
THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32
www.theoryofcomputing.org

Complexity of Linear Operators

Alexander S. Kulikov Ivan Mikhailin Andrey Mokhov

Vladimir V. Podolskii

Received December 6, 2020; Revised July 21, 2023; Published November 10, 2025

Abstract. Let � be an =-by-= 0/1-matrix with I zeroes and D ones and let G be

an =-dimensional vector of formal variables over a semigroup ((, ◦). How many

semigroup operations are required to compute the linear operator �G?

It is easy to compute �G using $(D) semigroup operations. The main question

studied in this paper is: can �G be computed using $(I) semigroup operations? For

the case when the semigroup is commutative, we give a constructive proof of an$(I)
upper bound. This implies that in the commutative settings, the complements

of sparse matrices can be processed as efficiently as sparse matrices, though the

corresponding algorithms are more involved. This covers the cases of Boolean and

tropical semirings that have numerous applications, e. g., in graph theory. On the

other hand, we prove that in general this is not possible: for faithful non-commutative

semigroups there exists an =-by-= 0/1-matrix with exactly two zeroes in every row

(hence I = 2=) whose complexity is Θ(=
(=)) where 
(=) is the inverse Ackermann

function.

As a simple application of the linear-size construction presented, we show how

to multiply two = × = matrices over an arbitrary semiring in $(=2) time if one of

An extended abstract of this paper appeared in the Proceedings of the 30th International Symposium on

Algorithms and Computation (ISAAC), 2019 [17].

ACM Classification: Theory of computation: Streaming, sublinear and near linear time

algorithms

AMS Classification: Analysis of algorithms and problem complexity (68Q25)

Key words and phrases: algorithms, linear operators, commutativity, range queries, circuit

complexity

© 2025 Alexander S. Kulikov, Ivan Mikhailin, Andrey Mokhov, and Vladimir V. Podolskii
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2025.v021a009

http://dx.doi.org/10.4086/toc
https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16131
https://drops.dagstuhl.de/opus/portals/lipics/index.php?semnr=16131
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2025.v021a009


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

these matrices is a 0/1-matrix with $(=) zeroes (i. e., the complement of a sparse

matrix).

1 Introduction

1.1 Problem statement and new results

Let � ∈ {0, 1}=×= be a matrix with I zeroes and D ones, and G = (G1 , . . . , G=) be an =-dimensional

vector of formal variables over a semigroup ((, ◦). In this paper, we study the complexity of the

linear operator �G, i. e., how many semigroup operations are required to compute a vector whose

8-th element is ∑
1≤ 9≤= ∧

�8 9=1

G 9 (1.1)

where the summation is over the semigroup operation ◦.1
To give an example, consider the complement � ∈ {0, 1}6×6

of the identity matrix. In this

case, the 8-th output H8 (for 8 = 1, . . . , 6) is equal to the sum of all input variables G1 , . . . , G6

except for G8 .

G1 G2
G3 G4

G5 G6

H1 = G2 ◦ G3 ◦ G4 ◦ G5 ◦ G6

H2 = G1 ◦ G3 ◦ G4 ◦ G5 ◦ G6

H3 = G1 ◦ G2 ◦ G4 ◦ G5 ◦ G6

H4 = G1 ◦ G2 ◦ G3 ◦ G5 ◦ G6

H5 = G1 ◦ G2 ◦ G3 ◦ G4 ◦ G6

H6 = G1 ◦ G2 ◦ G3 ◦ G4 ◦ G51

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

10

0

0

0

0

0

How many operations are required to compute these six sums? The answer depends on the

properties of the semigroup S. For example, if ( = ({0, 1}, ⊕), then one can first compute the

sum of all input variables 0 and then let H8 = 0 ⊕ G8 . However, this strategy does not work for

( = ({0, 1},∨). For this semigroup, one can first compute all prefix sums ?8 and suffix sums B8
and then let H8 = ?8−1 ∨ B8+1, with appropriate adjustments at the boundaries. See the resulting

circuits below.

1Note that the result of summation is undefined in case of an all-zero row, because semigroups have no neutral

element in general. One can trivially sidestep this technical issue by adding an all-one column = + 1 to the matrix �,

as well as the neutral element G=+1
into the vector. Alternatively, we could switch from semigroups to monoids, but

we choose not to do that, since we have no use for the neutral element and associated laws in the rest of the paper.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 2

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

G1 G2 G3 G4 G5 G6

⊕ ⊕
⊕ ⊕

⊕

⊕
H1

⊕
H2

⊕
H3

⊕
H4

⊕
H5

⊕
H6

G1 G2 G3 G4 G5 G6

∨
∨
∨
∨
H6

∨
∨

∨
∨
H1

∨
H2

∨
H3

∨
H4

∨
H5

In this paper, we are interested in lower and upper bounds involving I and D. Computing all

= outputs of �G directly, i. e., using Definition (1.1) (above), takes $(D) semigroup operations.

The main question we study is:

Can �G be computed using $(I) semigroup operations?

Note that it is easy to achieve $(I) complexity if ◦ has an inverse. Indeed, in this case �G can

be computed via subtraction: �G = (* − �)G = *G − �G, where * is the all-ones matrix

whose linear operator can be computed trivially using $(=) semigroup operations, and � is the

complement of � and therefore has only I ones. Our solution for the above example involving

( = ({0, 1}, ⊕) is obtained in precisely this way, by noticing that ⊕ is its own inverse.

1.1.1 Commutative case

Our first main result shows that in the commutative case, the complements of sparse matrices

can be processed as efficiently as sparse matrices. Specifically, we prove that if the semigroup

is commutative, �G can be computed in $(I) semigroup operations; or, more formally, there

exists a circuit of size $(I) that uses G = (G1 , . . . , G=) as an input and computes �G by only

applying the semigroup operation ◦ (we provide the formal definition of the computational

model in Section 2.3). Moreover, the constructed circuits are uniform in the sense that they can be

generated by an efficient algorithm. Hence, our circuits correspond to an elementary algorithm2

that uses no tricks like examining the values G8 , i. e., the semigroup operation ◦ is applied in

a (carefully chosen) order that is independent of the specific input G.

Theorem 1.1. Let ((, ◦) be a commutative semigroup, and � ∈ {0, 1}=×= be a matrix with I = Ω(=)
zeroes. There exists a circuit of size $(I) that takes a vector G = (G1 , . . . , G=) of formal variables as an
input, uses only the semigroup operation ◦ at internal gates, and outputs �G. Moreover, there exists
a randomized algorithm that takes the positions of I zeroes of � as an input and outputs such a circuit in
time $(I) with probability at least 1 − $(log

5 =)/=. There also exists a deterministic algorithm with
running time $(I + = log

4 =).
We state the result for square matrices to simplify the presentation. Theorem 1.1 generalizes

easily to show that �G for a matrix � ∈ {0, 1}<×= with I = Ω(=) zeroes can be computed using

2We mostly think of computations over semigroups as circuits. However, whenever we discuss more general

algorithms operating with the semigroup, we assume that the algorithm can store semigroup elements and can

perform semigroup operation over them in one operation.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 3

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

$(< + I) semigroup operations. Also, we assume that I = Ω(=) to be able to state an upper

bound $(I) instead of $(I + =). Note that when I < =, the matrix � is forced to contain all-one

rows that can be computed trivially.

