). Consider CNF
formulas where TW(φ) = O(|φ |1−ε), for some fixed ε < 1. If δ (φ) = o(log |φ |) then A uses space
2Ω(TW(φ)).

Second, we show that the above conjecture is equivalent to a widely-believed computational com-
plexity assumption (scaled for a wider range of parameters). That is, we offer a complexity-theoretic
connection that supports this conjecture. This computational complexity conjecture comes under the
cryptic statement NC 6⊆ SC. This is well-known to complexity theorists, and also of immense practical
interest. SC is the class of problems that can be decided by algorithms that work simultaneously in poly-
logarithmic space and polynomial time (i. e., efficient time and efficient space computation). NC is the
class of problems that can be decided by circuits simultaneously of polynomial size and poly-logarithmic
depth (i. e., parallel computation which uses a small number of processors and small parallel time). There
is an, almost exact, correspondence between algorithm space and circuit depth (e. g., given an algorithm
that uses poly-logarithmic space we can construct a parallel algorithm that runs in poly-logarithmic
parallel time) and between algorithm time and circuit size. These correspondences are believed to break
down when we simultaneously bound “time and space” and simultaneously bound “size and depth.” That
is, NC 6⊆ SC means that in general we cannot trade efficient #parallel processors-parallel time computation
for efficient sequential time-space computation. Details and additional intuition are given in Section 3.

Semi-unbounded combinatorial circuits play an important role in this work. A semi-unbounded
circuit (SAC) has AND gates of bounded fan-in, OR gates of unbounded fan-in, and all the negations at
the input level. Despite their exotic nature these circuits have essential differences from bounded and
unbounded fan-in circuits; see Section 3.1 for a discussion.

In Section 3 we show:

Theorem 3.5. SAT of a given tree decomposition of width logk n is complete for the class

SACk
quasi := SAC

(
O(logn),2O(logk n)) ,

i. e., semi-unbounded fan-in circuits of O(logn)-depth, and 2O(logk n)-size.

This is shown through a generic reduction in the spirit of [20]. We observe that NSCk, defined
as NSCk = NTISP(nO(1),O(logk n)) is contained in SACk

quasi which is in turn contained in NSCk+1,

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 299

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

where NTISP denotes the set of problems decidable by non-deterministic Turing Machines that are
simultaneously TIme-SPace bounded, and we show:

Theorem 3.6. SAT of a given path decomposition of width logk n is complete for NSCk,

Note that the NSC levels are direct space-scaled analogs of NL and these SAC classes are direct
size-scaled analogs of SAC1. Therefore, separating the complexity of SAT parameterized by path-
width and tree-width is equivalent to separating these classes, and hence, by padding, separating NL
and LOGCFL = SAC1. More importantly, putting these developments together we conclude that our
conjecture implies NC 6= SC, and in fact as the tree-width ranges over different functions of the input
length our conjecture is shown to be equivalent to a resource-scaled analog of NC 6= SC. Somewhat less
rigorously:

Shrinking down the space, even by just a little, in a reasonably fast algorithm for SAT of
bounded tree-width, is the same as saying that every highly parallelizable problem can be
sequentially computed simultaneously in small time and space.

Assuming for now that Conjecture 1.1 holds, it makes sense to devise algorithms that approach these
limits. This is the topic of Section 4, which constitutes the more technically involved part of this work,
though the practical significance of these algorithms is debatable.

We use our space-efficient algorithm, together with a time-efficient dynamic programming algorithm
(essentially the algorithm of [35]), as the “end-points” for a spectrum of algorithms that trade off time
and space complexity between these two extremes. But there is a catch. If we combine the time-efficient
dynamic programming algorithm and our recursive algorithm in the obvious way, then we gain the worst
of both worlds. Here “obvious” means that we discretize the space of truth assignments during the
execution of the recursive algorithm and combine using dynamic programming. Instead, we introduce
an implicit family of proof systems. We use two free parameters to specify an algorithm in this family.
One parameter is an integer which is at least 2. This controls the “complexity” of the rules applied, for
performing an unbalanced type of recursion of some sort. The larger this parameter is, the smaller the
running time is and the more space is used. The second parameter is a real number in (0,1) that controls
the discretization of the truth assignment space. This family of algorithms is presented in Section 4, and
in its full generality in Section 5. In the same sections we show that all of the infinitely-many pairs of
values are of interest, depending on the different time-space bounds one may want to achieve.

Remark 1.2. Throughout this paper we assume that the tree (or path) decompositions are given in the
input. To the best of our knowledge, the same is true in all other works in width-parameterized SAT.

1.2 Related work

Tree-width is a popular graph parameter introduced by Robertson and Seymour [32, 33]. The smaller the
tree-width of a graph, the more the graph looks like a tree in some topological sense; for a connected
graph of n vertices tree-width 1 means that the graph is a tree, whereas tree-width n−1 means that it is
the complete graph. Several hard computational problems on general graphs become computationally
easier when the input graph is of small tree-width; see, e. g., [7] for a survey.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 300

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

For SAT instances the tree-width of a CNF formula is the tree-width of its associated graph (e. g.,
incidence graph, primal graph, or intersection graph). Among those graphs, the most general one is the
incidence graph (a bipartite graph where one side has variable-nodes and the other clause-nodes). In some
sense, the tree-width value on the incidence graph lower bounds the tree-width value of the rest [37]. In
particular, the tree-width of the incidence graph of a CNF formula can be arbitrarily smaller than the
tree-width of the CNF-formula graphs that were studied by Bacchus et al. [4]. There is a vast literature
(too large to concisely cite here) in empirical and theoretical studies in various width-parameterizations
of SAT—we only cite some of the most relevant ones below.

Algorithms for width-parameterized SAT. Prior to our work, [4, 19] addressed the question of
Alekhnovich and Razborov. In [19] the authors gave a combinatorially non-explicit algorithm only for
the k-SAT problem, where k is constant, where the algorithm runs in time 2O(TW(φ) log |φ |) and space
|φ |O(1), when TW(φ) = Ω(log |φ |). The deficiencies of [19] (which we overcome in our current paper)
are not only that their algorithm works only for k-SAT, but also that the constant in the exponent of the
running time cannot be bounded in any easy way due to the non-explicitness of the argument presented
there. Bacchus et al. [4] present a polynomial-space DPLL algorithm with running time exponential in
the tree-width of the primal graph of a formula, hence their SAT algorithm is strictly weaker than ours
(although they also present algorithms for #SAT and similar problems).

There have been a number of follow-ups improving the running time of the Alekhnovich and Razborov
algorithm [2], considering different width-parameters: Fischer et al. [16] give algorithms for SAT (and a
somewhat generalized version of #SAT) parameterized by tree-width and clique-width. Their tree-width
algorithm matches the running time and space of an algorithm of Samer and Szeider [35], which we make
use of later in this paper as a time-efficient algorithm, running in time-space(

22TW(φ)|φ |O(1), 2TW(φ)|φ |O(1)) .
Also, we remark that algorithms (e. g., for graph problems) which replace the tree-width parameter
TW in the exponent by a TW2 and at the same time reducing the space to polynomial (see e. g., [26])
are strictly worse than our algorithms (and in particular fail to reach our target lower bound for the
Alekhnovitch-Razborov question). In particular, unlike the classical parameterized complexity approach,
the interesting part of our treatment (and in particular our complexity results) are for values of tree-width
that are related to the input length, and in fact Ω(logn).

Improving constants, previous work, and what’s different. Improving the constant in the base of
an exponential time algorithm is a well-established goal in the field of exact computation for NP-hard
problems; see e. g., [18, 40] for an overview. In particular, for k-SAT there is a line of work in algorithms
that run in time αn for α < 2; e. g., [28, 31, 36, 40]. An issue somewhat superficially related to our
conjecture deals with time-space tradeoffs for algorithms for NP-hard permutation problems, as discussed
for example in [9] and the references within (in particular [24]). However, there is no easy way to adapt
these techniques in our setting, and if Conjecture 1.1 is true, they cannot really be applied at all. A
key property of these previous algorithms is that as smaller subproblems are considered, the parameter
number of nodes becomes smaller. There is no obvious way to achieve this when the parameter is the
width of the formula.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 301

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

Finally, to the best of our knowledge our work is the first to address the issue of smooth time-
space tradeoffs for width-parameterized SAT. Prior to our work there are others which solely discuss
lower bounds on the running time; e. g., for graph problems (and under the very strong ETH assump-
tion [22]) [25]. Another kind of tradeoff (between size of the separator and the sharpness) for graph
problems was discussed in [17]. We should also mention that in two excellent works on constraint
satisfaction problems Grohe [21] (assuming that FPT 6=W[1]) and Marx [27] (assuming ETH) essentially
show that the running time of the known width-based algorithms is optimal.

Hardness results and complexity characterizations. Every problem in NP can be seen as a problem
where accepting instances can be verified in logarithmic space (i. e., we can settle for less than polynomial
time in the verification). SAT of bounded path-width has been shown [30] complete for the class of
problems that can be decided by a logarithmic space machine which has “streaming access” to the tape
containing the witness; i. e., scanning the witness tape at most a given number of times. In particular,
O(r(|φ |)) passes correspond to SAT instances with given path-decompositions of width r(|φ |) log |φ |.
Specifically, deciding formulas with given path decompositions of width O(log |φ |) is complete for NL,
and [30] asks whether the complexity of SAT instances when the parameter is tree-width O(log |φ |) is
more difficult. In this paper we answer this question affirmatively, unless2 NL = SAC1. Furthermore,
we show an exact correspondence of these “streaming verification” classes with the levels of the known
NSC hierarchy. Our new characterization through semi-unbounded circuits is of independent interest, and
seems more natural than the characterizations presented in [1].

Relation to Propositional Proof Complexity. Our work opens new, exciting directions for Proposi-
tional Proof Complexity. One way to make progress towards validating Conjecture 1.1 is to restrict
attention to specific types of algorithms. The study of restricted proof systems is one such choice. In fact,
Beame, Beck, and Impagliazzo [6] very recently made progress towards exactly validating our question.
In particular, they proved a Resolution Refutation size-space tradeoff, which implies that there exists a
family of formulas φ of tree-width TW(φ) where for every k > 0 every resolution refutation of size nk

requires space

2TW(φ) log logn
log loglogn .

This very significant development is the first super-polynomial lower bound of this sort, and through
our work it can be interpreted as validating the SAC1 6⊆ SC conjecture, at least for a class of restricted
algorithms. This is a new direction; lower bounds in proof complexity are clearly connected to the
NP 6= coNP conjecture [15], but have not previously seemed to have a bearing on the SC 6= NC question.

2 Preliminaries

We introduce notation, terminology, and conventions used throughout the paper.

2It is conjectured, e. g. [14], that SAC1 6= NL. Note that SAC1 is also known as LOGCFL.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 302

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

2.1 Notation

All logarithms are of base 2, and all propositional formulas are in Conjunctive Normal Form (CNF). SAT
is the decision problem where given an arbitrary CNF formula we want to decide if it is satisfiable. We
let k-SAT denote the restriction of SAT to CNFs where each clause has at most k literals. For a formula
φ , m denotes the number of clauses, n the number of variables, and Ci and x j stand for the i-th clause and
j-th variable respectively. For convenience we write |φ |= m+n. When there is no confusion (e. g., when
defining complexity classes) n is used to denote the input length.

2.2 Tree-width

Definition 2.1. Let G = (V,E) be an undirected graph. A tree decomposition of G is a tuple (T,X),
where T = (W,F) is a tree, and X = {X1, · · · ,X|W |} where Xi ⊆V such that

(1)
⋃|W |

i=1 Xi =V ,

(2) ∀(i, j) ∈ E, ∃t ∈W , such that i, j ∈ Xt ,

(3) ∀v, the set {t : v ∈ Xt} forms a subtree of T.

Each of Xi is called a bag, the width of (T,X) is defined as maxt∈W |Xt |−1, and the tree-width TW(G) of
graph G is defined as the minimum width over all possible tree decompositions.

When the tree decomposition T = (W,F) is restricted to a path, the decomposition is called a path
decomposition, and the specific tree-width is called the path-width PW(G). The following inequality
holds (e. g., [8])

TW(G)≤ PW(G)≤ O(log |V | ·TW(G)) . (2.1)

Definition 2.2. The incidence graph Gφ of a SAT instance φ is a bipartite graph, where in one side of
the bipartization each node is associated with a distinct variable, and in the other each node is associated
with a clause. There is an edge between a clause-node and a variable-node if and only if the variable
appears in a literal of the clause. The tree-width of a formula φ is the tree-width of its incidence graph,
TW(φ) = TW(Gφ). When it is clear from the context we may abuse notation and write TW(φ) to denote
the width of a given decomposition of Gφ .

We assume that a tree decomposition of the incidence graph of φ is given as input along with φ . For
convenience, we assume without loss of generality that the input tree decompositions ((W,F),X) have
the following two properties.

(1) |W |= O(TW(φ) · |V |) = O(TW(φ)|φ |), and

(2) the tree T = (W,F) has bounded degree 3.

We call a tree decomposition nice if it satisfies the two properties above. A tree decomposition can be
converted to a nice one in linear time (see e. g., [23, 8]). The maximal degree in the tree decomposition is
denoted by d. By the property above, d ≤ 3. If the input is given with a path decomposition, then d ≤ 2.

Remark 2.3. We present our results with the parameter d. One may replace d by 2 or 3 when the
structure of the input decomposition is known to be a path or a (nice) tree.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 303

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

2.3 Assignments

We introduce terminology and notation to talk about truth assignments on bags. Let X be a bag in the
tree decomposition, V be the variables and C be the clauses in X . Also, nV = |V| and mC = |C|. An
assignment RX for X is a binary vector of length nV+mC. The first nV bits indicate the truth values
of the corresponding variables. Note that the term “assignment” does not correspond only to a “truth
assignment” on the variables in X . It is an assignment of bit values both to variables and to clauses.

