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Abstract: The polynomial Freiman-Ruzsa conjecture is one of the most important conjec-
tures in additive combinatorics. It asserts that one can switch between combinatorial and
algebraic notions of approximate subgroups with only a polynomial loss in the underlying pa-
rameters. This conjecture has also found several applications in theoretical computer science.
Recently, Tom Sanders proved a weaker version of the conjecture, with a quasi-polynomial
loss in parameters. The aim of this note is to make his proof accessible to the theoretical
computer science community, and in particular to readers who are less familiar with additive
combinatorics.
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1 Introduction

Let A be a finite subset of an abelian group G. Its sumset A+A is defined as A+A = {a1+a2 : a1,a2 ∈ A}.
It is straightforward to see that |A+A|= |A| if and only if A is a subgroup of G, or a coset of a subgroup.
Thus, one may think of subsets A for which |A+A| ≈ |A| as an approximate version of a subgroup. To
make this precise, if |A+A| ≤ K|A| we say that A has doubling K and study the structure of sets of small
doubling. For the sake of simplicity of exposition, we focus in this note on the group G = Fn

2. However,
we note that many of the results discussed here can be extended to vector spaces over larger fields, general
abelian groups, and sometimes even to non-abelian groups.
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Ruzsa [19], following previous work of Freiman [9] who studied similar problems over the integers,
showed that sets of small doubling must be contained in subspaces of small dimension. These bounds
were later improved in a series of works [11, 21, 12, 13, 8]. In the following we denote by Span(A) the
linear subspace spanned by A.

Theorem 1.1 (Freiman-Ruzsa Theorem in Fn
2). Let A ⊆ Fn

2 be a set such that |A+A| ≤ K|A|. Then
|Span(A)| ≤ O(22K/K) · |A|.

This bound is sharp, as can be seen from the following example. Let A = Fm
2 ×{e1, . . . ,en} ⊂ Fm+n

2 .
Then

|A|= 2mn , K =
|A+A|
|A|

=
1
n

((
n
2

)
+1
)
≈ n

2
and |Span(A)|= 2n+m ≈

(
22K

K

)
|A| .

This shows that the ratio between |Span(A)| and |A| must depend exponentially on the doubling of A.
However, the above example suggests that maybe a refined question, relating the ratio between the span
and the size of large subsets of A, might have better dependence on the doubling of A. This is captured by
the Polynomial Freiman-Ruzsa conjecture (PFR).

Conjecture 1.2 (Polynomial Freiman-Ruzsa conjecture in Fn
2). Let A⊂ Fn

2 be a set such that |A+A| ≤
K|A|. Then there exists a subset A′ ⊂ A of size |A′| ≥ K−c|A| such that |Span(A′)| ≤ Kc|A|, where c > 0
is an absolute constant.

The PFR conjecture plays a central role in additive combinatorics. The main reason is that it allows
one to switch between a combinatorial notion of approximate vector space (that of having small doubling)
and an algebraic notion (that of having small linear span) with only a polynomial loss in the parameters.
It has many equivalent formulations, we refer the interested reader to a survey of Green [10] which lists
many of them. Also, Green and Tao [12] and independently the author [14] showed the PFR conjecture is
equivalent to a polynomial bound for the inverse Gowers U3-norm.

The PFR conjecture has already found several diverse applications in computer science as well:

1. Samorodnitsky [20] gave an analysis of linearity testing for maps f : Fn
2→ Fm

2 . If one assumes the
PFR conjecture, his result improves to only suffer a polynomial loss in the parameters.

2. Ben-Sasson and Zewi [18] used the PFR conjecture to construct two-source extractors from affine
extractors.

3. Ben-Sasson, Zewi and the author [3] used it to get the first sublinear bounds on the deterministic
communication complexity of functions in terms of the rank of their associated matrix.

4. Bhowmick, Dvir and the author [4] used it to give super-polynomial lower bounds on the block
size of locally decodable codes arising from matching vector families.