The following corollary generalizes Theorem 1.1 from vectors to matrices.

Corollary 1.2. Let ( be a semiring. There exists a deterministic algorithm that takes a matrix
� ∈ {0, 1}=×= with I = $(=) zeroes and a matrix � ∈ (=×= and computes the product �� in
time $(=2).

1.1.2 Non-commutative case

As our second main result, we show that commutativity is essential: for any faithful non-

commutative semigroup ( (the notion of faithful non-commutative semigroup is made formal

later in the text in Definition 4.5), the minimum number of semigroup operations required to

compute �G for a matrix � ∈ {0, 1}=×= with I = $(=) zeroes is Θ(=
(=, =)), where 
(=, =) is
the inverse Ackermann function [19]. For brevity further on we use the notation 
(=) = 
(=, =).

Theorem 1.3. There exists a matrix � ∈ {0, 1}=×= with exactly two zeroes in every row such that for
any faithful non-commutative semigroup ((, ◦) the minimum number of semigroup operations required
to compute �G is Ω(=
(=)). This lower bound is tight: �G is computable using $(=
(=)) semigroup
operations for any ((, ◦) and � ∈ {0, 1}=×= .

The upper bound $(=
(=)) follows directly from Yao’s result [23]. Hence, our main

contribution in the non-commutative case is the lower bound Ω(=
(=)), which we derive from

the result of Chazelle and Rosenberg [6].

1.2 Motivation

The complexity of linear operators is interesting for many reasons, some of which are listed

below.

1.2.1 Range queries

In the range query problem, given a vector G = (G1 , . . . , G=) over a semigroup ((, ◦) and multiple

queries of the form (; , A), one is required to output the result G; ◦ G;+1 ◦ · · · ◦ GA for each query.

It is a classical problem in data structures and algorithms with applications in many fields.

Yao [23] showed that, for any semigroup, it is possible to preprocess the input vector in

time $(=) so that any range query can be answered in time $(
(=)), where 
(=) is the inverse
Ackermann function. Yao also proved a matching lower bound. Later, Alon and Schieber [1]

studied a more specific question: what is the minimum number of semigroup operations needed

at the preprocessing stage for being able to then answer any query in at most : steps? They

proved matching lower and upper bounds for every :. As a special case, they showed how

to preprocess the input sequence in time $(= log =) so that one can answer any subsequent

query by applying at most one semigroup operation. Chazelle and Rosenberg [6] studied the

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 4

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

commutative version of the problem. They proved the Ω(=
(=)) lower bound on the number of

commutative semigroup operations required to answer all queries.

The linear operator problem is a natural generalization of the range query problem: each

row of the matrix � defines a subset of the elements of G that needs to be summed up and this

subset is not required to be a contiguous range. The algorithms (Theorem 1.1) and hardness

results (Theorem 1.3) for the linear operator problem presented in this paper are very much

inspired by the above-mentioned classic results for the range query problem. The connection

to range queries is straightforward: zeros in a row split this row into a collection of ranges in

a natural way.

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 0 0

0 0 0 0 0

0 00

0 0

0 0 0

0 0

0 0 0 0 00

0 0 0 0

0 0

0 0 00

0 00

0 0 0 0

0 0 0 0 0

0 0

0 0

0 0 0 0 0

00 0 0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

We review applications as well as a rich variety of algorithmic techniques for the range query

problem in Sections A.1 and A.2.

1.2.2 Graph algorithms

In this paper, by “graphs” we mean “simple graphs,” i. e., undirected graphs without loops and

parallel edges.

Many graph problems can be reduced to matrix multiplication. Two classic examples are: (i)

the all-pairs shortest path problem (APSP) is reducible to min-plus matrix multiplication [9],

and (ii) the number of triangles in a graph can be found by computing the third power (over

the integers) of its adjacency matrix [13, 21]. It is natural to ask what happens if a graph or its

complement has $(=) edges. (As usual, by = we denote the number of nodes.) In many cases,

an efficient algorithm for sparse graphs ($(=) edges) is straightforward whereas an algorithm

with the same efficiency for the complements of sparse graphs is not. For example, it is easy

to solve APSP and triangle counting on sparse graphs in time $(=2), but achieving the same

time complexity for the complements of sparse graphs is more complicated. Theorem 1.1 and

Corollary 1.2 give a black-box way to solve these two problems on the complements of sparse

graphs in time $(=2).

1.2.3 Matrix multiplication over semirings

Fast matrix multiplication methods rely essentially on the ring structure of the underlying

set of elements. The first such algorithm was given by Strassen, the current record upper

bound is $(=2.373) [20, 10]. The removal of the inverse operation often drastically increases

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 5

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

the complexity of algorithmic problems over algebraic structures, and even the complexity of

standard computational tasks is not well understood over tropical and Boolean semirings (see,

e. g., [22, 12]). For various important semirings, we still do not know an =3−�
(for a constant � > 0)

upper bound for matrix multiplication, e. g., the strongest known upper bound for min-plus

matrix multiplication is =3/exp(
√

log =) [22].
The interest in computations over such algebraic structures has recently grown substantially

throughout the Computer Science community with the cases of Boolean and tropical semirings

being of main interest (see, e. g., [15, 22, 5]). From this perspective, the computational complexity

over sparse 0/1-matrices and their complements is one of the most basic questions. Theorem 1.1

and Corollary 1.2 therefore characterise natural special cases when efficient computations are

possible.

1.2.4 Functional programming

The diagonal Δ(+) of the set + is the set {(G, G) | G ∈ +}. By digraphs (directed graphs) we mean

pairs � = (+, �) of sets where � ⊆ + ×+ . So, self-loops, i. e., edges in Δ(+), are permitted. If we

wish to exclude such edges, we speak of loop-free digraphs. The complement of � is (+,+ ×+ \�).
The loop-free complement of a loop-free digraph � is (+,+ ×+ \Δ(+) \ �). Graphs can be viewed

as loop-free digraphs where � is a symmetric relation on + . By the complement of a graph we

mean its loop-free complement.

One of the algebraic data structures developed in the functional programming community

for the representation and manipulation of digraphs � = (+, �) is based on the following

operations:

• 〈E〉 (the digraph with the single vertex E and no edges)

• union: �1 ∪ �2 = (+1 ∪+2 , �1 ∪ �2)

• join: �1 ∗ �2 = (+1 ∪+2 , �1 ∪ �2 ∪ (+1 ×+2)), including the resulting self-loops, if any.

Certain classes of digraphs can be generated by these operations in linear (in the number = of

vertices) time and memory. These obviously include all sparse digraphs (digraphs with $(=)
edges) but they also include digraphs of arbitrary density. For instance, 〈1〉 ∗ · · · ∗ 〈=〉 is the
transitively oriented complete graph (transitive tournament) which has density 1/2.