What values the last mC bits have is a subtle issue explained in Section 4. For the dynamic program-
ming algorithm things are pretty clear. However, for the space-efficient and trade-off algorithms, things
become more subtle. Intuitively, a bit corresponding to a clause C is 1 if we “have decided” to eventually
satisfy this clause (this has to do with where we are in the execution of the algorithm). Such a decision is
different for different algorithms, but we use the same data-structure.

Actually, the most straightforward way of defining the clause bits is to let it denote whether the
corresponding clause “is” satisfied. To ensure that a clause is satisfied in one of the branches in the tree
decomposition, we need to enumerate all 2d−1 combinations of branches on which the clause is satisfied.
However, if one is interested in only the satisfiability problem (and not, e. g., in #SAT) we observe that d
combinations suffice.

3 A complexity-theoretic characterization

We show that (i) our Conjecture 1.1 is equivalent to a widely believed complexity assumption (and its
scaled analogs), and (ii) under a different well-known complexity assumption (NL (LOGCFL), for the
same width parameter w(|φ |) SAT of tree-width O(w(|φ |)) cannot be efficiently reduced to SAT of
path-width O(w(|φ |)). Both of these results follow by first proving that SAT parameterized by path-
and tree-width is complete for natural complexity classes. To obtain these results, we heavily rely on
properties of semi-unbounded combinatorial circuits. In Section 3.1 we give a primer with basic intuition
about these circuits. Also, based on properties of these circuits and on the relation between path-width
and tree-width in equation (3.1) in Section 3.3, we provide a new characterization of NSC.

3.1 A primer on semi-unbounded fan-in circuits

The statements of the lower bounds do not explicitly refer to semi-unbounded families of circuits, but
we use them inside the arguments. A circuit is semi-unbounded when it has unbounded fan-in OR
gates, bounded fan-in AND gates, and all the negations are at the input level. The class of problems
that can be decided by such circuits of depth O(logi n) and polynomial size is denoted by SACi. Clearly,
NCi⊆ SACi⊆ACi, where NC and AC denote the complexity classes characterized by the same parameters
with bounded fan-in and unbounded fan-in families of circuits, respectively. There is also the issue of
uniformity; we provide the necessary background regarding circuit uniformity in the next sub-section.
For the moment, the reader should make use of an informal uniformity assumption, meaning merely that
there is an efficient algorithm describing how to construct the circuits for inputs of size n.

What is special in SAC circuits? Suppose that you are given oracle access to the description of an
unbounded circuit C (with all negation gates on the input level) and an input x, and you want to verify

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 304

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

recursively that C(x) = 1. The standard algorithm would be to start at the output gate and execute the
following recursive algorithm: if the current gate g is an OR gate, nondeterministically pick a gate h
that feeds into g and verify that h evaluates to 1; if the current gate g is an AND gate with h1, . . . ,hm

feeding into it, recursively verify that each of the hi evaluates to 1. An accepting run of this algorithm
corresponds to a (possibly huge) tree, called a “proof tree” [38]; if the circuit C has bounded fan-in (or
even semi-unbounded fan-in), then the size of this tree is bounded by 2depth. In the bounded fan-in case,
restricting the depth of C automatically implies restricting the size of C; in the semi-unbounded fan-in
case this is not true. The important aspect of semi-unbounded fan-in circuits that we will utilize, is that the
proof tree can be much smaller than the circuit (unlike the bounded-fan-in case), and has size exponential
in the depth (unlike the unbounded-fan-in case).

An observation on uniformity. Consider a family of semi-unbounded circuits of size 2nO(1)
and depth

O(logn) that is polynomial time uniform, in the sense that, given the names of two gates g and h, one can
determine in time polynomial in n whether there is an edge from g to h, and what kind of gates g and h
are. (Note that nO(1) bits are required, merely to write down the name of one of the gates.) Then, for an
input x, |x|= n, the problem of evaluating the membership of the family Cn(x) is in NP. That is, given
x we guess a proof as described above and then verify that it is a valid proof. Clearly, every problem
L ∈ NP can be computed by such a circuit since in logn depth we can verify that a given witness y is an
encoding of a valid accepting computation path on input x, and hence we obtain a circuit for L∩{0,1}n

by putting a big OR gate as the output gate, computing the disjunction, over all potential witnesses y,
of the O(logn) depth circuit testing if y is a witness for the input x). In other words, NP is precisely the
class of problems computed by uniform semi-unbounded circuits of size 2nO(1)

. Observe that if we do not
insist on the uniformity, then an arbitrary function can be computed by a 2O(n)-size and O(logn)-depth
semi-unbounded (non-uniform) circuit.

Relations of SAC circuits to other models of computation. Semi-unbounded fan-in circuits are
intimately related to Alternating Turing Machines (ATMs) and to Nondeterministic Auxiliary PushDown
Automata (NAuxPDAs). We provide definitions later on; for a more detailed treatment see, e. g., [34].
For the moment let us say that an ATM and a NAuxPDA are basically the same thing. Also, recall that an
ATM is a nondeterministic Turing Machine with two kinds of nondeterministic states: existential and
universal. An existential state is accepting if and only if at least one successor configuration is accepting,
whereas a universal state is accepting if and only if each successor configuration is accepting. Although it
requires a bit of work to show equivalence [38] it should come at no surprise that proofs for SAC circuits
are related to ATM computations.

3.2 Complexity theory notation and some preliminaries

NSC is the nondeterministic analog of SC, the class of languages decidable simultaneously in polynomial
time and poly-logarithmic space. Define NSCk := NTISP

(
nO(1),O(logk n)

)
. It is widely conjectured that

SC 6= NC. Here is a stronger intuitive form of this conjecture.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 305

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

Conjecture 3.1. The NL-complete graph reachability problem3 cannot simultaneously be solved de-
terministically in sub-polynomial space and polynomial time. That is, depth-first search cannot be
simulated quickly in small space, and hence NL 6⊆ TISP(nO(1),no(1)). This implies the weaker conjecture
SAC1 6⊆ TISP(nO(1),no(1)).

We denote by SATtw(w(|φ |)) the problem of deciding SAT of a given CNF formula together with
a tree decomposition of width w(|φ |). Similarly, for path-width we use the notation SATpw(w(|φ |)).
[30] shows that SATpw(w(|φ |)) is complete for the class NL[w(|φ |)/log |φ |], characterized by log-space
bounded Turing Machines augmented with a polynomially long read-only, nondeterministic tape on
which they make O(w(|φ |)/log |φ |) passes.

We use the notation SAC(depth,size). We follow standard conventions when defining levels of the NC
hierarchy, by defining SACk := SAC(O(logk n),nO(1)). However, in this paper a different parameterization
will be of equal importance: by restricting the depth of semi-unbounded fan-in circuits to be O(logn),
and allowing the size to be quasipolynomial, we obtain subclasses of NP denoted by

SACk
quasi := SAC

(
O(logn),2O(logk n)) .

The study of SAC circuits, and the various classes SACi has received considerable attention, e. g., [12, 38].
The SACk

quasi classes (very shallow quasi-polynomial size circuits) are introduced in this paper; they
characterize the NSC hierarchy (equation (3.1)). For these families of circuits we use DLogTime-
uniformity [5]. This means that the direct connection language for the circuit family can be recognized in
linear time. The direct connection language takes inputs of the form 〈n, i,d, j, t〉 such that d > 0 and the
dth input of the gate i in the circuit for inputs of length n is of type t(∈ {AND,OR,0,1}) and has index j,
or else d = 0 and gate i is of type t. Since the string 〈n, i,d, j, t〉 has length logarithmic in the size of the
circuit for inputs of length n, it follows that, for SACk

quasi circuits, questions about connectivity in the
circuits for length n can be answered in time O(logk n).

Simultaneously depth-size bounded semi-unbounded circuits are intimately related to space-time
bounded NAuxPDAs. A NAuxPDA is a nondeterministic space-bounded Turing Machine equipped with
an unbounded stack (see [13] for a precise definition). NAuxPDA(s(n), t(n)) is the class of languages
decidable by a NAuxPDA in space O(s(n)) and time O(t(n)). Although general Turing machine time is
related to circuit size while circuit depth is related to space, on NAuxPDAs the correspondence is reversed;
simultaneous bounds on circuit size and depth correspond to bounds on space and time, respectively.
Generalizing the arguments in [34] and [38] we obtain:

Lemma 3.2. SACk
quasi = NAuxPDA

(
O(logk n),nO(1)

)
, for O(logk n) time uniform SAC circuits.

Proof. The proof of SACk
quasi ⊇NAuxPDA(O(logk n),nO(1)) can be shown by following the proof for the

special case k = 1 (i. e., NAuxPDA(O(logn),nO(1)) = SAC(O(logn),nO(1))) [34, 38]. (See also [39].)
However, in the proof of Lemma 3.8 we will need to assume that the uniform SACk

quasi have certain
properties, and thus we follow a different outline here, to establish that those properties hold.

Ruzzo [34, Theorem 1 & Corollary 7] showed that any language in NAuxPDA(O(logk n),nO(1)) is
accepted by a NAuxPDA respecting these same resource bounds, where additionally the height of the

3Given a directed graph G = (V,E) and two designated vertices s, t ∈V , is t reachable from s?

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 306

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

pushdown is O(logk+1 n) (and pushes and pops consist of moving strings of length O(logk n) to and
from the stack—hence it is useful to think of the stack as having height logn, over “symbols” of length
O(logk n)). It is easy to see that such a machine can also be assumed to be somewhat “oblivious,” in the
sense that the positions of the worktape and input heads at time t are the same for all inputs of length n.
Rossmanith and Niedermeier subsequently improved on this, to show that the NAuxPDA can be assumed
to be completely oblivious, in the sense that the sequences of pushes and pops are also the same for
all inputs of length n [29, Theorem 28]. (Rossmanith and Niedermeier state their theorems in terms of
machines with a logarithmic worktape bound, but their proof works also for larger space bounds, as long
as the time is polynomial.) In particular, the pushes and pops follow a very regular pattern, so that the
computation is divided into phases corresponding to the height of the stack. The computation starts and
ends with stack height zero, and precisely half-way through the computation, the stack height is also zero.
Call these three configurations C0,D0, and E0. The computation from C0 to D0 and from D0 to E0 all
takes place with a stack height of at least 1 “symbol” (where the stack “symbols” are of O(logk n) bits
each); these are the two “phases” with height 1. In general, there are 2i phases with height i, for each
i≤ imax = O(logn). Each such phase (for i < imax) has some start configuration Ci and end configuration
Ei that take place at times that depend only on the input length n, and there is a configuration Di that also
has stack height i, such that the computations between Ci and Di and between Di and Ei have exactly the
same length and are both phases with stack height i+1. (The phases at height imax start in a configuration
C that has a number j ≤ n recorded in it, and ends in a configuration that records the j-th input symbol;
no stack manipulation occurs in such a phase.)

Thus in order to show that

NAuxPDA
(
O(logk n),nO(1))⊆ SACk

quasi ,

it suffices to build circuits to simulate oblivious machines that have this very restrictive computation
pattern. The output gate will check if the height zero phase starts with the initial configuration C0 and ends
with the accepting configuration E0; it is an OR gate, connected to gates labeled with triples (C0,D0,E0)
for all D0, to see if there is a computation from C0 to E0 passing through D0. In general, gates labeled
(Ci,Di,Ei) (or (Ci,Di,Ei,γ)) where Ci, Di, and Ei encode the worktape contents and input head positions
(but not the stack contents) for some phase with stack height i (and γ is a stack symbol of length logk n)
are AND gates, testing whether there are computations from Ci to Di and from Di to Ei, respectively. The
children of these AND gates, corresponding to some computation between stack height i configurations A
and B, are OR gates over all (Ci+1,Di+1,Ei+1,γ) such that:

• there is a move from A to Ci+1 pushing γ , and

• there is a move from Ei+1 to B popping γ .

(If i+1 = imax, then instead of (Ci+1,Di+1,Ei+1,γ), the gates have the format (Ci+1,Ei+1,γ), and these
gates are (possibly negated) input gates, recording whether the given input symbol is consistent with a
transition from Ci+1 to Ei+1.)

It should be clear that the circuit directly simulates the NAuxPDA. For more details about the
uniformity of the circuits, we refer the reader to [29, 38, 39].

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 307

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

Now we prove the other direction:

NAuxPDA
(
O(logk n),nO(1))⊇ SAC

(
O(logn),2O(logk n)) .

Let L have SAC(O(logn),2O(logk n)) circuits. A NAuxPDA accepts L as follows. On input x, compute the
name of the output gate of the circuit (call it g), and write g on the worktape. Start the routine EVAL(g),
described below.

Algorithm 1 EVAL(g)

1: if g is a (negated) input gate connected to input bit xi then
2: accept iff xi is 1 (0, respectively)
3: end if
4: if g is an OR gate then
5: nondeterministically guess a gate name h and check that h→ g is an edge in the circuit
6: return EVAL(h)
7: end if
8: if g is an AND gate then
9: compute the gates h1 and h2 that feed into g

10: push h2 onto the stack and call EVAL(h1)
11: if this evaluates to 0 then
12: halt and reject
13: else
14: return EVAL(h2)
15: end if
16: end if

The run-time required to to evaluate a gate g at depth d is 2dnO(1), assuming LOGSPACE uniformity.
This is polynomial in n, since d = O(logn). The space required is dominated by the number of bits
needed, to write down the name of a gate, which is O(logk n).

This completes the proof, but let us mention here that later, in Lemma 3.7 and Lemma 3.8, we show
that SATtw(logk |φ |) is hard for SAC(O(logn),2logk n), and is contained in

NAuxPDA
(
O(logk n),nO(1)) .