5. Aggarwal, Dodis and the author [1] used it to construct non-malleable codes in the split state model,
with polynomial size block length. In fact, they use Sanders’ theorem (Theorem 1.3) to obtain an
unconditional result.
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The aim of this note is to give a detailed exposition of the following breakthrough result of
Sanders [22], who proved a weaker version of the Freiman-Ruzsa conjecture with a quasi-polynomial
loss in parameters. As noted before, his result extends to more general abelian groups, but we focus on
Fn

2 for simplicity of exposition.

Theorem 1.3 (Quasi-polynomial Freiman-Ruzsa theorem [22]). Let A⊂ Fn
2 be a set such that |A+A| ≤

K|A|. Then there exists a subset A′ ⊆ A of size |A′| ≥ K−O(log3 K)|A| such that |Span(A′)| ≤ |A|.

In terms of its impact on applications, Theorem 1.3 implies a quasi-polynomial loss of parameters in
Samorodnitsky’s result [20] which implies similar bounds for the Gowers U3 norm. However, currently it
seems to be insufficient for the other applications discussed above [18, 3, 4], mainly because they require
structural result for very large doubling constants. As mentioned, the result of Aggarwal et al. [1] already
uses Sanders’ theorem.

Returning to Sanders’ result, he in fact proved an even stronger result. For t ≥ 1 let

tA = {a1 + · · ·+at : a1, . . . ,at ∈ A}

denote the t-sumset of A.

Theorem 1.4 (Quasi-polynomial Bogolyubov-Ruzsa theorem [22]). Let A ⊂ Fn
2 be a set such that

|A+A| ≤ K|A|. Then there exists a linear subspace V ⊂ 4A such that |V | ≥ K−O(log3 K)|A|.

As we show below, the deduction of Theorem 1.3 from Theorem 1.4 is standard given some basic
tools and results in additive combinatorics. Given Theorem 1.4, one may conjecture a polynomial version
of it, which would in particular imply in a similar way the polynomial Freiman-Ruzsa conjecture.

Conjecture 1.5 (Polynomial Bogolyubov-Ruzsa conjecture). Let A⊂Fn
2 be a set such that |A+A| ≤K|A|.

Then there exists a linear subspace V ⊂ tA such that |V | ≥ K−c|A|, where t ≥ 1,c > 0 are absolute
constants.

We note that it is not clear whether Conjecture 1.5 is indeed strictly stronger than Conjecture 1.2, or
whether one can deduce it assuming Conjecture 1.2.

General abelian groups. We now discuss briefly the how the polynomial Freiman-Ruzsa conjecture
(Conjecture 1.2) and Sanders’ result (specifically, Theorem 1.4) can be extended to general abelian
groups.

Extending the polynomial Freiman-Ruzsa conjecture to groups of the form G = Fn
p for fixed p is

straightforward. However, for groups of high (or infinite) torsion, stating the conjecture becomes more
technical. This is because there is another type of structure which implies low doubling: integer points in
a low-dimensional convex body. To be specific, if B⊂ Rd is a centrally symmetric convex body, then the
set B∩Zd has doubling bounded by an exponential in d. Hence, in general groups, one must account for
both types of structure which imply low doubling—subgroups and integer points in convex bodies.

Conjecture 1.6 (Polynomial Freiman-Ruzsa conjecture, general abelian groups). Let G be an abelian
group, A⊂ G a set with |A+A| ≤ K|A|. Then there exist
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1. a subgroup H < G;

2. a convex body B⊂ Rd for d ≤ c · logK, whose integer points are B∩Zd; and

3. a linear map φ : Zd → G,

such that for the set S = H +φ(B∩Zd) the following holds:

|S| ≤ |A| , |A∩S| ≥ K−c|A| ,

where c > 0 is an absolute constant.

To extend Sanders’ result to a general abelian group G, we need to define the notion of a generalized
arithmetic progression (GAP). A d-dimensional GAP is a set P⊂ G of the form

P =

{
g0 +

d

∑
i=1

xigi : 1≤ xi ≤ ai

}
,

with g0,g1, . . . ,gd ∈ G and ai ∈ N. It is said to be proper if |P| = ∏
d
i=1 ai, that is all the elements are

distinct.