It was not known whether the complements of sparse graphs admit such a concise represen-

tation. In fact, this specific question motivated our research. Our result gives a constructive

positive answer: Theorem 1.1 yields an efficient algorithm for deriving a linear-size algebraic

graph representation for the complements of sparse digraphs. It easily follows that the same

result is true for graphs and for loop-free digraphs.

1.2.5 Circuit complexity

Computing linear operators over the Boolean semiring ({0, 1},∨) is a well-studied problem in

circuit complexity. The corresponding computational model is known as rectifier networks. An

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 6

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

overview of known lower and upper bounds for such circuits is given by Jukna [14, Section 13.6].

Theorem 1.1 states that linear operators on the complements of sparse matrices have linear

rectifier network complexity.

1.3 Organization and earlier publication

Background definitions are introduced in Section 2. The main results are presented in Section 3

(the commutative case) and Section 4 (the non-commutative case). This paper extends an

earlier conference publication [17] by providing complete proofs of all claimed results in

Sections 3 and 4.

2 Background

2.1 Semigroups and semirings

A semigroup ((, ◦) is an algebraic structure, where the set ( is closed under the operation ◦, i. e.,
◦ : ( × (→ (, and associative, i. e., G ◦ (H ◦ I) = (G ◦ H) ◦ I for all G, H, and I in (. Commutative (or
abelian) semigroups introduce one extra requirement: G ◦ H = H ◦ G for all G and H in (.

A commutative semigroup ((, ◦) can often be extended to a semiring ((, ◦, •) by introducing

another associative (but not necessarily commutative) operation • that distributes over ◦, that is

G • (H ◦ I) = (G • H) ◦ (G • I) (G ◦ H) • I = (G • I) ◦ (H • I) .

hold for all G, H, and I in (. Furthermore, zero 0 ∈ ( and one 1 ∈ ( are the additive and

multiplicative identities of the two operators, and zero is annihilating:

0 ◦ G = G ◦ 0 = G 1 • G = G • 1 = G 0 • G = G • 0 = 0 .

Since ◦ and • behave similarly to numeric addition and multiplication, it is common to give •
a higher precedence to avoid unnecessary parentheses, and even omit • from formulas altogether,

replacing it by juxtaposition. This gives a terser and more convenient notation, for example, the

left distributivity law becomes: G(H ◦ I) = GH ◦ GI. We will use this notation, insofar as it does

not lead to ambiguity.

2.2 Range query problem and linear operator problem

In the range query problem, one is given a sequence G1 , G2 , . . . , G= of elements of a fixed semigroup

((, ◦). Then, a range query is specified by a pair (; , A) of indices such that 1 ≤ ; ≤ A ≤ =. The
answer to such a query is the result of applying the semigroup operation to the corresponding

range, i. e., G; ◦ G;+1 ◦ · · · ◦ GA . The range query problem is then to simply answer all given range

queries. There are two regimes: online and offline. In the online regime, one is given a sequence

of values G1 = E1 , G2 = E2 , . . . , G= = E= and is asked to preprocess it so that one can efficiently

answer any subsequent query. By “efficiently” one usually means in time independent of the

length of the range (i. e., A − ; + 1, the time of a naive algorithm), say, in time $(log =) or $(1).

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 7

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

In this paper, we focus on the offline version, where one is given a sequence together with all

the queries, and are interested in the minimum number of semigroup operations needed to

answer all the queries. Moreover, we study a more general problem: we assume that G1 , . . . , G=
are formal variables rather than actual semigroup values. That is, we study the circuit size of the
corresponding computational problem.

The linear operator problem generalizes the range queries problem: now, instead of contiguous

ranges one wants to compute sums over arbitrary subsets. These subsets are given as rows of

a 0/1-matrix �.

2.3 Circuits

We consider circuits whose input consists of = formal variables {G1 , . . . , G=}. We are interested in

theminimumnumber of semigroup operations needed to compute all givenwords {F1 , . . . , F<}
(e. g., for the range query problem, each word has a form G; ◦ G;+1 ◦ · · · ◦ GA). We use the following

natural circuitmodel. A circuit computing all these queries is a directed acyclic graph. There are

exactly = nodes of zero in-degree. They are labelled with {1, . . . , =} and are called input gates.
All other nodes have positive in-degree and are called internal gates. Finally, some < gates have

out-degree 0 and are labelled with {1, . . . , <}; they are called output gates. The size of a circuit
is its number of edges (also called wires). Each gate of a circuit computes a word defined in

a natural way: input gates compute just {G1 , . . . , G=}; any other gate of in-degree A computes

a word 51 ◦ 52 ◦ · · · ◦ 5A where { 51 , . . . , 5A} are words computed at its predecessors (therefore,

we assume that there is an underlying order on the incoming wires for each gate). We say that

the circuit computes the words {F1 , . . . , F<} if the words computed at the output gates are

equivalent to {F1 , . . . , F<} over the semigroup under consideration.

For example, the circuit below computes range queries (;1 , A1) = (1, 4), (;2 , A2) = (2, 5), and
(;3 , A3) = (4, 5) over inputs {G1 , . . . , G5} or, equivalently, the linear operator �G where the matrix

� is given below.

1 2 3 4 5

1 2 3

� =
©­«
1 1 1 1 0

0 1 1 1 1

0 0 0 1 1

ª®¬
For a 0/1-matrix �, by �(�)we denote the minimum size of a circuit computing the linear

operator �G.

A binary circuit is a circuit having no gates of fan-in more than two. It is not difficult to see

that any circuit can be converted into a binary circuit of size at most twice the size of the original

circuit. For this, one just replaces every gate of fan-in :, for : > 2, by a binary tree with 2: − 2

wires (such a tree contains : leaves hence : − 1 inner nodes and 2: − 2 edges). In the binary

circuit the number of gates does not exceed its size (i. e., the number of wires). And the number

of gates in a binary circuit is exactly the minimum number of semigroup operations needed to

compute the corresponding function.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 8

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

We call a circuit � computing � regular if for every pair (8 , 9) such that �8 9 = 1, there exists

exactly one path from the input 9 to the output 8. A convenient property of regular circuits is

the following observation.

Observation 2.1. Let � be a regular circuit computing a 0/1-matrix � over a commutative semigroup.
Then, by reversing all the wires in � one gets a circuit computing �) .

Instead of giving a formal proof, we provide an example of a reversed circuit from the

example given above. It is because of this observation that we require circuit outputs to be gates

of out-degree zero (so that when reversing all the wires the inputs and the outputs exchange

places).

1 2 3 4 5

1 2 3

�) =

©­­­­­«
1 0 0

1 1 0

1 1 0

1 1 1

0 1 1

ª®®®®®¬
3 Commutative case

This section is devoted to the proofs of Theorem 1.1 and Corollary 1.2, which we restate below.