The reader may be surprised that acceptance of a super-polynomial size circuit can be verified in
(nondeterministic) polynomial time. This is related to the structure and size of proofs of accepting inputs
for semi-unbounded circuits. In particular, the size of such a proof/certificate is exponential in the depth
of the circuit (see the proof of Lemma 3.8 for details).

3.3 Completeness for SATpw(logk |φ |) and SATtw(logk |φ |), and a new circuit characteri-
zation of the NSC hierarchy

In Theorem 3.5 we show that SATpw(logk |φ |) is complete for NSCk and Theorem 3.6 states that
SATtw(logk |φ |) is complete for SACk

quasi. We remark that the tree-width/path-width relation PW(G)≤

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 308

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

TW(G) logn can be shown via a reduction computable in LOGSPACE [10]. Putting these together (or
this can also be seen via a direct argument) we have the following characterization of the NSC levels:

NL︸︷︷︸
NSC1

⊆ SAC1︸ ︷︷ ︸
SAC1

quasi

⊆ NSC2 ⊆ SAC2
quasi ⊆ NSC3 ⊆ ·· · ⊆ NSC = SACquasi . (3.1)

Our completeness results require us to present upper bounds on the complexity of SAT with small
tree-width and path-width. For these upper bounds, we need the notation of consistency. Since we
have extended the notion of assignment to also include assignments to clauses, we also need to have a
correspondingly extended notation of consistency of assignments. The rigorous definition of consistency
is deferred until the next section; for this section it suffices to rely on an intuitive understanding of the
notion. Intuitively, assignments to two bags are said to be consistent, if the bits corresponding to variables
agree, and some additional constraints imposed by the bits corresponding to clauses are satisfied such that
a satisfying truth assignment can be deduced. For this section, it suffices to know that, if assignments for
two bags are written on the worktape, then it is very easy to determine if the assignments are consistent.
Also, by the connectivity properties of tree decompositions, it suffices to check consistency of neighboring
bags.

Now, we turn to showing these completeness results. The following lemma implies Theorem 3.5.

Lemma 3.3. NSCk = NL[logk−1 n], for k ∈ Z+.

Proof. Let’s see why NSCk ⊆ NL[logk−1 n] first. Let M be a machine that accepts a language L ∈ NSCk.
From M, we construct a machine M′ that uses only logarithmic space on its worktape, and that makes
O(logk−1 n) passes over a tape of polynomial length that holds the sequence of “nondeterministic” bits.
On accepting computations, the nondeterministic tape of M′ will contain an encoding of a computation
of M: i. e., a sequence of encodings of successive configurations (from initial state to accepting state)
of a complete run of M accepting the given input. (Clearly, such an encoding will have polynomial
length since the running time of M is polynomial and the length of each configuration is O(logk n).) A
configuration will include state, head position and worktape. Without loss of generality we assume that
all the encodings of configurations have the same size, and that the worktape is divided evenly into blocks
of length O(logn). Note that because of the locality of computation, two adjacent configurations only
differ in O(1) bits; the ith blocks of the worktape of two consecutive configurations will be identical
when the head is not in the corresponding block, and otherwise will differ only in O(1) bits.

In the ith pass, starting from the initial configuration, M′ will check that the ith blocks of each
two consecutive configurations are correct. To do this, M′ will read blocks i− 1, i, and i+ 1 of each
two consecutive configurations into its worktape in turn, as well as the state and head position of both
configurations. If the head is not in the ith block, then M′ will merely check that ith blocks of the two
configurations are identical; if the head is in the ith block, M′ will check whether the move is a legal
move of M. Some additional bookkeeping is necessary when the head is moving into or out of the
ith block; in those cases, the blocks i−1 and i+1 will also need to be consulted. If the ith blocks of
configurations j and j+1 are deemed to be consistent, then the process is repeated for configurations
j+1 and j+2. It should be clear that M′ uses logarithmic space and makes only O(logk−1 n) passes over
its nondeterministic tape.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 309

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

For the other direction, it is sufficient to present a complete problem for NL[logk−1 n] that is contained
in NSCk. SATpw(logk |φ |) is such a problem, by the following characterization:

Lemma 3.4 ([30]). SATpw(logk |φ |) is complete for NL[logk−1 n], for k ∈ Z+, under log-space many-to-
one reductions.

A nondeterministic machine M′′ for SATpw(logk |φ |) runs as follows: on its worktape, M′′ guesses
assignments (each of length logk |φ |) for each bag, in the order of path decomposition (storing only the
assignments for three bags at any one time). In order to check the correctness of the assignment for the
jth bag, the assignments for bags j−1, j, and j+1 on the working tape, and the consistency of these
assignments can be checked in polynomial time. By the properties of path decompositions, checking
consistency of consecutive bags is sufficient for correctness. M′′ uses O(logk n) space and polynomial
time.

Lemma 3.4 and Lemma 3.3 immediately yield the following theorem:

Theorem 3.5. SATpw(logk |φ |) is complete for NSCk, for k ∈ Z+, under log-space many-to-one reduc-
tions.

Theorem 3.6. SATtw(logk |φ |) is complete for SACk
quasi, for k ∈ Z+, under log-space many-to-one

reductions.

Proof. Containment is by Lemma 3.7 and Lemma 3.2, and hardness is by Lemma 3.8.

Lemma 3.7. SATtw(logk |φ |) ∈ NAuxPDA
(
O(logk n),nO(1)

)
.

Proof. The algorithm witnessing this containment is very natural when expressed as a NAuxPDA; it is a
modification of the algorithm in [19] with an additional trick to handle arbitrary CNF clauses, and has a
very similar structure to the proof that SATpw(logk |φ |) is in NSCk.

The NAuxPDA will perform a depth-first traversal of the tree decomposition, guessing assignments
corresponding to the bags (each of length O(logk |φ |)) using the worktape and the stack to check consis-
tency of the assignments. More precisely, the NAuxPDA will start at the root and guess an assignment
for the root node, and then recursively search the tree rooted at that node, given the current assignment.

To search the tree rooted at a given node v, given an assignment, the NAuxPDA will first check if
v has any children. If not, the NAuxPDA will halt and reject if the assignment is not accepting, and
otherwise will pop the stack to continue searching the tree rooted at v’s parent. Otherwise, the NAuxPDA
will guess assignments for v’s children (of which there are ≤ 2), and check that the assignments are
consistent, then push the second child and its assignment onto the stack, along with information about v
and its assignment, and then search the tree rooted at the first child. When that subtree has been searched,
the NAuxPDA will pop the information for the second child off of the stack and search it. If both subtrees
are successfully searched, then the NAuxPDA pops the stack to continue searching the tree rooted at v’s
parent.

It can be seen from the description that this machine requires O(logk |φ |) space, and polynomial
time.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 310

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

Hardness is more interesting. We do a reduction from an arbitrary language in SACk
quasi. Similar

“generic reductions” (i. e., reducing the computation of families of SAC circuits) for tree-width-related
problems have appeared before, e. g., [20] .

Lemma 3.8. SATtw(logk |φ |) is hard for SACk
quasi, under LOGSPACE many-to-one reductions.

Proof. Fix L ∈ SACk
quasi and an input x. Let C be the associated SAC circuit, with uniformity realized

by a Turing Machine M (i. e., the machine that decides the direct connection language). We construct a
formula φ that is satisfiable if and only if C(x) = 1. Without loss of generality we assume the that the
circuit C is of the type constructed in the proof of the first part of Lemma 3.2. In particular, note that we
may assume the following normal form for C: (i) C is layered, (ii) C is strictly alternating: odd-layer
gates are OR, even-layer gates are AND, (iii) C has an odd number of layers, and (iv) the AND gates in C
have fan-in 2.

(a) A semi-unbounded circuit together with
a proof-tree. The NOT gates are assumed
to be part of the input

(b) The skeleton of the
proof-trees

Figure 1: Proof-tree. In (b), a SATtw(logk |φ |) instance is constructed from the skeleton: each node
corresponds to O(logk n) Boolean variables; clauses are constructed for each oval with dashed border;
and only those variables corresponding to a node shared by different dashed circles must be put into a
bag in the tree decomposition. This ensures O(logk n) tree-width.

A proof-tree is a tree with the same layering as the circuit. Each node of the tree is labelled by an
index of a gate from the corresponding layer of the circuit. At odd layers, each node has one child,
while at even layers, each node has two children. Two connected nodes must be labelled such that the
corresponding gates are connected. At the bottom layer, each node must be labelled by an input gate or a
NOT gate which outputs value 1. See Figure 1a for an illustration of an example.

A proof-tree witnesses that C(x) = 1. The main observation is that by the above normal form every
proof-tree must have the same shape. A skeleton is a proof-tree without labels (see Figure 1b). Therefore,
C(x) = 1 if and only if there exists a labeling to the nodes of the skeleton which turns it into a valid
proof-tree. It is important to note that, since C has the form given in the proof of Lemma 3.2, for any node
v in the skeleton, all valid labels for v will give v a label corresponding to a gate that is checking the same
phase with a given stack height; that is, all such labels will correspond to a segment of the computation of

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 311

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

a NAuxPDA with the same start and end times. We encode this labeling as a CNF formula as follows.
Associate a node v in the skeleton with bit vectors xv,dv, tv, where |xv|= |dv|= logk n, |tv| is constant. An
assignment to these Boolean vectors can be viewed as a labeling in the following sense: xv indicates the
index of the gate, tv indicates its type, while dv together with another xu indicates which predecessor in the
circuit it should choose in the proof-tree. More specifically, for every node v at an even-numbered layer
in the skeleton with children ul , ur we have: M(〈n,xv,0,0,AND〉) = 1, M(〈n,xv,dv,xul ,OR〉) = 1, and
M(〈n,xv,dv,xur ,OR〉) = 1. When v is at an odd-layer, and u is its child, we have M(〈n,xv,0,0,OR〉) = 1,
and either M(〈n,xv,dv,xu,AND〉) = 1 or M(〈n,xv,dv,xu,1〉) = 1.

A correct proof-tree exists if and only if, for each edge (v,u), in the skeleton, the assignments to
the variables in xv,dv and xu can be picked so that M accepts the corresponding tuples. This condition
can be formalized as ∃s,M′(s) = 1, where |s|= O(logk n), corresponding to the input bits provided to a
Turing machine M′ (a modification of M) having running time O(logk n) on s. We would like to encode
this à la Cook-Levin (see e. g., [3]) as a CNF of size O(logk n)—but there is a catch. Using the tools
provided in [3], this is only possible if M′ is oblivious—and a naïve approach to making M′ oblivious
would introduce an unwanted loglogn factor; thus we need to look more closely at the condition that M′

is checking.
M′ is taking s as input, and checking that s is giving information about adjacent gates in C. Since

all of the valid labels for a node in the skeleton are concerned with the same segment of an oblivious
NAuxPDA’s computation, we can use the standard technique (e. g., [3]) to build a CNF of size O(logk n)
verifying that the connectivity information is correct. (For example, s could give the encodings for gates
labeled (A,B) and (C,D,E,γ), and we need to verify that the NAuxPDA can move from A to C pushing
γ , and move from E to B popping γ). At the end we take the conjunction of all the CNFs corresponding
to the nodes and edges, which is also a CNF F , where F is satisfiable if and only if C(x) = 1.

It remains to show that F has tree-width O(logk n). Notice that clauses in F are defined for only one
specific node, and variables appear in clauses corresponding to at most two nodes. Therefore there is a
natural tree decomposition associated with F , as illustrated in Figure 1b, that is, clauses and variables
corresponding to an edge in the skeleton form a bag, and two bags are connected when they share
variables. By the argument above, this tree decomposition has tree-width O(logk n).

Remark 3.9. In general, when the tree-width is anything larger than poly-logarithmic, the previous
reductions still hold. In particular, SATtw(w(|φ |)) is complete for

SAC
(
O(log |φ |),2O(w(|φ |))) .

Remark 3.10. The proof of Lemma 3.8 constructs a SAT instance φ for which not only the incidence
graph has small treewidth, but also the primal graph has small treewidth. Thus, although the treewidth of
the primal graph can be much larger than the treewidth of the incidence graph, SAT instances of small
treewidth are complete for the SACk

quasi classes, no matter whether treewidth is measured with respect to
the incidence graph, as in this paper, or with respect to the primal graph, as in [4].

3.4 Connecting Conjecture 1.1 to complexity theory assumptions and the separation of
SATpw(logk |φ |) from SATtw(logk |φ |)

We list corollaries of the completeness results obtained in the previous sub-section.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 312

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

Corollary 3.11. SACk
quasi 6⊆ TISP

(
2O(logk n),no(1)

)
⇐⇒ Conjecture 1.1 for tree-width O(logk |φ |).

In particular, when k = 1, we have that Conjecture 1.1 for tree-width O(log |φ |) is equivalent to

SAC1 6⊆ TISP
(
nO(1),no(1)) .

This corollary is just a resource-scaled form of our initial equivalence for logarithmic tree-width. In
fact, by padding4 we have:

Corollary 3.12. Conjecture 1.1 for tree-width polylog(|φ |) =⇒ SAC1 6⊆ SC.

Thus, modulo these complexity assumptions this settles the lower bound of the Alekhnovich-Razborov
question. Note that Corollary 3.12 opens new avenues for propositional proof complexity [6]; i. e.,
validating our conjecture for restricted types of algorithms implies progress towards NC 6= SC.

As another corollary, assuming that NL (SAC1, we separate the complexity of SATpw and SATtw.

Corollary 3.13. SATtw(log |φ |) is not log-space reducible to SATpw(log |φ |), unless NL = SAC1.

In fact, the above holds up to NL-reductions. This corollary extends to every poly-logarithmic
width under the scaled assumption NSCk (SACk

quasi. This is the first separation result for width pa-
rameterizations of SAT for the same width parameter. Prior to our work there were only results in the
opposite direction [19], where some width parameters (e. g., band-width and path-width) were shown to
be log-space-equivalent, although combinatorially they can be off by an exponential.