Theorem 1.7 (Quasi-polynomial Bogolyubov-Ruzsa theorem, general abelian groups [22]). Let G be
an abelian group, A ⊂ G a set such that |A+A| ≤ K|A|. Then there exists a subgroup H < G and a
d(K)-dimensional proper generalized arithmetic progression P, such that |P+H| ≥ exp(−h(K))|A| and

P+H ⊂ 4A .

One can take d(K) = O(log6 K) and h(K) = O(log6 K · log logK).

Further reading. This exposition is focused on the proof of Sanders’ theorem. For readers who are
interested in more aspects of additive combinatorics, and in particular applications in theoretical computer
science, there are other surveys and books which may be of interest. These include the book “Additive
Combinatorics” by Tao and Vu [23]; a mini-course on additive combinatorics by Barak et al. [2]; a survey
covering selected results in additive combinatorics by Viola [25]; a survey on additive combinatorics and
theoretical computer science by Trevisan [24]; a survey with a focus on applications in cryptography
by Bibak [5]; and a survey on additive combinatorics and its applications in computer science by the
author [15].

1.1 Proof overview

We first show, using standard techniques in additive combinatorics, that

1. Theorem 1.3 follows from Theorem 1.4, and

2. it suffices to prove Theorem 1.4 for “large sets” A⊂ Fn
2 for which |A| ≥ K−1 ·2n.
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Explicitly, these reductions use a theorem of Ruzsa which bounds the size of |tA| for sets of small
doubling, and the notion of a Freiman homomorphism.

We can thus assume from that point on the stronger condition |A| ≥ K−1 ·2n, where our goal is to
find a large subspace in 4A. We first show that there exists a large set X ⊂ Fn

2 such that tX ⊂ 4A for
t = O(logK). In fact, we will show a stronger property. For any x1, . . . ,xt ∈ X ,

Pr
a1,a2∈A

[a1 +a2 + x1 + · · ·+ xt ∈ 2A]≥ 0.9 . (1.1)

This utilizes an argument of Croot and Sisask [7]. The set X allows us to find a large vector space V such
that V ⊂ 4A, by choosing V to be the subspace orthogonal to the large Fourier coefficients of X . The
proof of this is achieved by applying (1.1) to randomly chosen x1, . . . ,xt ∈ X and appealing to standard
Fourier arguments and Chang’s lemma.

Paper organization. We give some preliminaries in Section 2. We establish the two reductions in
Section 3. We prove the existence of the set X in Section 4. We conclude with the Fourier argument in
Section 5.

2 Preliminaries

Norms. Let f : Fn
2→ R be a function. For 1≤ p≤ ∞, its `p norm is defined as

‖ f‖p =
(
Ex∈Fn

2
[| f (x)|p]

)1/p
.

Let f ,g : Fn
2→ R be functions. Their inner product is defined as

〈 f ,g〉= Ex∈Fn
2
[ f (x)g(x)] .

For 1≤ p,q≤ ∞ such that 1/p+1/q = 1, the Hölder inequality states that | 〈 f ,g〉 | ≤ ‖ f‖p‖g‖q.

Fourier analysis. Let f : Fn
2→ R be a function. Its Fourier coefficients are

f̂ (α) = Ex∈Fn
2

[
f (x)(−1)〈x,α〉

]
where α ∈ Fn

2. A function is determined by its Fourier coefficients by the inversion formula,

f (x) = ∑
α∈Fn

2

f (x)(−1)〈x,α〉 .

Parseval’s identity asserts that ‖ f‖2
2 = ∑α∈Fn

2
f̂ (α)2. For functions f ,g : Fn

2→ R their inner product is

〈 f ,g〉= Ex∈Fn
2
[ f (x)g(x)]

and their convolution f ∗g : Fn
2→ R is defined as

( f ∗g)(x) = Ey∈Fn
2
[ f (y)g(x+ y)] .

Note that in Fn
2 addition and subtraction are the same. The Fourier coefficients of the convolution obey

f̂ ∗g(α) = f̂ (α)ĝ(α) .
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3 Reductions

We show in this section that

1. Theorem 1.3 follows from Theorem 1.4, and

2. it suffices to prove Theorem 1.4 for “large sets” A⊂ Fn
2 for which |A| ≥ K−1 ·2n.