Theorem 3.1 (Theorem 1.1 restated). Let ((, ◦) be a commutative semigroup, and � ∈ {0, 1}=×= be
a matrix with I = Ω(=) zeroes. There exists a circuit of size $(I) that takes a vector G = (G1 , . . . , G=)
of formal variables as an input, uses only the semigroup operation ◦ at internal gates, and outputs
�G. Moreover, there exists a randomized algorithm that takes the positions of I zeroes of � as an input
and outputs such a circuit in time $(I) with probability at least 1 − $(log

5 =)/=. There also exists
a deterministic algorithm with running time $(I + = log

4 =).

Corollary 3.2 (Corollary 1.2 restated). Let ( be a semiring. There exists a deterministic algorithm that
takes a matrix � ∈ {0, 1}=×= with I = $(=) zeroes and a matrix � ∈ (=×= and computes the product
�� in time $(=2).

3.1 Main ideas of the proof

Consider a matrix � ∈ {0, 1}=×= with I = Ω(=) zeros (left picture below). Zeros split every

row of � into ranges. We construct a circuit of size $(I) that computes all these ranges. Then,

by using additional $(I) gates one can compute all outputs of �G. It is ranges of length at most

log = (middle picture) that make the problem difficult: we prove that one can compute all

ranges of length at least log = using $(I) gates. Using this observation, we proceed as follows.

We partition the rows into two parts (right picture): every row in the top part contains at most

log = zeroes, whereas every row in the bottom part contains more than log = zeroes. The bottom

part contains at most I/log = rows, we transpose it and compute in time$(I/log = · log =) = $(I).

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 9

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

For the top part, we employ the commutativity and shuffle the columns. Then, the expected

total length of all short ranges is >(=) and one can compute all of them directly.

3.2 Formal proof

We start by proving two simpler statements to show how commutativity is important.

Lemma 3.3. Let ( be a (not necessarily commutative) semigroup and let � ∈ {0, 1}=×= contain at most
one zero in every row. Then �(�) = $(=).

Proof. To compute the linear operator �G, we first precompute all prefix and suffix sums of

G = (G1 , . . . , G=). Specifically, let ?8 = G1 ◦ G2 ◦ · · · ◦ G8 . All ?8’s can be computed using (= − 1)
binary gates as follows:

?1 = G1 , ?2 = ?1 ◦ G2 , ?3 = ?2 ◦ G3 , . . . , ?8 = ?8−1 ◦ G8 , . . . , ?= = ?=−1 ◦ G= .

Similarly, we compute all suffix sums B 9 = G 9 ◦ G 9+1 · · · ◦ G= using (= − 1) binary gates. From

these prefix and suffix sums all outputs can be computed as follows: if a row of � contains

no zeroes, the corresponding output is ?= ; otherwise if a row contains a zero at position 8, the

output is ?8−1 ◦ B8+1 (for 8 = 1 and 8 = =, we omit the redundant term). �

In the rest of the section, we assume that the underlying semigroup is commutative.

Allowing at most two zeroes per row already leads to a non-trivial problem. Below, we show

how to construct a circuit of linear size for this special case (and later on we prove a more general

result). It is interesting to compare the following lemma with Theorem 1.3 that states that in the

non-commutative setting matrices with two zeroes per row are already non-linear.

Lemma 3.4. Let � ∈ {0, 1}=×= contain at most two zeroes in every row. Then �(�) = $(=).

Proof. Denote by ' and � the (sets of) rows and columns of �, respectively. Let ' = '1 t '2

where every row in '1 contains at most one zero, whereas every row in '2 contains exactly

two zeros. Clearly, �('1 × �) = $(=) (prefix and suffix sums), hence it remains to prove that

�('2 × �) = $(=).
Let � = �1 t �0 such that every column of '2 × �1 contains at least one zero, whereas

'2 × �0 is an all-one matrix. It remains to prove that �('2 × �1) = $(=) gates: after computing

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 10

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

'2 × �1, we compute the sum of all variables corresponding to the columns of �0 (this takes

|�0 | − 1 = $(=) gates) and then add this sum to every row of '2 × �1 (using |'2 | = $(=) gates).
(Working with columns �1 and �0 separately is possible due to commutativity.)

To prove that �('2 × �1) = $(=), we prove that the complexity of a matrix � = �' × �� ∈
{0, 1}<×C containing exactly two zeros in every row and at least one zero in every column (hence,

C ≤ 2<) is at most 30<. We prove this by induction on <. By flipping a coin for every column

of �, partition the columns �� into two parts: �� = % t &. We say that A ∈ �A is a split row if

exactly one of two zeros from A lies in % (hence, the other one belongs to&). For every A ∈ �A , the
probability that A is a split row is 1/2, hence the expected number of split rows is |�' |/2 = </2.
Take a partition �� = % t& ensuring that the set ( ⊆ �' of split rows has size at least </2 and

let # = �' \ ( be the set of the non-split rows.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

6 2 10 8 1 3 9 5 4 7

1

2

3

4

5

6

% &

6 2 10 8 1 3 9 5 4 7

1

4

6

2

3

5

% &

(

#

The matrix ( × �� can be computed by a circuit of size 11<: each of ( × % and ( × & has

exactly one zero in every column and can be computed using 2C+< gates (using prefix and suffix

sums); then one more gate suffices for every row; the total size is (2C + <) + (2C + <) + < ≤ 11<.

Thus, it remains to compute the matrix # × �� . Let �� = - t . where the columns .

do not contain zeros in # × �� . By induction, the complexity of the matrix # × - is at most

30|# | ≤ 30</2 = 15<. Then, one computes the sum of all variables from . (at most 2< gates)

and adds it to all the rows from # (at most < gates). Thus, the complexity of # × �� is at most

18<.

Overall,

�(�) ≤ �(( × �') + �(# × �') ≤ 11< + 18< ≤ 30< . �

Below, we state two auxiliary lemmas that will be used as building blocks in the proof

of Theorem 3.1. We prove Lemma 3.6 in Section 3.3.

Lemma 3.5. There exists a binary regular circuit of size $(= log =) such that any range can be computed
in a single additional binary gate using two gates of the circuit. It can be generated in time $(= log =).
Proof. We adopt the divide-and-conquer construction by Alon and Schieber [1]. Split the input

range (1, =) into two half-ranges of length =/2: (1, =/2) and (=/2 + 1, =). Compute all suffixes of

the left half and all prefixes of the right half. Using these precomputed suffixes and prefixes

one can answer any query (; , A) such that ; ≤ =/2 ≤ A in a single additional gate. It remains

to be able to answer queries that lie entirely in one of the halves. We do this by constructing

recursively circuits for both halves. The resulting recurrence relation )(=) ≤ 2)(=/2) + $(=)
implies that the resulting circuit has size at most $(= log =). �

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 11

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

Lemma 3.6. Let < ≤ = and � ∈ {0, 1}<×= be a matrix with I = Ω(=) zeroes and at most log = zeroes
in every row. There exists a circuit of size $(I) computing �G. Moreover, there exists a randomized
$(I)-time algorithm that takes as input the positions of I zeros and outputs a circuit computing �G
with probability at least 1 − $(log

5 =)/=. There also exists a deterministic algorithm with running time
$(= log

4 =).

Proof of Theorem 3.1. Denote the set of rows and the set of columns of � by ' and �, respectively.