4 Tradeoff algorithms on a single parameter

We consider two basic algorithms. One is time-efficient, which works in time-space(
22TW(φ)|φ |O(1),2TW(φ)|φ |O(1)) ,

whereas the space-efficient one works in time-space(
3TW(φ) log |φ ||φ |O(1), |φ |O(1)) .

The first one [35] is the most time-efficient (with respect to the constant in the exponent) algorithm known.
The second is our contribution, and it is the first space-efficient algorithm for arbitrary CNFs for tree
decompositions on the incidence graph. Our main contribution is combining these two algorithms in a
non-trivial way to obtain a tradeoff. Later on, in Section 4.1, we provide a primer to algorithms for SAT
instances with given tree decompositions.

4Philosophically, the assumption
SACk

quasi 6⊆ TISP
(
2O(logk n),no(1))

is not really different than the widely-believed assumption SAC1 6⊆ TISP(nO(1),no(1)). By analogy let us consider P 6= NP and
E 6= NE. It is true that E 6= NE is stronger in the sense that E 6= NE implies P 6= NP (via a simple padding argument), and it is
also the case that at the current state-of-the-art we have no idea how to obtain the converse implication. (In fact, this is true for
the vast majority of these resource-scaled analogs of other complexity conjectures). Also, it is worth noting that the converse
fails relative to some oracles [11]. However, in principle we see no real reason why one should believe in one and not in the
other (especially when the scaling in the resource bounds is moderate); they are merely different manifestations of the same
underlying question. Our conjecture is equivalent to SAC1 6⊆ TISP(nO(1),no(1)) for logarithmic tree-width, whereas for larger
tree-width we have only shown equivalence to the scaled analogs of SAC1 6⊆ TISP(nO(1),no(1)).

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 313

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

Overview of the time- and space- efficient algorithms. The time-efficient algorithm does dynamic
programming using the tree decomposition in a typical way [7]: root the tree to make it a binary tree, then
for each bag define a 2TW(φ) size Boolean array; entry j in the array will be 1 if the subformula rooted
at the bag is satisfiable, when the variables are given assignment j, and will be 0 otherwise. Clearly,
computing the array for the root will solve the satisfiability of the formula, and indeed by the property of
a tree decomposition, the array values can be computed in a leaves-to-root fashion.

To simplify the overview of the space-efficient algorithm we shall temporarily assume that each
clause appears in a bag together with all of its variables.5 Observe that if we fix a truth assignment
on a bag, then solving SAT on the given tree decomposition reduces to solving e. g., 3 independent
subproblems—think of splitting the degree-3 tree into three subtrees by cutting the original one at this
bag. The algorithm works by recursively enumerating and checking truth assignments on the bags. Its
performance is determined by the size of the subproblems (ideally all the subtrees have the same size). In
Section 4.2 (Lemma 4.2 below) we show that there always exists a good choice for a bag, reminiscent to
the well-known “1⁄3 - 2⁄3 lemma” for binary trees. The lemmas in Section 4.2 are a bit of an overkill for the
analysis of this simple algorithm, but they are also applied in the analysis of the tradeoff.

The tradeoff algorithm: where is the complication? Let us consider for a moment an execution of the
space-bounded algorithm. We can visualize each step of the recursion as splitting the tree decomposition
at a node (bag)—this bag is replicated at each of the subproblems with the fixed truth assignment. Let
the process evolve for a while, and when the forest has enough trees let us single out one such tree.
At the boundary (the leaves) of this tree there can be as many as log |φ | nodes to which we previously
fixed an assignment, i. e., by splitting. The logarithmically large number of nodes does not affect the
performance of the space-efficient algorithm (at each point of the recursion each bag/node is associated
with a single assignment). Now, we switch gears to devise a tradeoff algorithm. A natural thing to do is
first to discretize the truth assignment space associated with each bag, say in 2(1−ε)TW(φ) many chunks
each of size 2εTW(φ), and we perform the recursion as in the space-efficient algorithm but now instead of
one assignment we assign the whole chunk. This brings the enumeration, at each recursive step, from
2TW(φ) down to 2(1−ε)TW(φ). On the other hand combining the chunks of the truth assignments into one
consistent chunk associated with this tree may increase the space as much as 2ε log |φ |TW(φ). Overall this is
a time-space (

2(1−ε) log |φ |TW(φ),2ε log |φ |TW(φ)
)

algorithm, worse both than the time- and space-efficient ones! To devise our tradeoff algorithm we show
that it is possible to simultaneously (i) perform the splitting in a way that at each step of the execution the
forest consists of trees each with at most a constant number of split-nodes and (ii) this splitting results in
subproblems of somewhat balanced sizes. Furthermore, we show that it is possible to control the number
of splitting nodes per tree in the forest in a way that yields a tradeoff on this parameter (Section 5). This
is a different (and competing) tradeoff from the one by the discretization factor ε; i. e., our most general
tradeoff algorithm is controlled by two parameters.

5We remove this assumption later; see Section 4.1.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 314

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

4.1 A primer to algorithms for width-parameterized SAT

The structure of a tree decomposition is associated with the concept of separability (see e. g., [8]).
Intuitively, the smaller the tree-width is, the easier the graph can be broken into separate components by
removing nodes. Separability allows us to devise more efficient algorithms for small tree-width SAT than
for general SAT. In some sense, the given tree decomposition allows us to “localize” an exhaustive search.
The following example sheds some light on how this can be done towards devising a space-bounded
algorithm. Recall that, for this initial overview, we are assuming that all the variables of a clause appear
in the same bag with the clauses. We will see later that removing this assumption in a time-efficient
manner is non-trivial (in fact, removing it without increasing the base of the exponential running time is
an interesting puzzle).

(a) Input tree decomposition.

+

(b) Fixing an assignment to the variables
in the middle bag results in two indepen-
dent instances.

Figure 2: An example showing bounded tree-width SAT can be solved efficiently.

Suppose xi’s, x′i’s and x′′i ’s are different sets of variables and the tree decomposition is as in Figure 2a.
Let us fix a truth assignment to the variables in the bag in the middle, e. g., x1 = x2 = x3 = x4 = 1.
Conditioned on this truth assignment we can simplify the instance by removing clauses that are already
satisfied, and removing literals in a clause that are set to false. This will result in multiple sub-instances
as shown in Figure 2b. The properties of a tree decomposition assure that the sub-instances depend on
different sets of variables, i. e., they are independent. Since if instead they shared a common variable, this
variable would have appeared in the middle bag, e. g., x2. But this variable is already fixed by the truth
assignment.

The satisfiability of the input instance, conditioned on the truth assignment given to the middle bag,
is determined by the satisfiability of the two separate sub-instances. Therefore, it suffices to enumerate
all truth assignments satisfying all the clauses in the middle bag without causing empty clauses in the
simplification phase. Then, recurse into the two independent sub-instances to decide the satisfiability of
the original instance. Furthermore, by choosing the middle bag carefully we can invoke this “splitting”
on subtrees of somewhat balanced size.

In each recursive step, the most time-consuming part is to enumerate all the assignments satisfying

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 315

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

all the clauses in the chosen bag, which costs O(2TW(φ)|φ |O(1)) time, and the total running time is
O(2TW(φ) log |φ ||φ |O(1)), which is much better than the current best algorithms for general SAT, which run
in time exponential in |φ |.

The subtle additional assumption. The assumption that all variables of a clause appear in the same
bag with the clause is not a mild one (especially for CNFs of large cardinality). Of course, in the actual
algorithms we make no such assumption. In general, we may have to delay the decision to satisfy a clause.
In the above algorithm, we only store the truth assignments to the variables. The following example
shows that only storing this information is not enough when aiming at removing the assumption.

(a) φ1 (b) φ3

(c) φ2

Figure 3: Three instances used in the example. Figures on the top are the input tree decompositions, the
bottom figures are the two components after fixing assignment to the variables in the middle bag.

Suppose C1 = x1∨x2∨x4∨x6, C2 = x1∨x3∨x5, C3 = x2, C4 = x3, C5 = x4, C6 = x5 and C7 = x6. Three
instances φ1, φ2 and φ3 along with their tree decompositions are given in Figure 3, where φ1 =C1∧·· ·∧C7,
φ2 =C1∧·· ·∧C5∧C7 (i. e., C6 is missing), and φ3 =C1∧·· ·∧C4∧C6∧C7 (i. e., C5 is missing). We say
that a clause is satisfied by a literal under a truth assignment if the literal appears in the clause and is set
to 1. If an instance is satisfiable, then there is a truth assignment where every clause is satisfied by one of
its literals.

Now, consider the splitting operation on the middle bag by fixing a truth assignment to it as above.
For all three instances, the only possible assignment for x6 is 0, since C7 must be satisfied by x6 = 0.
Similarly, in the left bag, we must assign x2 = 0 and x3 = 0 to satisfy C3 and C4. In the left bag, the only
variable left is x1, which can satisfy either C1 or C2 but not both. The three instances differ in the right
part where two variables x4 and x5 are left.

Satisfying C5 requires x4 = 0, which implies that C1 can not be satisfied by x4. Similarly, satisfying C6
requires x5 = 0, so that C2 can not be satisfied by x5. In order to find a satisfying truth assignment, when
processing the right part, we need information about which of C1, C2 is already satisfied in the left part.
(Since φ1 is not satisfiable, the final outcome will be the same in either case.) φ2 is satisfied only when C1

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 316

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

is already satisfied, while φ3 is satisfied only when C2 is already satisfied. This piece of information is
not carried through the middle bag by just the truth assignment to the variables. To overcome this issue
we are going to use “clause-bits,” which we mentioned briefly in Section 2.3.

4.2 Splitting, consistency, assignment groups

In this section we give some additional notation and technical lemmas which we apply in the analysis
of the space-efficient (Section 4.3) and tradeoff algorithms (Sections 4.4 and 5). First we define an
operation which allows a natural divide-and-conquer strategy, and a lemma follows the definition for
choosing where the operation should occur. Then we define consistency with respect to our definition
of assignments, which is somehow subtle and different from consistency of truth assignments. And in
the last part of this section, we define a type of discretized assignment which is crucial in the tradeoff
algorithms.

Definition 4.1 (Splitting operation). Let T = (V,E) be a tree, and v ∈V . Splitting T at v is the following
operation. Let T1, . . . ,Tk be the trees after removing v from T . The splitting operation results in a forest
{v}∪T1, . . . ,{v}∪Tk, where {v}∪Ti is the subtree induced by the nodes in Ti together with v. v is called
the splitting node of this operation.

Given a tree T together with a sequence of splitting operations results in a forest where each subtree in
the forest in general has many nodes marked as splitting nodes. Splitting nodes before a specific splitting
operation are called previous splitting nodes. A splitting operation also splits the set of previous splitting
nodes S into Si’s, where Si is the set of splitting nodes contained in tree Ti, 1≤ i≤ k.

Note that a splitting operation on a tree will result in a forest with more nodes than before, since we
duplicate the splitting node and let it appear in each resulting tree. This fact will complicate the analysis
of a recursive procedure. To overcome this, consider for each node, we create d−1 replicas. When a
splitting operation occurs, each replica of the splitting node goes to one of the branches (and redundant
ones get removed if there are). Each node can be treated as splitting node only once, so the replicas of a
node will be distributed only once. These slightly modified splitting operations will never increase the
number of nodes. When analyzing running time on a tree originally with N nodes, one needs to use d ·N
as a upper bound of the number of nodes. We will see that this is negligible since the number of nodes
only appears as a polynomial factor or an argument logarithmically in the exponent of the running time.
For ease of exposure, we will stick to the notation N as the number of nodes, while this should be the
number after replicating.

A splitting algorithm A computes a function that, given a tree T together with previous splitting
nodes S, returns a node where the next splitting operation is going to be performed. A splitting algorithm
formalizes the way of breaking an instance into sub-instances in the space-efficient algorithm. In particular,
choosing the balancing splitting node is done according to the following lemma.

Lemma 4.2. Consider a tree of size N, a leaf s and 0 < α < 1, and satisfying N > 1/α . Then, there is a
node p where after we split at p, the tree which contains s is of size ≤ dαNe and every other tree is of
size ≤ d(1−α)Ne. The node p is called an α-splitting node. Furthermore, such a p can be found in time
polynomial in N.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 317

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

Proof. We prove this lemma by giving an algorithm for finding p. First root the given tree at s, and
then we iteratively construct a path 〈s ≡ v1,v2, . . . ,v`〉 as follows. After constructing the path from v1
through vi−1, vi is chosen to be child of vi−1 which roots the largest subtree. We claim that there exists an
α-splitting node in this path.

Denote by ai the size of the subtree containing s after splitting at vi, 1≤ i≤ `. It is not hard to see that
a1 = 1, a` = N, and ai strictly increases as i increases. Therefore, there must be a j, such that a j ≤ αN
and a j+1 > αN. We claim that v j is the node we need. If a j+1−a j = 1, then splitting at v j results in
two components, where the size of the component containing s is dαNe, while the other one is of size
d(1−α)Ne. If a j+1−a j > 1, then there must be a branch at v j, meaning that v j has at least two children.
Splitting at v j results in at least three components. One which contains s and is of size smaller than αN.
The largest one among the rest is of size smaller than (1−α)N.

Corollary 4.3. On a bounded-degree tree of size N, there exists a node p, such that after splitting at p
each subtree is of size at most dN/2e.

Consistent assignments. In what follows we assume that there is an initial tree decomposition (recall
that the bags are denoted by Xi) together with a sequence of splitting operations S that results in the
subtrees along with their splitting nodes.