Note that the condition |A| ≥ K−1 ·2n is stronger than the assumption of small doubling, as any such set
A satisfies |A+A| ≤ 2n ≤ K|A|.

3.1 Reduction 1: Theorem 1.3 follows from Theorem 1.4

We first show how Theorem 1.3 follows from Theorem 1.4. This requires the following theorem of
Plünnecke [17] and Ruzsa [19], stating that if A has small doubling then tA cannot be too large.

Theorem 3.1 ([17, 19]). Let A⊂ Fn
2 be a set such that |A+A| ≤ K|A|. Then for any t ≥ 1 we have that

|tA| ≤ Kt |A|.

Let A⊂ Fn
2 be a set such that |A+A| ≤ K|A|. Theorem 1.4 asserts that there exists a linear subspace

V ⊂ 4A of size |V | ≥ δ |A| where δ = K−O(log3 K). Let S⊂ A be maximal such that the elements of S fall
in different cosets of V ; that is, s+ s′ /∈V for all distinct s,s′ ∈ S. Note that |S| ≤ K5/δ , as

|S||V |= |S+V |= |A+V | ≤ |A+4A|= |5A| ≤ K5|A| ,

where the last inequality follows from Theorem 3.1. Let A′ = A∩ (V + s) where s ∈ S is chosen to
maximize |A′|. We have that |A′| ≥ |A|/|S|= K−O(log3 K)|A|, and that

|Span(A′)| ≤ |Span(V + s)| ≤ 2|V | ≤ 2K5|A′| .

3.2 Reduction 2: It is sufficient to prove Theorem 1.4 for large sets

We next show it suffices to prove Theorem 1.4 for large sets. This requires the notion of a Freiman
homomorphism. Let A⊂ Fn

2. A linear map φ : Fn
2→ Fm

2 is said to be a Freiman homomorphism of A of
order t if φ is injective on tA. That is, for any a1, . . . ,at ,b1, . . . ,bt ∈ A,

φ(a1)+ · · ·+φ(at) = φ(b1)+ · · ·+φ(bt) ⇒ a1 + · · ·+at = b1 + · · ·+bt .

We note that the standard definition of Freiman homomorphisms do not require the map to be linear, but
here we restrict our attention to linear Freiman homomorphism. The following claim is very useful.

Claim 3.2 ([9]). Let A ⊂ Fn
2. Fix t ≥ 1, and let m = m(t) be minimal such that a linear Freiman

homomorphism φ : Fn
2→ Fm

2 of A of order t exists. Then φ(2tA) = Fm
2 .
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Proof. First note that since for m = n the identity map is a linear Freiman homomorphism of all orders,
m is well-defined. Assume to the contrary of the claim that φ(2tA) ( Fm

2 , and let x be an element in
Fm

2 \φ(2tA). Let ψ : Fm
2 → Fm−1

2 be a surjective linear map which sends x to zero, and define φ ′ = ψ ◦φ .
We claim that φ ′ is also a linear Freiman homomorphism of A of order t, which contradicts the minimality
of m. To establish the claim, we need to show that φ ′ is injective on tA. If this is not the case, then
there exist distinct a,b ∈ tA such that φ ′(a) = φ ′(b), that is ψ(φ(a)) = ψ(φ(b)). Now, by definition of
ψ this can only occur if φ(a) = φ(b) or φ(a) = φ(b)+ x. The first case is ruled out since we assumed φ

is injective on tA, hence by the linearity of φ we have that x = φ(a+b) ∈ φ(2tA), violating our initial
assumption.

We now show it suffices to prove Theorem 1.4 for large sets. We will assume throughout that 0 ∈ A,
which can be assumed without loss of generality by replacing A with A+a for some a ∈ A. Let A⊆ Fn

2
be such that |A+A| ≤ K|A|. Let φ : Fn

2→ Fm
2 be a minimal linear Freiman homomorphism of A of order

12 and define A′ = φ(A). We note that by the assumption that 0 ∈ A, we have that φ is injective on tA for
all t ≤ 12.