Let '0 ⊆ ' be all the rows having at least log = zeroes and '1 = ' \ '0. Every row of � can

be decomposed into (maximal) contiguous ranges of ones. We call them ranges of �. Below,
we show that all the ranges of � can be computed by a circuit of size $(I). From these ranges, it

takes $(I) additional binary gates to compute all the outputs of �G.

We compute the matrices '0 × � and '1 × � separately. The main idea is that '0 × � is easy

to compute because it has a small number of rows (at most I/log =), while '1 × � is easy to

compute because it has a small number of zeroes in every row (at most log =).

The matrix '1 × � can be computed using Lemma 3.6. To compute '0 × �, it suffices to

compute � × '0 by a regular circuit, thanks to the Observation 2.1. Let |'0 | = C. Clearly,

C ≤ I/log =. Using Lemma 3.5, one can compute all ranges of � × '0 by a circuit of size

$(C log C + I) = $
(

I

log =
· log I + I

)
= $(I + =) = $(I) ,

since I = $(=2).
The algorithm for generating the circuit is just a combination of the algorithms from

Lemmas 3.5 and 3.6. �

Proof of Corollary 3.2. One deterministically generates a circuit for � of size $(=) in time

$(= log
4 =) = $(=2) by Theorem 3.1. This circuit can be used to multiply � by any col-

umn of � in time $(=). For this, one constructs a topological ordering of the gates of the circuits

and computes the values of all gates in this order. Hence, �� can be computed in time$(=2). �

3.3 Deterministic algorithm and the proof of Lemma 3.6

Lemma 3.7. There exists a binary regular circuit of size $(=) such that any range of length at least
log = can be computed in two additional binary gates from the gates of the circuit. It can be generated by
an algorithm in time $(=).

Proof. We use the block decomposition technique for constructing the required circuit. Partition

the input range (1, =) into =/log = ranges of length log = and call them blocks. Compute the

range corresponding to each block (in total size $(=)). Build a circuit from Lemma 3.5 on top of

these blocks. The size of this circuit is $(=) since the number of blocks is =/log =. Compute all

prefixes and all suffixes of every block. Since the blocks partition the input range (1, =), this also
can be done with an $(=) size circuit.

Consider any range of length at least log =. Note that it cannot lie entirely inside the block.

Hence, any such range can be decomposed into three components: a suffix of a block, a sequence

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 12

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

of whole blocks, and a prefix of a block (where any of the three components may be empty). For

example, for = = 16, a range (3, 13) is decomposed into a suffix (3, 4) of the first block, a sequence
(�2 , �3) of whole blocks, and a prefix (13, 13) of the last block:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

�1 �2 �3 �4

All sequences of blocks can be precomputed by a circuit of size $(=) using the construction

fromLemma 3.5 (recall that the number of blocks is =/log =). To combine these three components,

one needs two additional binary gates: one to add the suffix, and another to add the prefix. �

Proof of Lemma 3.6. The I zeroes of � break its rows into ranges. Let us call a range short is its
length is at most log =. Below, we show that it is possible to permute the columns of � so that

the total length of all short ranges is at most >(=). Then, all such short ranges can be computed

by a circuit of size >(=) = $(=) = $(I). All the remaining ranges can be computed by a circuit

of size $(=) using Lemma 3.7.

Randomized algorithm. Permute the columns randomly. A uniform random permutation

of = objects can be generated in time $(=) [16, Algorithm P (Shuffling)]. Let us compute the

expectation of the total length of short ranges. Let us focus on a single row and a particular cell

in it. Denote the number of zeroes in the row by C. What is the probability that the cell belongs

to a short segment? There are two cases to consider.

1. The cell is at distance : for 1 ≤ : ≤ log = from the border, i. e., it belongs to the first log =

cells or to the last log = cells (the number of such cells is 2 log =). Then, this cell belongs

to a short range if there is at least one zero in log = − : + 1 cells close to it (on the side

opposite to the border). Hence, one zero must belong to the set of log = − : + 1 cells while

the remaining C − 1 zeroes may be anywhere. The probability is then at most

∑
1≤:≤log =

(log = − : + 1) ·
( =
C−1

)(=
C

) ≤ log = · C

= − C + 1

= $

(
log

2 =

=

)
.

2. It is not close to the border (the number of such cells is = − 2 log =). Then, there must be

a zero on both sides of the cell: one at distance 1 ≤ : < log = on the left and another at

distance at most log = − : on the right. The probability is then at most

∑
1≤:<log =

(log = − :) ·
( =
C−2

)(=
C

) ≤ log
2 = · C(C − 1)
(= − C + 1)(= − C + 2) = $

(
log

4 =

=2

)
.

Hence, the expected total length of short ranges in one row is

$

(
2 log = ·

log
2 =

=
+ (= − 2 log =) ·

log
4 =

=2

)
= $

(
log

4 =

=

)
.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 13

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

Thus, the expected length of short ranges in the whole matrix � is $(log
4 =). By Markov

inequality, the probability that the length of all short ranges is larger than =/log = is at most

$(log
5 =/=).

Deterministic algorithm. It will prove convenient to assume that � is a C × C matrix with

exactly C zeros with at most log C zeroes in every row. To do this, we let C = max{=, I} and add

a number of all-ones rows and columns if needed. This enlargement of the matrix does not

make the computation simpler: additional rows mean additional outputs that can be ignored

and additional columns correspond to redundant variables that can be removed (substituted

by 0) once the circuit is constructed. Below, we show how to deterministically construct a circuit

of size $(C) for �. To do this, we present a greedy algorithm for permuting the columns of � in

such a way that the total length of all short segments is $(log
4 =). This will follow from the fact

that all short ranges in the resulting matrix � will lie within the last $(log
2 C) columns.

We construct the required permutation of columns step by step by a greedy algorithm. After

step A, we will have a sequence of the first A columns chosen and we will maintain the following

properties:

• For each 8 ≤ A, the first 8 columns contain at least 8 zeros.

• There are no short ranges within the first A rows (apart from those that can be extended by

adding columns on the right).

After C−log
2 C steps, short rangeswill only be possible within the last log

2 C+log C = $(log
2 C)

columns. The algorithm itself is presented below.

On the first step, we pick any column that has a zero in it. Suppose we have reached step A.

We explain how to add a column on step A + 1. Consider the last log C columns in the currently

constructed sequence. Consider the set ' of rows that have zeros in them. These are exactly the

rows that constrain our choice for the next column. There are two cases.

1. There are at most log C rows in '. Then, for each row in ', there are at most log C columns

that have zeros in this row. In total, there are at most log
2 C columns that have zeros in

some row of '. Denote the set of this columns by �. If there is an unpicked column

outside of � that has at least one zero in it, we add this column to our sequence. Clearly,

both properties are satisfied and the step is over. Otherwise, all other columns contain

only ones, so we add all of them to our sequence, place the columns from � to the end of

the sequence, and the whole permutation is constructed.