We refer to an assignment on a subtree as the assignment that corresponds only to its splitting nodes.
Formally, let X∗ =

⋃
vi∈S Xi, and let V be the variables and C the clauses which have corresponding nodes

in X∗. X∗ is the set of variables and clauses on which we define assignments. Suppose in one single
splitting operation at the node p, to which Xp is the corresponding bag, T splits into subtrees Ti’s. Further
suppose RT is an assignment to T, and RTi is an assignment to the subtree Ti. Note that the only difference
between RT and RTi’s is at Xp, and RT and RTi’s are said to be consistent if

(1) for a variable x:

a) if x appears in Xp, then all the bits for x in each RTi are assigned to the same value;

b) otherwise, all the bits for x are assigned to the same value as in RT;

(2) for a clause C:

a) if C appears in X∗ and is assigned to 0, then ∀i every bit for C in RTi is assigned to 0;

b) otherwise, ∃ exactly one i such that in RTi the bit corresponding to C is assigned to 1.

Remark 4.4. The latter point in the definition, where in exactly one of the subtrees we require that
the corresponding bit equals to 1, is somewhat subtle. The following lemma crucially depends on this
property.

Lemma 4.5. For every assignment RT to the tree T, the number of assignments RTi to subtrees Ti’s
consistent with RT is at most dTW(φ). (Recall d ∈ {2,3}.)

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 318

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

Figure 4: Consistent assignments. C1 = x1 ∨ x2 ∨ x3, C2 = x3 ∨ x4. Consider splitting at the gray bag,
while fixing the value of the bits, 1 for C1, 0 for x3. Any possible consistent assignments for T1, T2, T3
will have 0 for x3; in this consistent assignment C1 has value 1 in T1, and has value 0 in T2 and T3.

Proof. Let Xp be the bag corresponding to the splitting node p. For each variable x in the bag Xp, there
are 2 possible assignments of the bit for x in the Ti’s. For each clause C in Xp, if C appears in RT and is
assigned to 0, by the definition of consistency, all the bits for C in the Ti’s are assigned to 0. Otherwise,
in exactly one Ti, the bit for C is assigned to 1; in this case there are at most d valid assignments. Recall
that d is the maximum degree of the tree decomposition.

We define a satisfying assignment in a way consistent with the role of clause bits in the assignments.

Definition 4.6. For a tree T with splitting nodes S, an assignment RT is satisfying if there exists a truth
assignment A to every variable in T, such that

(1) every truth value for a variable in RT agrees with the corresponding value in A,

(2) every clause C that appears in T where C does not appear in S, is satisfied by A,

(3) every clause C that appears in S and the corresponding bit is assigned to 1 by RT is satisfied by A.

A satisfying assignment of the input tree decomposition with empty splitting nodeset implies that the
input formula is satisfiable. The following lemma shows that the task of finding a satisfying assignment
can be done recursively.

Lemma 4.7. An assignment RT is satisfying if and only if there exist a satisfying assignment RTi to each
subtree Ti, such that all of the assignments RTi are consistent with RT .

Proof. For a tree T with splitting nodes S, suppose that splitting at node p results in the subtrees {Ti}.
Suppose that the assignment RT is satisfying. By Definition 4.6, there exists a truth assignment on
variables within T that makes all of the clauses true. This truth assignment induces assignments RTi

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 319

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

consistent with RT , such that for these truth assignments the conditions in Definition 4.6 are met. (Some
of the clause bits in the RTi may need to be set to zero, to ensure consistency.)

For the other direction suppose that there exist assignments RTi of the subtrees Ti, such that the
assignments RTi’s are consistent with RT and all RTi’s are satisfying. For each subtree Ti, there exists a
truth assignment complying to Definition 4.6. Since all these truth assignments agree on their common
variables (because the common variables appear in splitting nodes in S), we can get a truth assignment
from their union, which also meets the axioms in Definition 4.6. Therefore, the assignment RT is
satisfying.

An ε-assignment group ε-GRT is a set of all possible assignments to S, where at most (1−ε)|S|TW(φ)
entries are fixed. By definition, ε-assignment groups can be identified by the fixed entries. Consider a
tree T, ε-assignment group ε-GRT, and subtrees Ti resulting from a split at some node p. Consider one
such subtree Ti; let Si be the set of splitting nodes for Ti, and note that Si ⊆ S∪{p} (and very likely it is a
proper subset). By fixing the “first” (1−ε)TW(φ) entries corresponding to variables or clauses contained
in the node p ∈ Si (using some fixed ordering), one obtains an ε-assignment group ε-GRTi for Ti.

Given a tree T and subtrees Ti resulting from a split, the ε-assignment groups ε-GRT and ε-GRTi’s
are called consistent if there exist RT ∈ ε-GRT and RTi ∈ ε-GRTi for each i, such that RT and the RTi’s are
consistent.

Note that the fixed entries for the splitting node p may be different among subtrees (because of the
rules regarding clause bits), and note also that some of the unfixed entries in T may fixed in subtrees
(because they appear in p). The following important lemma holds, which basically generalizes Lemma 4.5.

1 0 1 0 1 1 1︸ ︷︷ ︸
(1−ε)|S|TW(φ)

∗ ∗ ∗︸ ︷︷ ︸
ε|S|TW(φ)

(a) An ε-assignment group where
(1− ε) fraction of values are fixed

1 0 1 0 1 1 1 0 0 0

1 0 1 0 1 1 1 0 0 1
...

1 0 1 0 1 1 1 1 1 1
(b) Assignments in the group

Figure 5: ε-assignment group.

Lemma 4.8. The number of distinct ε-GRTi’s consistent with ε-GRT is at most d(1−ε)TW(φ).

Proof. Here we only consider the first (1− ε) fraction of entries, which are going to be fixed, since as
pointed out in previous discussion, an ε-assignment group is identified by the values of the fixed entries.
For each variable x, there are 2(≤ d) possible values. For each clause C, let d0(≤ d) be the number of
subtrees created by splitting at p. There are two different cases:

(1) C is not in any previous splitting nodes, or C is in some previous splitting node but its value is unfixed.
There are d0 possible ways of assigning values to the bit for C, such that there is exactly one of Ti’s,
whose bit for C is set to 1 to ensure C is satisfied.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 320

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

(2) C is in some previous splitting node, and its value is fixed in ε-GRT. If the bit for C is assigned 1,
then there are d0 possible assignments to C similar as above, otherwise the only possible way is to set
all bits for C to 0.

Since there are at most (1− ε)TW(φ) entries that need to be fixed, in order to form the ε-GRTi’s, the
number of different combinations of ε-GRTi’s consistent with ε-GRT is at most d(1−ε)TW(φ).

4.3 The space-efficient algorithm

The space-efficient algorithm is described in Algorithm 2. T is a tree with previous splitting nodes S, and
RT is the assignment fixed on the tree. A subtle point that affects the running time of this algorithm is
addressed in Remark 4.4. The correctness of the algorithm directly follows by Lemma 4.7.

Algorithm 2 SAT(T, RT).

1: if all nodes in T are previous splitting nodes then
2: if every clause in RT assigned value 1 is satisfied by some variable in T then
3: return True
4: else
5: return False
6: end if
7: else
8: split at the 1/2-splitting node, and denote the subtrees as Ti’s
9: for all RTi’s consistent with RT do

10: if ∀Ti, SAT(Ti, RTi) = True then
11: return True
12: end if
13: end for
14: return False
15: end if

This algorithm requires only |φ |O(1) space, because there are only O(log |φ |) assignments to be stored
during the process. Suppose T (N) is the running time on a decomposition with N nodes. By Lemma 4.5

T (N)≤ O
(

dTW(φ)
)

T
(

1
2

N
)
+ |φ |O(1)

that is, T (|φ |) = O
(
dTW(φ) log |φ ||φ |O(1)

)
, where by the normal form assumption d = 3, i. e.,

T (|φ |) = 3TW(φ) log |φ ||φ |O(1) .

4.4 Tradeoff algorithms

We present a family of algorithms for bounded tree-width SAT described in Algorithm 3. Different
implementations of SPLITTING ALG (line 10) result in different algorithms. SAT-TRADEOFF is a

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 321

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

procedure that takes a tree decomposition T, a previous splitting node set S, and an ε-assignment group
ε-GRT , and returns an array M(T,ε-GRT) of 2ε|S|TW(φ) entries, where the ith entry indicates whether the
i-th assignment of ε-GRT can be extended to a satisfying truth assignment.

Algorithm 3 SAT-TRADEOFF(T, S, ε-GRT)

1: M(T,ε-GRT)← all-zero array
2: if all nodes in T are in S then
3: for all j : 1≤ j ≤ |ε-GRT| do
4: RT ← jth assignment in ε-GRT

5: if every clause whose bit in RT assigned 1 is satisfied by some variable in T then
6: M(T,ε-GRT) j← 1
7: end if
8: end for
9: else

10: split at SPLITTING ALG(T, S), and denote the subtrees Ti’s . Replaceable
11: for all ε-GRTi’s consistent with ε-GRT by fixing (1− ε)TW(φ) entries do
12: ∀i, M(Ti,ε-GRTi)← SAT-tradeoff(T,Ti,ε-GRTi)
13: for all j : 1≤ j ≤ |ε-GRT| do
14: RT ← jth assignment in ε-GRT

15: for all RTi’s chosen ε-GRTi’s correspondingly do
16: if ∀i, M(Ti,RTi) = 1 and ∀Ti, RTi’s are consistent with RT then
17: M(T,ε-GRT) j← 1
18: end if
19: end for
20: end for
21: end for
22: end if
23: return M(T,ε-GRT)

A type` tree is a tree with ` previous splitting nodes. Let α be a parameter satisfying 0 < α < 1/2.
The splitting algorithm H2 described in Algorithm 4 has the property that it never creates a type` tree, for
any `≥ 3.

The performance of the tradeoff algorithms is not hard to analyze tightly (unlike the rather involved
analysis of the two-parameter generalized tradeoff in Section 5), and it is summarized in the following
theorem.

Theorem 4.9. SAT of tree-width TW(φ) can be solved in simultaneously

O
(
d1.441(1−ε)TW(φ) log |φ ||φ |O(1))

time and
O
(
22εTW(φ)|φ |O(1))

space, where ε is a free parameter, 0 < ε < 1.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 322

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

(a) (b) (c)

Figure 6: Choosing splitting node in three different cases. Rounding errors are ignored for simplicity.

Proof. Denote by T1(N), T2(N) the running time of Algorithm 4 using splitting rule H2 on type1 or type2
trees each of N nodes respectively. Splitting a type1 tree results in multiple type1 trees with size at most
(1−α)N and one type2 tree with size at most αN, so we have

T1(N)≤ O(d(1−ε)TW(φ))(T1 ((1−α)N)+T2 (αN))+2O(TW(φ)) .

Splitting a type2 tree, when the 1/2-splitting is on the path between p1 and p2 results in two type2 trees
with size at most N/2 and multiple type1 trees. Otherwise, the splitting operation results in two type2
trees with size at most N/2 and several type1 trees. Hence:

T2(N)≤ O(d(1−ε)TW(φ))(T1(N)+T2(N/2))+2O(TW(φ)) .

Set α = 3−
√

5
2 to minimize the values of T1(N) and T2(N), we have

T1(N)≤ O(d(1−ε)TW(φ))(T1 ((1−α)N)+T2 (αN))+2O(TW(φ))

≤ O(d(1−ε)TW(φ))T1 ((1−α)N)+O(d2(1−ε)TW(φ))T1 (αN)+2O(TW(φ)) .

Therefore:
T1(N)≤ d

1
− log(1−α) (1−ε)TW(φ) logN |φ |O(1) .

Since typei, i≥ 3 trees are not allowed, the space requirement is 22εTW(φ)|φ |O(1).

4.5 Optimality of the splitting algorithm for the single-parameter tradeoff

The splitting algorithm presented above is a specific one, with the property that it does not create typei

trees for any i≥ 3. Interestingly, it can be shown that this specific splitting algorithm is optimal over all
splitting strategies which enjoy this property.

Definition 4.10. Denote by Ac (∀c ≥ 2) the family of algorithms for SAT with bounded tree-width
following the framework in Algorithm 3 which use a splitting algorithm without creating typei trees
∀i > c.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 323

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

Algorithm 4 H2(T,S)

1: if T with S is a type0 tree then
2: return the 1/2-splitting node
3: else if T with S is a type1 tree then
4: regard the previous splitting node as root
5: return the α-splitting node . Figure 6a
6: else if T with S is a type2 tree then
7: suppose S= {p1, p2}
8: regard p1 as root and compute the 1/2-splitting node q
9: if q is on the path between p1 and p2 then

10: return q . Figure 6b
11: else
12: return the least common ancestor of q and p2 . Figure 6c
13: end if
14: end if

We lower bound the running time of all algorithms in A2 by showing hard instances based on
generalizations of Fibonacci trees.

Definition 4.11. For any positive integer h, a h-Fibonacci tree(denoted as Fh) is a rooted tree recursively
defined as following,

(1) if h = 1, Fh contains only 1 node;

(2) if h = 2, Fh contains 2 nodes and one edge between them;

(3) if h > 2, Fh is constructed by a root connecting roots of two subtrees Fh−2 and Fh−1.

An extended (h,r)-Fibonacci tree (denote as F∗h,r) is constructed by adding one edge between a root node
r and the root of subtree Fh.

(a) Fh (b) F∗h,r

Figure 7: Fibonacci tree and extended Fibonacci tree.

In what follows, we focus on the structure of the trees and inspect the running time of an algorithm in
A2 on a formula with a tree decomposition with the specific structure, and omit the details of constructing

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 324

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

a formula having tree decomposition of a certain structure here. Consider an extended (h+2,r)-Fibonacci
tree F∗h+2,r with N nodes, h = dlog(1+

√
5)/2 Ne−2. We prove that this is hard for any algorithms in A2,

namely,

Theorem 4.12. Every algorithm in A2 runs in Ω
(
31.441(1−ε)TW(φ) logN |φ |Θ(1)

)
time on F∗h+2,r.