We first note that A′ also has doubling K, since |A′|= |A| and |A′+A′|= |A+A| because by assumption
φ is injective on both A and 2A. This implies that A′ is large in Fm

2 since

|Fm
2 |= |24A′| ≤ K24|A′| ,

where the equality follows from Claim 3.2 and the inequality from Theorem 3.1. We can thus apply to
A′ the assumed Theorem 1.4. The theorem asserts the existence of a linear subspace V ′ ⊂ 4A′ of size
V ′ ≥ δ |A′| where δ = exp(−O(log4(K24))). Since φ is injective on 12A we can define a local inverse
φ−1 : 12A′→ 12A. In particular, set V = φ−1(V ′)⊂ 4A. We will show that V is also a linear subspace,
thus establishing the theorem for A.

We will use the fact that the property of being a linear subspace can be verified by local tests.
Specifically, we need to show that for any x,y ∈V we have that x+ y ∈V . Let x′ = φ(x),y′ = φ(y). Then
x′,y′ ∈V ′ and hence z′ = x′+y′ ∈V ′ since V ′ is a linear subspace. Let z = φ−1(z′) ∈V . We need to show
that x+ y = z. Note that x+ y+ z ∈ 12A since x,y,z ∈V ⊂ 4A. However, φ(x+ y+ z) = x′+ y′+ z′ = 0
and since φ is injective on 12A and since 0 ∈ 12A is mapped by φ to zero, we must have that x+y+ z = 0.

4 Existence of a large near-invariant set

We establish the following lemma in this section.

Lemma 4.1. Let A⊂ Fn
2 be such that |A| ≥ K−1 ·2n. Set t = O(logK). Then there exists X ⊂ Fn

2 of size
|X | ≥ K−O(log3(K)) ·2n such that for any x1, . . . ,xt ∈ X,

Pr
a1,a2∈A

[a1 +a2 + x1 + · · ·+ xt ∈ 2A]≥ 0.9 .

The lemma can be interpreted as follows: it is clear that Pra1,a2∈A[a1 + a2 ∈ 2A] = 1. The lemma
shows that this is approximately true for many shifts of 2A as well; and furthermore, that these shifts are
iterated sums of a large sets.
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We first fix some notations. For a set A⊂ Fn
2 let 1A : Fn

2→ {0,1} denote the indicator function for
A, and ϕA(x) = (2n/|A|)1A(x) denote the normalized indicator for which Ex∈Fn

2
[ϕA(x)] = 1. Note that

(ϕA ∗ f )(x) = Ea∈A[ f (x+a)] is a “smoothing” of the function f by averaging over random shifts chosen
from a set A. For an element x ∈ X we shorthand ϕx = ϕ{x} and note that (ϕx ∗ f )(y) = f (x+ y) is a shift
of f by x. In these notations, for any x ∈ Fn

2 we have that

Pr
a1,a2∈A

[a1 +a2 + x ∈ 2A] = 〈ϕx ∗ϕA ∗ϕA,12A〉= 〈ϕx ∗ϕA ∗12A,ϕA〉 . (4.1)

Note that for x = 0,
〈ϕA ∗12A,ϕA〉= Pr

a1,a2∈A
[a1 +a2 ∈ 2A] = 1 . (4.2)

We will show that there exists a large set X ⊂ Fn
2 so that for all x ∈ tX , ϕx ∗ϕA ∗ 12A ≈ ϕA ∗ 12A.

In particular, this shows that (4.1) ≈ (4.2) and implies Lemma 4.1. In order to do so, we will use the
following lemma of Croot and Sisask [7] which we reprove below. The lemma shows that if we take a
bounded function f and smooth it by a random shift from a large set A, then the resulting function will be
nearly invariant to many shifts.

Lemma 4.2. Let A⊂ Fn
2 be a set such that |A| ≥ K−1 ·2n. Let f : Fn

2→ [0,1] be a function. Let p≥ 1 and
ε > 0 be parameters. Then there exists a set X ⊂ Fn

2 of size |X | ≥ K−O(p/ε2) ·2n such that for any x ∈ X,

‖ϕx ∗ϕA ∗ f −ϕA ∗ f‖p ≤ ε .