2. There are more that log C rows in '. This means that the last log C columns of the current

sequence contain more than log C zeros. By the first property, the first A − log C columns

contain at least A − log C zeros. So overall, in the current sequence of A columns there are

more than A zeros. Thus, in the remaining C − A columns there are less then C − A zeros and
there is a column without zeros. We add this column to the sequence.

To implement this algorithm in time $(C log
4 C), we store, for each column 9 of �, a sorted

array of rows 8 such that �8 9 = 0. Since the total number of zeros I is at most C log C, these arrays

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 14

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

can be computed in time $(C log
2 C): if 21 , . . . , 2C are the numbers of zeros in the columns, then

sorting the corresponding arrays takes time

C∑
8=1

28 log 28 ≤ log(C log C) ·
C∑
8=1

28 ≤ log(C log C) · C log C .

At every iteration, we need to update the set '. To do this, we need to remove some rows

from it (from the column that no longer belongs to the stripe of columns of width log C) and to

add the rows of the newly added column. Since the size of |' | is always at most C and the total

number of zeros is I ≤ C log C, the total running time for all such updates is $(C log
2 C) (if one

uses, e. g., a balanced binary search tree for representing ').

If |' | > log C, one just takes an all-one column (all such columns can be stored in a list). If

|' | ≤ log C, we need to find a column outside of the set �. To do this, we just scan the list of the

yet unpicked columns. For each column, we first check whether it belongs to the set �. This can

be checked in time $(log
2 C): for every row in |' |, one checks whether this row belongs to the

sorted array of the considered column using binary search in time $(log C). Since |� | ≤ log
2 C,

we will find a column outside of � in time $(log
4 C).

�

4 Non-commutative case

In the previous section, we have shown that for commutative semigroups, co-sparse linear

operators can be computed by linear-size circuits. A closer look at the circuit constructions

reveals that we use commutativity crucially: it is important that we may reorder the columns of

the matrix (we do this in the proof of Lemma 3.6). In this section, we show that this trick is

unavoidable: for non-commutative semigroups, it is not possible to construct linear-size circuits

for co-sparse linear operators. Specifically, we prove Theorem 1.3 which we restate here.

Theorem 4.1 (Theorem 1.3 restated). There exists a matrix � ∈ {0, 1}=×= with exactly two zeroes
in every row such that for any faithful non-commutative semigroup ((, ◦) the minimum number of
semigroup operations required to compute �G is Ω(=
(=)). This lower bound is tight: �G is computable
using $(=
(=)) semigroup operations for any ((, ◦) and � ∈ {0, 1}=×= .

4.1 Faithful semigroups

We consider computations over general semigroups that are not necessarily commutative. In

particular, we will establish a lower bound for a large class of semigroups and our lower bound

does not hold for commutative semigroups. This requires a formal definition that captures

semigroups with rich enough structure and in particular captures the notion that a semigroup

is substantially non-commutative.

Previously lower bounds in the circuit model for a large class of semigroups were known for

the range query problem [23, 6]. These results were proven for a large class of commutative

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 15

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

semigroups called faithful (see Definition 4.2). Since we are dealing with the non-commutative

case, we need to generalize the notion of faithfulness to non-commutative semigroups.

To provide a formal definition of faithfulness it is convenient to introduce the following

notation. Suppose ((, ◦) is a semigroup. Consider variables G1 , . . . , G= and consider identities in

variables {G1 , . . . , G=} over ((, ◦). That is, for two words, and, ′ in the alphabet {G1 , . . . , G=}
we say, =, ′ iff no matter which elements of the semigroup ( we substitute for {G1 , . . . , G=}
we obtain a correct equation over (. Let -(,= be a semigroup with generators {G1 , . . . , G=} and
relations being all identities in variables {G1 , . . . , G=} over ((, ◦). In other words, -(,= is the

quotient of the free semigroup by the congruence relation generated by the given identities.

In particular, note that if ( is commutative or idempotent then -(,= is also commutative or

idempotent, respectively. The semigroup -(,= is studied in algebra under the name of relatively

free semigroup of rank = of a variety generated by the semigroup ( [18]. We will often omit the

subscript = and write simply -( since the number of generators will be clear from the context.

Below we will use the following notation. Let, be a word in the alphabet {G1 , . . . , G=}. Denote

by Var (,) the set of letters that are present in, .

We are now ready to introduce, following Yao [23] and Chazelle–Rosenberg [6], the definition

of a commutative faithful semigroup.

Definition 4.2 (Yao, Chazelle–Rosenberg). Acommutative semigroup ((, ◦) is faithful commutative
if for any equivalence, ∼, ′ in -( we have Var (,) = Var (, ′).

Note that this definition does not pose any restrictions on the multiplicity of each letter in,

and, ′. In particular, idempotent semigroups ({0, 1},∨) and (ℤ,min) are faithful commutative.

We need to study the non-commutative case, and moreover, our results establish the

difference between commutative and non-commutative cases. Thus, we need to extend the

notion of faithfulness to non-commutative semigroups to capture the whole power of their

non-commutativity. At the same time we would like to keep the case of idempotency. We

introduce the notion of faithfulness for the non-commutative case inspired by the properties of

free idempotent semigroups [11]. To introduce this notion, we need several definitions.

Definition 4.3. The initial mark of the non-empty word, , is the letter that is present in,

such that its first appearance is farthest to the right. Let* be the prefix of, consisting of the

letters preceding the initial mark. That is,* is the maximal prefix of, with a smaller number

of generators. We call* the initial stretch of, . Analogously we define the terminal mark of,
and the terminal of, .

For example, for, = 011020120, the initial mark is the first letter 2, the initial stretch is the

prefix 0110, the terminal mark is the last letter 1 and the terminal is the suffix 20.

Definition 4.4. We say that a semigroup - with generators {G1 , . . . , G=} is strongly non-
commutative if for any words, and, ′ in the alphabet {G1 , . . . , G=} the equivalence, ∼ , ′
holds in - only if the initial marks of, and, ′ are the same, terminal marks are the same,

the equivalence * ∼ *′ holds in -, where * and *′ are the initial stretches of , and , ′,
respectively, and the equivalence + ∼ +′ holds in -, where + and +′ are the terminal stretches

of, and, ′, respectively.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 16

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

In other words, this definition states that the first and the last occurrences of generators

in the equivalence separates the parts of the equivalence that cannot be affected by the rest of

the generators and must therefore be equivalent themselves. We also note that this definition

exactly captures the idempotent case: for a free idempotent semigroup the condition in this

definition is “if and only if” [11].

Definition 4.5. A semigroup ((, ◦) is faithful non-commutative if -( is strongly non-commutative.

We note that this notion of faithfulness is relatively general and is true for semigroups

((, ◦) with considerable degree of non-commutativity in their structure. It clearly captures

free semigroups with at least two generators. It is also easy to see that the requirements

in Definition 4.5 are satisfied for the free idempotent semigroup with = generators (if ( is

idempotent, then -(,= is also clearly idempotent and no other relations are holding in -(,= since

we can substitute generators of ( for G1 , . . . , G=).