Before giving the proof of the theorem, we define two types of trees which appear in intermediate
phases of the splitting algorithm and lower bound the running time on these trees: T1,h (a special type1
tree) is constructed by a splitting node connected to the root of a subtree Fh (same shape as F∗h,r, the node
at the position of r is a splitting node); and T2,h (a special type2 tree) is constructed by two separate
splitting nodes connected to a node r which roots a subtree F∗h,r.

Lemma 4.13. Every algorithm in A2 runs in Ω
(
3(1−ε)TW(φ)h|φ |Θ(1)

)
time on T1,h, and runs on T2,h in

time Ω
(
3(1−ε)TW(φ)(h+1)|φ |Θ(1)

)
.

Proof. The proof is by induction on h. Base cases are vacuous where h≤ 2. Suppose the statement is
true for any h0 < h, consider the induction steps:

(1) For T1,h, if we split at the root of Fh, a T1,h−1 will be derived, the running time on which is

Ω
(
3(1−ε)TW(φ)(h−1)|φ |Θ(1)) ;

otherwise if we split at some node inside the subtrees Fh−1 or Fh−2, the running time on the subtree
containing two splitting nodes (a new one and a previous one) is lower bounded by the running time
of a T2,h−2, which is

Ω
(
3(1−ε)TW(φ)((h−2)+1)|φ |Θ(1)) .

To see this, assume for example that the splitting node p is inside the Fh−1. Imagine that all the nodes
in Fh−1 except those on the path between p and the node v which connects to the root of Fh−2 are
pruned for free, and then replace the path between p and v by an edge between them. A T2,h−2 is
derived this way, and note that the running time will not increase after the procedure. Observe that
enumerating all assignments for a newly created splitting node requires time

Ω
(
3(1−ε)TW(φ)|φ |Θ(1)) ,

so the running time for T1,h is
Ω
(
3(1−ε)TW(φ)h|φ |Θ(1)) .

(2) For T2,h, the splitting must occur at the node connecting the two splitting nodes, which creates a T1,h,
the running time on which as shown above is

Ω
(
3(1−ε)TW(φ)h|φ |Θ(1)) .

Taking the time required for enumerating all assignments for the new splitting node into consideration,
the total running time for T2,h is therefore lower bounded by

Ω
(
3(1−ε)TW(φ)(h+1)|φ |Θ(1)) .

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 325

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

Proof of Theorem 4.12. The very first step of splitting at any node of F∗h+2,r will result in a type1 tree, the
running time on which is lower bounded by the running time on T1,h. By Lemma 4.13, that is

Ω
(
3

1
− log(1−α) (1−ε)TW(φ) logN |φ |Θ(1)) ,

where

N = Θ

(1+
√

5
2

)h
 , and α =

3−
√

5
2

(which matches the parameter chosen in the tradeoff algorithm). By simplifying this expression we obtain
the theorem.

5 Generalized two-parameter tradeoff algorithms

In this section we establish Theorem 5.1 below, by exhibiting a family of algorithms that achieve time-
space tradeoffs generalizing the algorithms in the previous section. Each algorithm in this family is
identified by the parameters (ε,c). Moreover, we show that both of these parameters are necessary to
achieve different time-space tradeoffs. Intuitively, parameter 0 < ε < 1 corresponds to the granularity
of the discretization of the assignment space, whereas the integer parameter c ≥ 2 has to do with the
“complexity” of the rule applied recursively during the truth assignment search.

Theorem 5.1. For every integer c≥ 2 and ε , where 0< ε < 1, a SAT instance φ with a tree decomposition
of width TW(φ) and N nodes, can be decided in time-space(

3(λc(logN−c)+c)(1−ε)TW(φ)|φ |O(1), 2cεTW(φ)|φ |O(1)
)

for a constant λc.

λc is a constant depending on c. To be more specific, λc is defined as − logxc, where xc is the root
with largest absolute value of the polynomial equation: Xc−Xc−1−Xc−2−·· ·−1 = 0. The first few
values of λc for small c’s are listed in Table 1.

c 2 3 4 5 6

λc 1.441 1.138 1.057 1.026 1.013

Table 1: Values of λc for small c’s.

5.1 Generalized tradeoff algorithms

We have already seen a tradeoff algorithm which avoids typei trees for i≥ 3. It is natural to ask if the
algorithm can be generalized to allow up to typec trees for any fixed c≥ 2, and more importantly if by

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 326

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

doing so there is any gain in the running time (clearly, there will be a loss in the space). Indeed, this is
possible and as c increases the running time decreases while the space requirement increases.

First, we generalize the splitting algorithm to allow typei trees for i up to c. For arbitrary 1≤ i≤ c,
consider splitting a typei tree: suppose the splitting node is p. If p is on the path between some pair of
previous splitting nodes, splitting at this node results in several type j (j ≤ i) trees; otherwise, splitting
results in several type1 trees and one typei+1 tree. Formally, we devise an algorithm Hc, such that
when splitting a typei tree, we invoke Hc to determine the splitting node. This is an implementation of
SPLITTING ALG in Algorithm 3.

Algorithm 5 Hc(T,S)

1: if T with S is a type0 tree then
2: return the 1/2-splitting node
3: else
4: suppose T with S is a typei tree
5: if |T| ≤ 2c−i then
6: return the 1/2-splitting node
7: else
8: pick an arbitrary node from S as root and compute the αc,i-splitting node q1
9: if q1 is not on the path between any pair in S then

10: return q1 . Figure 8a
11: else
12: compute a 1/2-splitting node q2.
13: if q2 is on the path between any pair in S then
14: return q2 . Figure 8b
15: else
16: return the least common ancestor of q2 and all nodes in S . Figure 8c
17: end if
18: end if
19: end if
20: end if

Each αc,i for any 1≤ i < c is a parameter satisfying 0≤ αc,i ≤ 1/2. To prevent typec+1 trees, splitting
node of a typec tree must be on the path between some pair of previous splitting nodes, this is assured
by setting αc,c = 0. For a fixed c, the running time and space of the algorithm solving SAT of bounded
tree-width utilizing the splitting algorithm A are summarized in Theorem 5.1 (see page 326).

We introduce the following notation in order to discuss the splitting depth.

Definition 5.2. The c-splitting depth SDc(A,T,S) of a splitting algorithm A on tree T with previous
splitting nodes S is inductively defined as follows (where the case for |S|> c is arbitrary):

SDc(A,T,S) =

max(T0,S0)∈CT,S,p

SDc(A,T0,S0)+1 |S| ≤ c, |S|< |T| ,
0 |S| ≤ c, |S|= |T| ,
∞ |S|> c ,

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 327

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

(a) (b) (c)

Figure 8: Choosing splitting node for a typei tree (i = 2 here) in three different cases. Rounding errors
are ignored for simplicity.

where p is the output of A on T and S, CT,S,p is the set of subtrees by splitting at p in tree T with previous
splitting nodes S.

We define the c-minimum splitting depth minSDc(T,S) to be the minimum value of SDc(A,T,S),
over all splitting algorithms.

Under this notation, given a tree T, any algorithm A avoiding typec+1 trees requires time

d(1−ε)SDc(A,T, /0)TW(φ)|φ |O(1)

and space
2cεTW(φ)|φ |O(1) .

In fact, bounding the running time is a non-trivial issue (the derived recurrences are in a “perplexed” form).
The proof of Theorem 5.1 follows by two technical lemmas: Lemma 5.3 establishes the recurrences
according to the recursive algorithm, and Lemma 5.4 deals with choice of parameters. For simplicity of
presentation we ignore issues regarding the divisibility of N by 2.

Lemma 5.3. For every c≥ 2, any tree T with N nodes and splitting node set S of size i, let

Dc,i(N) = max
T,S

SDc(Hc,T,S) .

Then, Dc,i(N)≤max{Dc,1 ((1−αc,i)N) ,Dc,i+1 (αc,iN) ,Dc,i (N/2)}+1 ∀i : 1≤ i < c ,

Dc,c(N)≤max{Dc,1(N),Dc,c(N/2)}+1 .

Proof. Without loss of generality, suppose N ≥ 2c. Consider splitting a typei tree with splitting nodes
S, 1≤ i < c. If the αc,i-splitting-node m is not on the path between any pair of previous splitting nodes,

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 328

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

splitting at m will result in multiple type1 trees of size at most d(1−αc,i)Ne and one typei+1 tree of size
at most dαc,iNe. Otherwise, since 1−αc,i ≥ 1/2, the maximal possible size of a type1 tree created by any
splitting node will not exceed d(1−αc,i)Ne. Splitting at the 1/2-splitting-node c will result in multiple
type j(j ≤ i) trees of size at most dN/2e, otherwise, splitting at the least common ancestor of c and all
previous splitting nodes as p, will result in multiple type1 tree of size at most d(1−αc,i)Ne and many
type j(j ≤ i) trees with size at most dN/2e. In summary,

Dc,i(N)≤max{Dc,1 ((1−αc,i)N) ,Dc,i+1 (αc,iN) ,Dc,i (N/2)}+1 .

Now, consider splitting a typec tree with splitting nodes S. Since αc,c = 0, we always ignore the
(1−αc,i)-splitting-node m. Splitting at the 1/2-splitting-node c will result in multiple type j(j ≤ i) trees
of size at most dN/2e. Splitting at the least common ancestor of c and all previous splitting nodes will
result in multiple type1 tree with size at most N and multiple type j(j ≤ i) trees with size at most dN/2e,
namely:

Dc,c(N)≤max{Dc,1(N),Dc,c(N/2)}+1 .

Lemma 5.4. SDc(H2,T, /0) for a tree T of N nodes is at most λc(logN− c)+ c+O(1), with properly
chosen parameters αc,i’s.

Proof. For ease of computation, we define a function D′ independent of D, as a recurrence that satisfies
the recursion that, by Lemma 5.3, holds for the running time.D′c,i(N) = D′c,1((1−αc,i)N)+1 = D′c,i+1(αc,iN)+1 ∀i : 1≤ i < c ,

D′c,c(N) = D′c,1(N)+1 .

By manipulating the first equation, we can derive that

D′c,1((1−αc,i)N) = D′c,i+1(αc,iN) ∀i : 1≤ i < c

⇒ D′c,1((1−αc,i)/αc,iN) = D′c,i+1(N) ∀i : 1≤ i < c

⇒ D′c,1((1−αc,i−1/αc,i−1N) = D′c,i(N) ∀i : 1 < i≤ c .

Again, by the first equation, for each 1≤ i < c,

D′c,i(N) = D′c,i+1(αc,iN)+1 = D′c,1(αc,i(1−αc,i+1)N)+2 ,

thus

D′c,1(N) = D′c,1(αc,i(1−αc,i+1)/(1−αc,i)N)+2 ∀i : 1≤ i < c .

Consider minimizing the values of D′c,1. Since D′c,1(N) = D′c,1((1−αc,1)N)+1, we let

1−αc,1 = αc,i
1−αc,i+1

1−αc,i
.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 329

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

By rearranging,

αc,i+1 = 1− (1−αc,1)(1−αc,i)

αc,i

holds. Inductively, the following can be proved

αc,i = 1− αc,1(1−αc,1)
i

2αc,1−1+(1−αc,1)i ∀i : 1≤ i≤ c .

Now look at the boundary conditions, since

D′c,c(N) = D′c,1(N)+1 = D′c,1 ·
(1−αc,c−1)N

αc,c−1
.

Again, to minimize the values of D′c,1, let

αc,c−1

1−αc,c
= 1−αc,1 , and therefore αc,c−1 =

1−αc,1

2−αc,1
.

By what is shown above,
1−αc,1

2−αc,1
= 1− αc,1(1−αc,1)

c−1

2αc,1−1+(1−αc,1)c−1 ,

which implies
c

∑
i=1

(1−αc,1)
i = 1 .

We choose αc,1 = α∗c,1 to be a solution of the equation above, and then all the other αc,i’s can be fixed. By
setting λc = 1/log(1−α∗c,1), for each 1≤ i≤ c, D′c,i(N)≥ D′c,i(N/2)+1. We getD′c,i(N) = max{D′c,1((1−αc,i)N),D′c,i+1(αc,iN),D′c,i(N/2)}+1 ∀i : 1≤ i < c ,

D′c,c(N) = max{D′c,1(N),D′c,c(N/2)}+1 .

Note that D′ is defined in a way that it satisfies the recursion in Lemma 5.3, and it can be proved by
induction that D′c,i(N) upper bounds Dc,i(N) for all c, i. By the choice of the parameters, the recurrence
can be solved using standard tools. Specifically,

Dc,1(N)≤ D′c,1(N)≤ λc(logN− c)+Dc,1(2c)+O(1) .

Since Dc,1(2c) = c, SDc(Hc,T,S) is upper bounded by λc(logN− c)+ c+O(1), where λc satisfies

c

∑
`=1

2−
`

λc = 1 .

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 330

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

Proof of Theorem 5.1. For every c≥ 2, we solve the above recurrences: when N < 2c, the running time
is

dlogN(1−ε)TW(φ)|φ |O(1) ;

when N ≥ 2c, the running time is

d(λc(logN−c)+c)(1−ε)TW(φ)|φ |O(1) .

Space required by the algorithm is upper bounded by 2cεTW(φ)|φ |O(1) since only typei trees are allowed,
for i≤ c.

The value λc depending on the choice of parameter c seems quite artificial in the analysis of our
algorithms, but later we will see that this constant is actually tight. Here is an upper bound on λc.

Lemma 5.5. λc < 1+
2

2c/2 .

Proof. Let f (X) = Xc−∑
c−1
i=0 X i, and let γc be the root of f (X) = 0 with largest absolute value. We know

f (2) = 1 > 0, so if we can prove f (2−1/2c/2)< 0 then there must be a root between 2 and 2−1/2c/2.
Denote y = 2−1/2c/2,

f (y)< 0 ⇐⇒ yc <
c−1

∑
i=0

yi =
yc−1
y−1

⇐⇒ y < 2− 1
yc .