We first show how Lemma 4.1 follows from Lemma 4.2. Set

f = 12A, p = logK, t = O(logK), ε = 1/(20t) = Ω(1/ logK)

in Lemma 4.2 so that |X | ≥ K−O(log3(K)) ·2n as claimed. We first claim that for any x ∈ tX we have that

‖ϕx ∗ϕA ∗12A−ϕA ∗12A‖p ≤ tε . (4.3)

In order to establish (4.3) let x = x1 + · · ·+ xt where x1, . . . ,xt ∈ X and expand it as a telescopic sum.
Then

‖ϕx1+···+xt ∗ϕA ∗12A−ϕA ∗12A‖p ≤
t

∑
i=1
‖ϕx1+···+xi ∗ϕA ∗12A−ϕx1+···+xi−1 ∗ϕA ∗12A‖p

=
t

∑
i=1
‖ϕxi ∗ϕA ∗12A−ϕA ∗12A‖p ≤ tε ,

where we used the fact that the `p norm is invariant under shifts, that is ‖ϕx ∗g‖p = ‖g‖p for all elements
x ∈ Fn

2 and functions g : Fn
2→ R. By our setting of ε = 1/(20t), we have that for all x ∈ tX

‖ϕx ∗ϕA ∗12A−ϕA ∗12A‖p ≤ tε ≤ 1/20 . (4.4)

We next apply the Hölder inequality. We have that

| 〈ϕx ∗ϕA ∗12A−ϕA ∗12A,ϕA〉 | ≤ ‖ϕx ∗ϕA ∗12A−ϕA ∗12A‖p‖ϕA‖q (4.5)
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where q = p/(p−1) is the dual of p. By the choice of p = logK we have that

‖ϕA‖q = (2n/|A|)1−1/q ≤ K1/(logK−1) ≤ 2 . (4.6)

Combining (4.1), (4.2), (4.5) and (4.6) we conclude that for any x ∈ tX ,

Pr
a1,a2∈A

[a1 +a2 + x ∈ 2A] = 〈ϕx ∗ϕA ∗12A,ϕA〉

= 1−〈ϕA ∗12A−ϕx ∗ϕA ∗12A,ϕA〉 ≥ 0.9 (4.7)

which concludes the proof of Lemma 4.1. We now move to prove Lemma 4.2. The proof will use the
Marcinkiewicz–Zygmund inequality [16], which is a generalization of the classical Khintchine inequality.

Theorem 4.3 (Marcinkiewicz–Zygmund inequality). For any p≥ 1, let X1, . . . ,X` be independent, mean
zero random variables with E|Xi|p < ∞. Then

E [|X1 + · · ·+X`|p]≤ (Cp)p/2 ·E
[(
|X1|2 + · · ·+ |X`|2

)p/2
]
,

where C > 0 is an absolute constant.

We will actually only need the following corollary for bounded random variables.

Corollary 4.4. Let X1, . . . ,X` be independent, mean zero random variables with |Xi| ≤ 1. Then for any
p≥ 1,

E
[∣∣∣∣1` (X1 + · · ·+X`)

∣∣∣∣p]≤ (Cp/`)p/2 .

We now turn to prove Lemma 4.2.

Proof of Lemma 4.2. Let A⊂ Fn
2 be a set of size |A| ≥ K−1 ·2n and let f : Fn

2→ [0,1] be a function. For
` to be determined later, let a1, . . . ,a` be uniformly and independently chosen elements from A. We first
claim if ` is chosen large enough, then ϕA ∗ f can be approximated by

1
`

`

∑
i=1

ϕai ∗ f .