When reading through the proof of Theorem 4.1 it is instuctive to keep an example of the

free idempotent semigroup in mind. In fact, the very first step of the proof of the lower bound

reduces arbitrary semigroup to an idempotent semigroup.

Next we observe some properties of strongly non-commutative semigroups that we need in

our constructions.

Lemma 4.6. Suppose - is strongly non-commutative. Suppose the equivalence, ∼, ′ holds in - and
|Var (,)| = |Var (, ′)| = :. Suppose* and*′ are minimal (maximal) prefixes of, and, ′ such that
|Var (*)| = |Var (*′)| = ; ≤ :. Then the equivalence* ∼ *′ holds in -. The same is true for suffixes.

Proof. The proof is by induction on the decreasing ;. Consider the maximal prefixes first. For

; = : and maximal prefixes we just have * = , and *′ = , ′. Suppose the statement is true

for some ;, and denote the corresponding prefixes by * and *′, respectively. Then note that

the maximal prefixes with ; − 1 variables are initial stretches of* and*′. And the statement

follows by Definition 4.4.

The proof of the statement for minimal prefixes is completely analogous. Note that on the

step of induction the prefixes differ from the previous case by one letter that are initial marks of

the corresponding prefixes. So these additional letters are also equal by the Definition 4.4.

The case of suffixes is completely analogous. �

The next lemma is a simple corollary of Lemma 4.6.

Lemma 4.7. Suppose - is strongly non-commutative. Suppose , ∼ , ′ holds in -. Consider a
permutation �, of the letters of, in the order in which they appear first time in, when we read it from
left to right. Consider analogous permutation �,′ for, ′. Then �, = �,′. The same is true if we read
the words from right to left.

4.2 Proof strategy

We now proceed to the proof of Theorem 4.1. The upper bound follows easily by a naive

algorithm: split all rows of � into ranges, compute all ranges by a circuit of size $(=
(=)) using
Yao’s construction [23], then combine ranges into rows of � using $(=) gates.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 17

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

Thus, we focus on lower bounds. Wewill view the computation of the circuit as a computation

in a strongly non-commutative semigroup - = -(.

We will use the following proof strategy. First we observe that it is enough to prove the lower

bound for the case of idempotent strongly non-commutative semigroups -. Indeed, consider

an arbitrary semigroup -. Consider a new semigroup -83 over the same set of generators

that is a factorization of - by idempotency relations,2 ∼, for all words, in the alphabet

{G1 , . . . , G=}. We prove the following lemma.

Lemma 4.8. 1. If - is strongly non-commutative, then -83 is also strongly non-commutative.

2. If the co-sparse linear operator problem over - has size B circuit, the co-sparse linear operator
problem over -83 has size B circuit as well.

As a result a lower bound for the case of -83 implies the same lower bound for the case of -.

We provide a proof of Lemma 4.8 in Section 4.3.

Hence, from this point we can assume that - is idempotent and strongly non-commutative.

Next for idempotent case we show that our problem is equivalent to the commutative version of

the range query problem.

For a semigroup - with generators {G1 , . . . , G=} denote by -BH< its factorization under

commutativity relations G8G 9 ∼ G 9G8 for all 8 , 9. Note that if - is idempotent and strongly

non-commutative, then -BH< is just the semigroup in which, ∼, ′ iff Var (,) = Var (, ′) (this
is free idempotent commutative semigroup).

Theorem 4.9. For an idempotent strongly non-commutative - and for any B = Ω(=) we have that the
(commutative) range query problem over -BH< has size $(B) circuits iff (non-commutative) co-sparse
linear operator problem over - has size $(B) circuits.

For the commutative case it is known that the range query problem is non-linear (Chazelle–

Rosenberg [6]).

Theorem 4.10 (Chazelle–Rosenberg). There is a set of = ranges over -BH< such that any circuit
computing these ranges has size at least Ω(=
(=)).

Using these results, it is straightforward to finish the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.8 it is enough to prove the result for an idempotent strongly

non-commutative -. By Theorem 4.9 if non-commutative co-sparse linear operator problem has

size B circuit, then the commutative range query problem also does. However, by Theorem 4.10

for the latter problem B = Ω(=
(=)). Moreover, in our construction for the proof of Theorem 4.9

it is enough to consider co-sparse linear operators with exactly two zeroes in every row. From

this the lower bound in Theorem 4.1 follows. �

Note that for the proof of Theorem 4.1 only one direction of Theorem 4.9 is needed. However,

we think that the equivalence in Theorem 4.9 might be of independent interest, so we provide

the proof for both directions.

Thus, it remains to prove Theorem 4.9. We do this by showing the following equivalences

for any B = Ω(=).

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 18

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

(commutative)

range query prob-

lem over -BH< has

$(B) size circuits

(non-commutative)

range query prob-

lem over - has

$(B) size circuits

(non-commutative)

co-sparse linear

operator problem

over - has $(B)
size circuits

Lemma 4.17

special case

straightforward

Lemma 4.11

In these equivalences, non-commutative problems are considered over an arbitrary strongly

non-commutative semigroup and the commutative problem is considered over free idempotent

commutative semigroup -BH< . Recall that if we factorize any strongly non-commutative

idempotent semigroup over commutativity equivalences, we obtain exactly free idempotent

commutative semigroup.

Note that two of the reductions on this diagram are trivial. Thus it remains to prove the

other two directions.

1. If the (non-commutative) co-sparse linear operator problem over - has size B circuit then

the (non-commutative) range query problem over - has size $(B) circuit.

2. If the (commutative) version of the range query problem over -BH< has size B circuits then

the (non-commutative) version over - also does.

The first of these statements is proved in Sections 4.4 and 4.5. The second statement is proved

in Section 4.6.

4.3 From idempotent semigroups to general semigroups

In this section we provide a proof for Lemma 4.8.

First we show that if - is strongly non-commutative, then -83 is also strongly non-

commutative. Suppose , and , ′ are words in the alphabet {G1 , . . . , G=} and , ∼ , ′ in
-83. This means that there is a sequence,0 , . . . ,,: of words in the same alphabet such that

, = ,0, ,
′ = ,: and for each 8 either,8 ∼ ,8+1 in -, or,8+1 is obtained from,8 by one

application of the idempotency equivalence to some subword of,8 . Clearly, it is enough to

check that the conditions of Definition 4.4 are satisfied in -83 for each consecutive pair,8 and

,8+1.

If ,8 ∼ ,8+1 in -, then the conditions of Definition 4.4 follows from the strong non-

commutativity of -.

Suppose now that,8+1 is obtained from,8 by substituting some subword � by �2
(the

symmetrical case is analyzed in the same way). We will show that initial marks of ,8 and

,8+1 are the same and*8 ∼ *8+1 in -83, where*8 and*8+1 are initial stretches of,8 and,8+1

respectively. For the terminals and terminal marks the proof is completely analogous.

Suppose � lies to the left of initial mark in,8 and we substitute � by �2
. Then the initial

mark is unaltered and in the initial stretch*8 we also substitute � by �2
. Thus in this case*8+1

is obtained from*8 by idempotency relation.