The last inequality is true because y = 2−1/2c/2 >
√

2 when c≥ 2 and 2−1/yc > 2−1/
√

2
c
= y. By

definition of λc = 1/log2 γc, it follows that λc < 1+2/2c/2.

Given the above upper bound, we can furthermore prove an interesting feature of our family of
algorithms. Namely, the space resource can be fully exploited to minimize the running time, which
potentially is of practical importance.

Corollary 5.6 (of Theorem 5.1). For any ε ′> 0 there exists an algorithm which runs in space 2ε ′TW(φ)|φ |O(1)

and time dδTW(φ) log2 |φ ||φ |O(1) for a constant δ < 1.

Proof. For any fixed ε and c, there is an algorithm with running time

O
(
dλc(1−ε)TW(φ) log |φ ||φ |O(1))

and space O(2cεTW(φ)|φ |O(1)) by Theorem 5.1. Set ε = ε ′/c, then the space is O(2ε ′TW(φ)|φ |O(1)) and the
running time is

O
(
dλc(1− ε ′

c)TW(φ) log |φ ||φ |O(1)) .
By Lemma 5.5,

λc

(
1− ε ′

c

)
<

(
1+

2
2c/2

)(
1− ε ′

c

)
< 1

for sufficiently large c.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 331

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

5.2 Optimality of the generalized tradeoff algorithm

Similarly to the last part of Section 4, we also prove the optimality of the generalized tradeoff algorithm.
However, in this case the matching lower bound is more involved (since the upper bound involved a lot of
guessing). We construct the hard instance using extended generalized Fibonacci trees.

Definition 5.7. For any integer c≥ 2, and positive integer h, a (c,h)-Fibonacci tree(denoted as Fc,h) is a
rooted tree defined by one of the rules,

(1) if h≤ c, Fc,h is a chain of 2c nodes;

(2) if h > c, Fc,h is constructed by starting from a chain of c nodes (one end as the root), then replacing
the ith node (starting from the root) by a subtree Fc,h−i.

An extended (c,h,r)-Fibonacci tree (denote as F∗c,h,r) is constructed by connecting one root node r to a
subtree Fc,h.

See Figure 9a for an illustration of a (c,h)-Fibonacci tree. Fc,h+c is indeed the hard instance for
splitting algorithms in Ac for c≥ 2. As discussed previously, it suffices to lower bound minSD on this
tree.

(a) Fc,h (b) F∗c,h,r (c) Gc,h,w

Figure 9: Fibonacci tree in a more general form and the hard instance based on it.

Similar to the proof of Theorem 4.12, we need a definition of trees which may appear in intermediate
phases and contain previous splitting nodes. ∀c ≥ 2, ∀h > c and ∀w : 1 ≤ w ≤ c, Gc,h,w is such a tree:
first construct a chain of length w, then connect c−w+1 previous splitting nodes to the first node of the
chain, and ∀i : 1≤ i≤ w, connect a subtree Fc,h−c+w−i to the i-th node of the chain. Denote S` as the set
of the ` previous splitting nodes connected to the first node of the chain. The following bound holds for
these intermediate trees.

Lemma 5.8. ∀h≥ 1,∀w : 1≤ w≤ c, minSD(Gc,h,w,Sc−w+1)≥ h− c+w.

Proof. We prove the lemma by induction on h. The base case is trivial. Suppose ∀h : h < h0,

minSDc(Gc,h,w,Sc−w+1)≥ h− c+w

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 332

http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

holds for any valid w. For the induction step, we prove

minSDc(Gc,h0,w,Sc−w+1)≥ h0− c+w (5.1)

holds for any w by induction on w. When w = 1, to prevent typei trees for i > c, we must split at the first
node of the chain. By induction hypothesis (on h),

minSDc(Gc,h0,1,Sc)≥ 1+minSDc(Gc,h0−c,c,S1)≥ h0− c+1 .

Suppose (5.1) holds ∀w : w < w0, for the induction step, consider lower bounding

minSDc(Gc,h0,w0 ,Sc−w0+1) .

As in the proof of Lemma 4.13, in order to apply the induction hypothesis, some size-reducing
procedure which will not increase the running time will be applied to the tree after splitting. If the
splitting node is inside the subtree Fc,h0−c+w0−1, prune the nodes in the subtree Fc,h0−c+w0−1 outside the
path between the first node on the chain and the splitting node, then shrink the path to an edge, and finally
shrink the first edge on the chain to obtain a Gc,h0,w0−1, by induction hypothesis,

minSDc(Gc,h0,w0−1,Sc−(w0−1)+1)≥ h0− c+w0−1;

otherwise consider an additional free splitting at the first node on the chain, this produces a Gc,h0−c+w0−1,c,
again by induction hypothesis (h0− c+w0−1 < h0),

minSDc(Gc,h0−c+w0−1,c,S1) = h0− c+w0−1− c+ c = h0− c+w0−1 .

Therefore,
minSDc(Gc,h0,w0 ,Sc−w0+1)≥ 1+h0− c+w0−1 = h0− c+w0 .

This completes both inductions and also the proof.

Corollary 5.9. For each h≥ 1, minSD(F∗c,h,r,{r})≥ h.

Proof. By Lemma 5.8, minSDc(F∗c,h,r,{r}) =minSDc(Gc,h,c,S1)≥ h− c+ c≥ h.

Now we are ready to state the theorem for optimality.

Theorem 5.10. For every c≥ 2 and N > 2c, there exists a tree T with N nodes, such that

minSDc(T, /0)≥ λc(logN− c)+ c−O(1) .

Proof. Let |Fc,h| be the number of nodes in the tree Fc,h. For any h≤ c, we have |Fc,h| ≤ 2c, when h > c,
we have |Fc,h| = ∑

c
i=1 |Fc,h−i|+ c. By the recursion, the generating function of |Fc,h| can be written as

f (X) = Xc−∑
c
i=0 X i. Therefore

|Fc,h|=
c

∑
i=1

δc,iγ
h−c
c,i ,

where δc,i is upper bounded by a constant times 2c and γc,i is the i-th root of the equation f (X) = 0.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 333

http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

Let γc = argmaxi{|γc,i|}. When h tends to infinity, |Fc,h|= Θ(2cγh−c
c). So,

h≥ logγc
(|Fc,h|/2c)+ c−O(1) = λc(log |Fc,h|− c)+ c−O(1) .

Therefore, for any c≥ 2 and large enough N, consider the tree T = Fc,h+c with ≥ N nodes. Splitting it at
any node will result in a tree, whose minimum splitting depth is lower bounded by minSD(F∗c,h,r,{r}): if
the splitting node is on the chain, then let r be the splitting node; otherwise let r be any node on the chain
other than the one which is connected to the root of the subtree where the splitting node lay. (One can
think of as splitting at r for free.) This, when combining with Corollary 5.9, completes the proof.

Similarly to Theorem 4.12, here we conclude the optimality of our tradeoff algorithm. That is, for
fixed c ≥ 2, ∀ε : 0 < ε < 1, and every sufficiently large input length and every algorithm Ac (whose
description may depend on the length) there is an instance φ , for which the running time is

Ω
(
3λc(log |φ |−c)+c−O(1)|φ |Θ(1)) .

6 Future work

A very exciting research direction is to unconditionally verify our conjecture in restricted models of
computation—propositional proof complexity lower bounds can be understood as such results. The
work of Beame-Beck-Impagliazzo [6] took the first step towards this direction. Such results can be also
understood as partial progress towards SC 6= NC.

A rather intriguing direction regarding positive results, is to use randomness in order to improve
the multiplicative constants in the exponents of time or space, or to provide improved tradeoffs. More
generally, we would like to understand the role of randomness in width-parameterized SAT-solving, a
topic which is fundamentally unexplored.

Acknowledgments

We would like to thank Hubie Chen, Kevin Matulef and Alexander Razborov for useful remarks and
suggestions.

References

[1] MANINDRA AGRAWAL, ERIC ALLENDER, SAMIR DATTA, HERIBERT VOLLMER, AND KLAUS W.
WAGNER: Characterizing small depth and small space classes by operators of higher type. Chicago
J. Theor. Comput. Sci, 2000(2), 2000. CJTCS. 302

[2] MICHAEL ALEKHNOVICH AND ALEXANDER A. RAZBOROV: Satisfiability, branch-width and
Tseitin tautologies. In Proc. 43rd FOCS, pp. 593–603. IEEE Comp. Soc. Press, 2002. See also
journal version in Comput. Complexity 20(4), 2011, 649-678. [doi:10.1109/SFCS.2002.1181983]
298, 299, 301

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 334

http://cjtcs.cs.uchicago.edu/articles/2000/2/contents.html
http://dx.doi.org/10.1007/s00037-011-0033-1
http://dx.doi.org/10.1109/SFCS.2002.1181983
http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

[3] SANJEEV ARORA AND BOAZ BARAK: Computational complexity: a modern approach. Volume 1.
Cambridge Univ. Press, 2009. [doi:10.1017/CBO9780511804090] 312

[4] FAHIEM BACCHUS, SHANNON DALMAO, AND TONIANN PITASSI: Solving #SAT and Bayesian
inference with backtracking search. J. Artif. Intell. Res. (JAIR), 34:391–442, 2009. Preliminary
version in FOCS’03. [doi:10.1613/jair.2648] 299, 301, 312

[5] DAVID A. MIX BARRINGTON, NEIL IMMERMAN, AND HOWARD STRAUBING: On uniformity
within NC1. J. Comput. System Sci., 41(3):274–306, 1990. [doi:10.1016/0022-0000(90)90022-D]
306

[6] PAUL BEAME, CHRISTOPHER BECK, AND RUSSELL IMPAGLIAZZO: Time-space tradeoffs in
resolution: superpolynomial lower bounds for superlinear space. In Proc. 44th STOC, pp. 213–232.
ACM Press, 2012. See also at ECCC. [doi:10.1145/2213977.2213999] 302, 313, 334

[7] HANS L. BODLAENDER: A tourist guide through treewidth. Acta Cybern., 11(1-2):1–22, 1993.
See at Act Cybernetica. [http:citeseerx.ist.psu.eduviewdocsummary?doi=10.1.1.18.8755] 300, 314

[8] HANS L. BODLAENDER: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput.
Sci., 209(1-2):1–45, 1998. [doi:10.1016/S0304-3975(97)00228-4] 303, 315

[9] HANS L. BODLAENDER, FEDOR V. FOMIN, ARIE M. C. A. KOSTER, DIETER KRATSCH, AND

DIMITRIOS M. THILIKOS: A note on exact algorithms for vertex ordering problems on graphs.
Theory of Computing Systems, 50(3):420–432, 2012. [doi:10.1007/s00224-011-9312-0] 301

[10] HANS L. BODLAENDER, JOHN R. GILBERT, HJÁLMTÝR HAFSTEINSSON, AND TON KLOKS: Ap-
proximating treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms, 18(2):238–
255, 1995. [doi:10.1006/jagm.1995.1009] 309

[11] RONALD V. BOOK, CHRISTOPHER B. WILSON, AND XU MEI-RUI: Relativizing time, space, and
time-space. SIAM J. Comput., 11(3):571–581, 1982. [doi:10.1137/0211048] 313

[12] ALLAN BORODIN, STEPHEN A. COOK, PATRICK W. DYMOND, WALTER L. RUZZO, AND

MARTIN TOMPA: Two applications of inductive counting for complementation problems. SIAM
J. Comput., 18(3):559–578, 1989. Preliminary version in SCTC’88 Erratum in SICOMP.
[doi:10.1137/0218038] 306

[13] STEPHEN A. COOK: Characterizations of pushdown machines in terms of time-bounded computers.
J. ACM, 18(1):4–18, 1971. Preliminary version in STOC’69. [doi:10.1145/321623.321625] 306

[14] STEPHEN A. COOK: A taxonomy of problems with fast parallel algorithms. Inf. Control, 64(1-3):2–
22, 1985. Preliminary version in FCT’83. [doi:10.1016/S0019-9958(85)80041-3] 302

[15] STEPHEN A. COOK AND ROBERT A. RECKHOW: The relative efficiency of propositional
proof systems. J. Symbolic Logic, 44(1):36–50, 1979. Preliminary version in STOC’74.
[doi:10.2307/2273702] 302

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 335

http://dx.doi.org/10.1017/CBO9780511804090
http://dx.doi.org/10.1109/SFCS.2003.1238208
http://dx.doi.org/10.1613/jair.2648
http://dx.doi.org/10.1016/0022-0000(90)90022-D
http://eccc.hpi-web.de/report/2011/149/
http://dx.doi.org/10.1145/2213977.2213999
http://www.inf.u-szeged.hu/actacybernetica/edb/vol11n1_2/Bodlaender_1993_ActaCybernetica.xml
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1007/s00224-011-9312-0
http://dx.doi.org/10.1006/jagm.1995.1009
http://dx.doi.org/10.1137/0211048
http://dx.doi.org/10.1109/SCT.1988.5271
http://dx.doi.org/10.1137/0218084
http://dx.doi.org/10.1137/0218038
http://dx.doi/org/10.1145/800169.805437
http://dx.doi.org/10.1145/321623.321625
http://dx.doi.org/10.1007/3-540-12689-9_95
http://dx.doi.org/10.1016/S0019-9958(85)80041-3
http://dx.doi.org/10.1145/800119.803893
http://dx.doi.org/10.2307/2273702
http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

[16] ELDAR FISCHER, JOHANN A. MAKOWSKY, AND ELENA V. RAVVE: Counting truth assignments
of formulas of bounded tree-width or clique-width. Discr. Appl. Math., 156(4):511–529, 2008.
[doi:10.1016/j.dam.2006.06.020] 301