That is, we approximate the “smoothing” of f with random shifts chosen from the set A, with a new
average which is only over the shifts from the empirical sample a1, . . . ,a`. Explicitly, we will show that
for `= O(p/ε2) we have that

Pr
a1,...,a`∈A

[∥∥∥∥ϕA ∗ f − 1
`

`

∑
i=1

ϕai ∗ f
∥∥∥∥

p
≤ ε/2

]
≥ 1/2 . (4.8)

In order to show (4.8), we will establish that

Ea1,...,a`∈A

[∥∥∥∥ϕA ∗ f − 1
`

`

∑
i=1

ϕai ∗ f
∥∥∥∥p

p

]
≤ (Cp/`)p/2 , (4.9)
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where C > 0 is an absolute constant, and then apply Markov’s inequality. Now, (4.9) follows from
Corollary 4.4. Define Xi = ϕA ∗ f −ϕai ∗ f so that Xi(x) = Ea∈A[ f (x+a)]− f (x+ai). Then∥∥∥∥ϕA ∗ f − 1

`

`

∑
i=1

ϕai ∗ f
∥∥∥∥p

p
= Ex∈Fn

2

[∣∣∣∣1` (X1(x)+ · · ·+X`(x))
∣∣∣∣p] ,

and the claim follows by averaging over a1, . . . ,a` and applying Corollary 4.4.
Let S(A)⊂ (Fn

2)
` denote the set of (a1, . . . ,a`) for which∥∥∥∥∥ϕA ∗ f − 1

`

`

∑
i=1

ϕai ∗ f

∥∥∥∥∥
p

≤ ε/2 .

We have just shown that by our choice of `, at least half the sequences (α1, . . . ,α`)∈ A` have this property.
Hence

|S(A)| ≥ 0.5|A|` ≥ 0.5K−` ·2n` . (4.10)

Applying the same argument to any shift A+ x of A we deduce that |S(A+ x)| ≥ 0.5K−` · 2n` as well
(alternatively, this can be deduced from the fact that S(A+ x) = {(a1 + x, . . . ,a`+ x) : (a1, . . . ,a`) ∈ A}).
Hence, by an averaging argument there must exist a subset X ′ ⊂ Fn

2 of size |X ′| ≥ 0.5K−` · 2n and a
sequence (a1, . . . ,a`) ∈ (Fn

2)
` such that (a1, . . . ,a`) ∈ S(A+ x) for all x ∈ X ′. But then we get that for all

x′,x′′ ∈ X ′ we have that∥∥∥∥ϕA+x′ ∗ f −ϕA+x′′ ∗ f
∥∥∥∥

p
≤
∥∥∥∥ϕA+x′ ∗ f − 1

`

`

∑
i=1

ϕai ∗ f
∥∥∥∥

p
+

∥∥∥∥ϕA+x′′ ∗ f − 1
`

`

∑
i=1

ϕai ∗ f
∥∥∥∥

p
≤ ε .

Let x′ ∈ X ′ be arbitrary and set X = X ′+ x′. We conclude that for any x ∈ X ,∥∥∥∥ϕA+x ∗ f −ϕA ∗ f
∥∥∥∥

p
=

∥∥∥∥ϕA+x+x′ ∗ f −ϕA+x′ ∗ f
∥∥∥∥

p
≤ ε .

5 A Fourier-analytic argument

Let A⊂ Fn
2 be a set such that |A| ≥ K−1 ·2n. We showed in Lemma 4.1 that there exists a set X ⊂ Fn

2 of
size |X | ≥ K−O(log3 K) ·2n such that for any x ∈ tX , where t = O(logK), we have that

Pr
a1,a2∈A

[a1 +a2 + x ∈ 2A]≥ 0.9 . (5.1)

We now show that the linear subspace V ⊂ Fn
2 which is orthogonal to the large Fourier coefficients of

X is contained in 4A. In order to show that, we apply (5.1) for x = x1 + · · ·+ xt where x1, . . . ,xt ∈ X are
chosen uniformly, and deduce that

Pr
a1,a2∈A,

x1,...,xt∈X

[a1 +a2 + x1 + · · ·+ xt ∈ 2A]≥ 0.9 . (5.2)
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For a set X ⊂ Fn
2 we adopt the shorthand X̂(α) to stand for the Fourier coefficients of ϕX ,

X̂(α) = ϕ̂X(α) = Ex∈X [(−1)〈α,x〉] .