[17] FEDOR V. FOMIN, FABRIZIO GRANDONI, DANIEL LOKSHTANOV, AND SAKET SAURABH: Sharp
separation and applications to exact and parameterized algorithms. Algorithmica, 63(3):692–706,
2012. Preliminary version in LATIN’10. [doi:10.1007/s00453-011-9555-9] 302

[18] FEDOR V. FOMIN AND DIETER KRATSCH: Exact Exponential Algorithms. Springer, 2010.
[doi:10.1007/978-3-642-16533-7] 301

[19] KONSTANTINOS GEORGIOU AND PERIKLIS A. PAPAKONSTANTINOU: Complexity and algorithms
for well-structured k-SAT instances. In Theory and Applications of Satisfiability Testing - SAT 2008,
volume 4996 of LNCS, pp. 105–118. Springer, 2008. [doi:10.1007/978-3-540-79719-7_10] 299,
301, 310, 313

[20] GEORG GOTTLOB, NICOLA LEONE, AND FRANCESCO SCARCELLO: The complexity of
acyclic conjunctive queries. J. ACM, 48(3):431–498, 2001. Preliminary version in FOCS’98.
[doi:10.1145/382780.382783] 299, 311

[21] MARTIN GROHE: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM, 54(1):1–24, 2007. Preliminary version in FOCS’03.
[doi:10.1145/1206035.1206036] 302

[22] RUSSELL IMPAGLIAZZO, RAMAMOHAN PATURI, AND FRANCIS ZANE: Which problems have
strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. Preliminary version
in FOCS’98. [doi:10.1006/jcss.2001.1774] 302

[23] TON KLOKS: Treewidth, Computations and Approximations. Volume 842 of Lecture Notes in
Computer Science. Springer, 1994. [doi:10.1007/BFb0045375] 303

[24] MIKKO KOIVISTO AND PEKKA PARVIAINEN: A space-time tradeoff for permutation problems. In
Proc. 21st Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’10), pp. 484–492. ACM Press,
2010. [doi:10.1137/1.9781611973075.41] 301

[25] DANIEL LOKSHTANOV, DÁNIEL MARX, AND SAKET SAURABH: Known algorithms on graphs
on bounded treewidth are probably optimal. In Proc. 22nd Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA’11), pp. 777–789, 2011. [doi:10.1137/1.9781611973082.61, arXiv:1007.5450]
302

[26] DANIEL LOKSHTANOV, MATTHIAS MNICH, AND SAKET SAURABH: Planar k-path in subex-
ponential time and polynomial space. In Graph-Theoretic Concepts in Computer Science - 37th
International Workshop, WG 2011, pp. 262–270, 2011. [doi:10.1007/978-3-642-25870-1_24] 301

[27] DÁNIEL MARX: Can you beat treewidth? Theory of Computing, 6(5):85–112, 2010. Preliminary
version in FOCS’07. [doi:10.4086/toc.2010.v006a005] 302

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 336

http://dx.doi.org/10.1016/j.dam.2006.06.020
http://dx.doi.org/10.1007/978-3-642-12200-2_8
http://dx.doi.org/10.1007/s00453-011-9555-9
http://dx.doi.org/10.1007/978-3-642-16533-7
http://dx.doi.org/10.1007/978-3-540-79719-7_10
http://dx.doi.org/10.1109/SFCS.1998.743521
http://dx.doi.org/10.1145/382780.382783
http://dx.doi.org/10.1109/SFCS.2003.1238228
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1109/SFCS.1998.743516
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/BFb0045375
http://dx.doi.org/10.1137/1.9781611973075.41
http://dx.doi.org/10.1137/1.9781611973082.61
http://arxiv.org/abs/1007.5450
http://dx.doi.org/10.1007/978-3-642-25870-1_24
http://dx.doi.org/10.1109/FOCS.2007.27
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

[28] ROBIN A. MOSER AND DOMINIK SCHEDER: A full derandomization of Schöning’s k-SAT
algorithm. In Proc. 43rd STOC, pp. 245–252. ACM Press, 2011. [doi:10.1145/1993636.1993670,
arXiv:1008.4067] 301

[29] ROLF NIEDERMEIER AND PETER ROSSMANITH: Unambiguous auxiliary pushdown automata and
semi-unbounded fan-in circuits. Inform. and Comput., 118(2):227–245, 1995. Preliminary version
in LATIN’92. [doi:10.1006/inco.1995.1064] 307

[30] PERIKLIS A. PAPAKONSTANTINOU: A note on width-parameterized SAT: An exact machine-model
characterization. Inform. Process. Lett., 110(1):8–12, 2009. [doi:10.1016/j.ipl.2009.09.012] 302,
306, 310

[31] RAMAMOHAN PATURI, PAVEL PUDLÁK, MICHAEL E. SAKS, AND FRANCIS ZANE: An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, 1998. Preliminary version in
FOCS’98. [doi:10.1145/1066100.1066101] 301

[32] NEIL ROBERTSON AND PAUL D. SEYMOUR: Graph minors. I. excluding a forest. J. Comb. Theory,
Ser. B, 35(1):39–61, 1983. [doi:10.1016/0095-8956(83)90079-5] 300

[33] NEIL ROBERTSON AND PAUL D. SEYMOUR: Graph minors. II. algorithmic aspects of tree-width.
J. Algorithms, 7(3):309–322, 1986. [doi:10.1016/0196-6774(86)90023-4] 300

[34] WALTER L. RUZZO: Tree-size bounded alternation. J. Comput. System Sci., 21(2):218–235, 1980.
Preliminary version in STOC’79. [doi:10.1016/0022-0000(80)90036-7] 305, 306

[35] MARKO SAMER AND STEFAN SZEIDER: Algorithms for propositional model counting. J. Discrete
Algorithms, 8(1):50–64, 2010. Preliminary version in LPAR’07. [doi:10.1016/j.jda.2009.06.002]
300, 301, 313

[36] UWE SCHÖNING: A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32(4):615–623, 2002. Preliminary version in FOCS’99. [doi:10.1007/s00453-001-
0094-7] 301

[37] STEFAN SZEIDER: On fixed-parameter tractable parameterizations of SAT. In Theory and
Applications of Satisfiability Testing - SAT 2003, volume 2919 of LNCS, pp. 188–202, 2003.
[doi:10.1007/978-3-540-24605-3_15] 301

[38] H. VENKATESWARAN: Properties that characterize LOGCFL. J. Comput. Syst. Sci., 43(2):380–404,
1991. Conference version in STOC’87. [doi:10.1016/0022-0000(91)90020-6] 305, 306, 307

[39] HERIBERT VOLLMER: Introduction to Circuit Complexity. Springer, 1999. [doi:10.1007/978-3-
662-03927-4] 306, 307

[40] GERHARD J. WOEGINGER: Exact algorithms for NP-hard problems: A survey. Combinatorial
Optimization—Eureka, You Shrink!, 2570:185–207, 2003. [doi:10.1007/3-540-36478-1_17] 301

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 337

http://dx.doi.org/10.1145/1993636.1993670
http://arxiv.org/abs/1008.4067
http://dx.doi.org/10.1007/BFb0023843
http://dx.doi.org/10.1006/inco.1995.1064
http://dx.doi.org/10.1016/j.ipl.2009.09.012
http://dx.doi.org/10.1109/SFCS.1998.743513
http://dx.doi.org/10.1145/1066100.1066101
http://dx.doi.org/10.1016/0095-8956(83)90079-5
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1145/800135.804428
http://dx.doi.org/10.1016/0022-0000(80)90036-7
http://dx.doi.org/10.1007/978-3-540-75560-9_35
http://dx.doi.org/10.1016/j.jda.2009.06.002
http://dx.doi.org/10.1109/SFFCS.1999.814612
http://dx.doi.org/10.1007/s00453-001-0094-7
http://dx.doi.org/10.1007/s00453-001-0094-7
http://dx.doi.org/10.1007/978-3-540-24605-3_15
http://dx.doi.org/10.1145/28395.28411
http://dx.doi.org/10.1016/0022-0000(91)90020-6
http://dx.doi.org/10.1007/978-3-662-03927-4
http://dx.doi.org/10.1007/978-3-662-03927-4
http://dx.doi.org/10.1007/3-540-36478-1_17
http://dx.doi.org/10.4086/toc

E. ALLENDER, S. CHEN, T. LOU, P. A. PAPAKONSTANTINOU, AND B. TANG

AUTHORS

Eric Allender
Distinguished professor
Rutgers University, New Brunswick, NJ
allender cs rutgers edu
http://www.cs.rutgers.edu/~allender

Shiteng Chen
Ph. D. student
Institute for Interdisciplinary Information Sciences
Tsinghua University
shitengchen gmail com
http://iiis.tsinghua.edu.cn/shitengchen

Tiancheng Lou
Software engineer
Google Mountain View
tiancheng lou gmail com
http://iiis.tsinghua.edu.cn/tianchenglou

Periklis A. Papakonstantinou
Assistant professor
Institute for Interdisciplinary Information Sciences
Tsinghua University
papakons tsinghua edu cn
http://iiis.tsinghua.edu.cn/~papakons

Bangsheng Tang
Associate researcher
Hulu, Beijing Office
bangsheng tang gmail com
http://tang.bangsheng.info

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 338

http://www.cs.rutgers.edu/~allender
http://iiis.tsinghua.edu.cn/shitengchen
http://iiis.tsinghua.edu.cn/tianchenglou
http://iiis.tsinghua.edu.cn/~papakons
http://tang.bangsheng.info
http://dx.doi.org/10.4086/toc

WIDTH-PARAMETERIZED SAT: TIME-SPACE TRADEOFFS

ABOUT THE AUTHORS

ERIC ALLENDER is a professor at Rutgers University. He has been at Rutgers since receiving
his Ph. D. in 1985 at Georgia Tech, under the supervision of Kim N. King. While at
Georgia Tech, he was the Backbone of the Seed and Feed Marching Abominable and he
still plays trombone from time to time. He did his undergraduate work at the University
of Iowa. He is a Fellow of the ACM, and currently serves as Editor-in-Chief of ACM
Transactions on Computation Theory. Circuit complexity, Kolmogorov complexity, and
complexity classes are his main research interests. He and his wife find happiness on the
dance floor and toiling in their garden.

SHITENG CHEN is currently a Ph. D. student at the Institute for Interdisciplinary Informa-
tion Sciences, Tsinghua University, advised by Periklis Papakonstantinou. He did his
undergraduate studies in the pilot computer science program at Tsinghua University, the
“Yao class.”

TIANCHENG LOU is currently with Google. He received his Ph. D. in 2012 from the Institute
for Interdisciplinary Information Sciences, Tsinghua University under the supervision of
Professor Andrew C. Yao. He holds numerous programming contest awards.

PERIKLIS A. PAPAKONSTANTINOU is an assistant professor at the Institute for Interdis-
ciplinary Information Sciences, Tsinghua University. He took up this appointment (in
2010) immediately after some wonderful years at the University of Toronto, where he had
the privilege of being part of a great theory group. During his Ph. D. at the University of
Toronto he read theory of computing and cryptography with his advisor Charlie Rackoff,
whose teachings contributed to his deep appreciation for concepts in Computer Science.
Significant influence on his research identity and taste comes from his teachers Gábor
Pete and Balázs Szegedy (from studies in mathematics at the University of Toronto), and
Stavros Cosmadakis (from his engineering studies at the University of Patras in Greece).
His current research interests are in the foundations of computer science (at large), and
he has a more than occasional interest in Cryptography and Machine Learning. In his
early youth he enjoyed riding motorbikes and collecting graduate degrees.

BANGSHENG TANG is currently an Associate Researcher at Hulu, Beijing Office. He
received his Ph. D. in 2013 from the Institute for Interdisciplinary Information Sciences,
Tsinghua University, under the supervision of Periklis A. Papakonstantinou. This work
was done during his Ph. D. studies. He did his undergraduate studies in the first-ever
Tsinghua University Special Pilot CS Class, founded by Andrew C. Yao. His research
interests include algorithm design, computational complexity and computational group
theory.

THEORY OF COMPUTING, Volume 10 (12), 2014, pp. 297–339 339

http://www.cs.rutgers.edu
http://gatech.edu
http://www2.gsu.edu/~matknk
http://seedandfeed.org
http://www.uiowa.edu
http://www.uiowa.edu
http://fellows.acm.org
http://toct.acm.org
http://toct.acm.org
http://iiis.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn
http://www.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn
http://www.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn/yao/
http://iiis.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn
http://www.tsinghua.edu.cn
http://www.cs.toronto.edu
http://www.cs.toronto.edu/theory/
http://www.cs.toronto.edu/dcs/people-faculty-rackoff.html
http://www.math.bme.hu/~gabor/
http://www.math.bme.hu/~gabor/
http://www.renyi.hu/~szegedyb/
https://www.ceid.upatras.gr/en
http://en.wikipedia.org/wiki/Hulu
http://iiis.tsinghua.edu.cn
http://www.tsinghua.edu.cn
http://iiis.tsinghua.edu.cn/~papakons/
http://iiis.tsinghua.edu.cn/yao/
http://dx.doi.org/10.4086/toc

	Introduction
	Our contribution and techniques
	Related work

	Preliminaries
	Notation
	Tree-width
	Assignments

	A complexity-theoretic characterization
	A primer on semi-unbounded fan-in circuits
	Complexity theory notation and some preliminaries
	Completeness for SATpw(polylog) and SATtw(polylog), and a new circuit characterization of the NSC hierarchy
	Connecting Conjecture 1.1 to complexity theory assumptions and the separation of SATpw(polylog) from SATtw(polylog)

	Tradeoff algorithms on a single parameter
	A primer to algorithms for width-parameterized SAT
	Splitting, consistency, assignment groups
	The space-efficient algorithm
	Tradeoff algorithms
	Optimality of the splitting algorithm for the single-parameter tradeoff

	Generalized two-parameter tradeoff algorithms
	Generalized tradeoff algorithms
	Optimality of the generalized tradeoff algorithm

	Future work
	References