Note that X̂(0) = 1. The spectrum of a set X is the set of its large Fourier coefficients. Explicitly, its
γ-spectrum for 0 < γ < 1 is defined as

Specγ(X) = {α ∈ Fn
2 : |X̂(α)| ≥ γ}.

Parseval’s identity allows one to bound

|Specγ(X)| ≤ 2n

|X |
· (1/γ)2 which implies dim(Specγ(X))≤ 2n

|X |
· (1/γ)2 .

A better bound on the dimension of Specγ(X) is given by Chang’s theorem [6].

Theorem 5.1 (Chang [6]). Let X ⊆ Fn
2. Then

dim(Specγ(X))≤ 8log(2n/|X |) · (1/γ)2 .

Define the vector space V ⊆ Fn
2 as the orthogonal space to Spec1/2(X).

V = Spec1/2(X)⊥ = {v ∈ Fn
2 : 〈v,α〉= 0 ∀α ∈ Spec1/2(X)} .

Theorem 5.1 implies that |V | ≥ (|X |/2n)32 ·2n = K−O(log3 K) ·2n. We next show that V ⊂ 4A. We will do
so by showing that

Pr[a1 +a2 + x1 + · · ·+ xt + v ∈ 2A]≈ Pr[a1 +a2 + x1 + · · ·+ xt ∈ 2A]≥ 0.9 ,

where a1,a2 ∈ A, x1, . . . ,xt ∈ X and v ∈V are chosen uniformly. This in particular implies that

Pr[a1 +a2 + x1 + · · ·+ xt + v ∈ 2A]≥ 0.8 .

Hence, there exists a a fixed b = a1 +a2 + x1 + · · ·+ xt such that |V ∩ (2A+b)| ≥ 0.8|V |. Consequently
V ⊂ 4A as every element v ∈V can be written in |V |/2 disjoint ways as v = v1 +v2 where v1,v2 ∈V , and
at least for one of these it must hold that v1,v2 ∈ 2A+b and hence v = v1 + v2 ∈ 4A.

To conclude the proof, it remains to show that

|Pr[a1 +a2 + x1 + · · ·+ xt + v ∈ 2A]−Pr[a1 +a2 + x1 + · · ·+ xt ∈ 2A]| ≤ 0.1 ,

where again a1,a2 ∈ A, x1, . . . ,xt ∈ X and v ∈V are chosen uniformly. We now apply Fourier analysis.
We can rewrite

Pr
a1,a2∈A,

x1,...,xt∈X

[a1 +a2 + x1 + · · ·+ xt ∈ 2A] = ∑
α∈Fn

2

Â(α)2X̂(α)t 1̂2A(α) (5.3)
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and
Pr

a1,a2∈A,
x1,...,xt∈X ,v∈V

[a1 +a2 + x1 + · · ·+ xt + v ∈ 2A] = ∑
α∈Fn

2

Â(α)2X̂(α)tV̂ (α)1̂2A(α) . (5.4)

The Fourier coefficients of V are simple to describe since it is a linear subspace. We have that
V̂ (α) = 1 if α ∈V⊥ and that V̂ (α) = 0 otherwise. Thus

Pr[a1 +a2 + x1 + · · ·+ xt ∈ 2A]−Pr[a1 +a2 + x1+ · · ·+ xt + v ∈ 2A]

= ∑
α /∈V⊥

Â(α)2X̂(α)t 1̂2A(α) . (5.5)

We now bound (5.5). By the definition of V , we have that if α /∈V⊥ then α /∈ Spec1/2(X), and hence

|X̂(α)|t ≤ 2−t .

Moreover, |1̂2A(α)| ≤ 1 and

∑
α /∈V⊥

Â(α)2 ≤ ∑
α∈Fn

2

Â(α)2 = Ex∈Fn
2
[ϕA(x)2] = K .

Thus we conclude since∣∣Pr[a1 +a2 + x1 + · · ·+ xt ∈ 2A]−Pr[a1 +a2 + x1 + · · ·+ xt + v ∈ 2A]
∣∣≤ 2−tK ≤ 0.1

by choosing t = log(10K).
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