Suppose � contains initial mark of,8 or lies to the right of it. Then after the substitution of

� by �2
the initial mark is still the same and the initial stretch*8 also does not change.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 19

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

For the second part of the lemma, suppose - is strongly non-commutative and suppose

that for - there is a circuit of size at most B computing some co-sparse linear operator. Since

-83 is a factorization of - any circuit computing co-sparse operator over - also computes the

same co-sparse operator over -83. Thus there is a circuit of size at most B computing the same

co-sparse operator over -83.

4.4 Reducing co-sparse linear operator to range queries

In this subsection, we prove the following lemma.

Lemma 4.11. If the (non-commutative) co-sparse linear operator problem over - has size B circuit then
the (non-commutative) range query problem over - has size $(B) circuit.

Intuitively, the lemma holds as the best way to compute rows of a co-sparse matrix is to

combine input variables in the natural order. This intuition is formalized in Lemma 4.12 below.

Given this, it is easy to reduce co-sparse linear operator problem to the range query problem: we

just “pack” each range query into a separate row, i. e., for a query (; , A)we introduce a 0/1-row
having two zeroes in positions ; − 1 and A + 1 (hence, this row consists of three ranges: (1, ; − 1),
(; , A), (A + 1, =)). Then, if a circuit computing the corresponding linear operator has a nice

property of always using the natural order of variables (guaranteed by Lemma 4.12), one may

extract the answer to the query (; , A) from it.

It should be mentioned, at the same time, that the semigroup - might be complicated. In

particular, the idempotency is tricky and allows for computations using ‘unnatural’ order in

multiplications. For example, it can be used to simulate commutativity: one can turn GH into

HG, by first multiplying GH by H from the left and then multiplying the result by G from the right

(obtaining (H(GH))G = (HG)(HG) = HG). Using similar ideas, one can place new variables inside

of already computed products. To get GHI from GI, one multiplies it by GHI first from the left

and then from the right: (GHI)GI(GHI) = GH(IGIG)HI = GH(IG)HI = GHI. This is not extremely

impressive, since to get GHI we multiply by GHI, but the point is that this is possible in principle.

We proceed to the formal proofs. Let’s call a word, in the alphabet {G1 , . . . , G=} increasing
if it is a product of variables in the increasing order. A binary circuit is called an increasing circuit
if each of its gates computes a word equivalent in - to increasing word. Note that if a gate in

an increasing circuit is fed by two gates � and �, then the increasing words computed by �

and � are matching in a sense that some suffix of � (possibly an empty suffix) is equal to some

prefix of �. Otherwise, the result is not equal to a product of variables in the increasing order,

due to Lemma 4.7.

Analogously, a binary circuit is called a range circuit if each of its gates computes a word that

is equivalent to a range.

The proof of Lemma 4.11 follows from the following two lemmas.

Lemma 4.12. Given a binary circuit computing �G, one may transform it into an increasing circuit of
the same size computing the same function.

Lemma 4.13. Given an increasing circuit computing �G, one may transform it into a range circuit of
the same size computing all ranges of �.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 20

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

Proof of Lemma 4.11. Given = ranges, pack them into a matrix � ∈ {0, 1}=×= with at most 2=

zeroes. Take a size-B circuit computing �G and convert it into a binary circuit. Then, transform

it into an increasing circuit using Lemma 4.12. Finally, extract the answers to all the ranges from

this circuit using Lemma 4.13. �

Note that the proof of Lemma 4.11 deals with matrices with exactly two zeroes in every row.

Thus the lower bound in Theorem 4.1 is true for the same class of matrices.

Next we prove Lemma 4.13 and we prove Lemma 4.12 in the next section.

Proof of Lemma 4.13. Take an increasing circuit C computing �G and process all its gates in some

topological ordering. Each gate � of C computes a (word that is equivalent to an) increasing

word. We split this increasing word into ranges and we put into correspondence to � an ordered

sequence �1 , . . . , �: of gates of the new circuit. Each of these gates compute one of the ranges

of the word computed by � and � ∼ �1 ◦ . . . ◦ �: .

Consider a gate � of C and suppose we have already computed all gates of the new circuit

corresponding to previous gates of C. � is the product � ◦ � of previous gates of C, for which

new range gates are already computed. Since C is increasing we have that � and � are matching,

that is some suffix (maybe empty) of the increasing word computed in � is equal to some prefix

(maybe empty) of the increasing word computed in � and there are no other common variables

in these increasing words. It is easy to see that ranges for the sequence corresponding to � are

just the ranges for the sequences for � and � with possibly two of them united. If needed, we

compute the product of gates of the new circuit corresponding to the united ranges and the

sequence of new gates for � is ready.

Thus, to process each gate of C we need at most one operation in the new circuit and the

size of the new circuit is at most the size of C.
For output gates of C we have gates in the new circuit that compute exactly ranges of output

gates. Thus, in the new circuit all ranges of � are computed. �

4.5 Transforming circuit into an increasing one

In this section we provide a prove for Lemma 4.12.

Consider a binary circuit C computing �G and its gate � together with a variable G8 it

depends on. We say that G8 is good in � if there is a path in C from � to an output gate, on which

the word is never multiplied from the left by words containing variables greater than or equal

to G8 . Note that if G8 and G8′ are both contained in �, 8 < 8′, and G8 is good in �, then G8′ is good

in �, too. That is, the set of all good variables in � is closed upwards.

Consider the largest good variable in � (if there is one), denote it by G: (G: is actually just

the largest variable in �, unless of course there are no good variables in �). Let us focus on the

first occurrence of G: in �.

Claim 4.14. All first occurrences of other good variables in � must be to the left of the first occurrence of
G: .

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 21

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

Proof. Suppose that a good variable G8 has the first occurrence to the right of (the first occurrence

of) G: . Consider an output gate � such that there is a path from � to � and along this path

there are no multiplications of � from the left by words containing variables greater than G8 .

Then we have � ∼ !�', where all variables of ! are smaller than G8 . Then in � the variable G8
appears before G: when we read from left to right, but at the same time we have that G: appears

before G8 in !�'. This contradicts Lemma 4.7. �

Now, for a gate �, define two words MIN� and MAX�. Both these words are products of

variables in the increasing order: MIN� is the product of good variables of � in the increasing

order, MAX� is the product (in the increasing order) of all variables that has first occurrences

before (the first occurrence of) G: . Note that MIN� is a suffix of MAX�. If there are no good

variables in � we just let MIN, = MAX, = � (the empty word). For the word, that has the form

of the product of variables in the increasing order, we call G 9 a gap variable if it is not contained
in, while, contains variables G8 and G: with 8 < 9 < :.

Below we show how for a given circuit C to construct an increasing circuit C′ that for each
gate � of C computes some intermediate product %� between MIN� and MAX�: MIN, is a suffix

of %� and %� is a suffix of MAX, . The size of C′ is at most the size of C. For an output gate �,

MIN, = MAX, = , hence the circuit C′ computes the correct outputs.

To construct C′, we process the gates of C in a topological ordering. If � is an input gate,

everything is straightforward: in this case MAX� = MIN� is either � or G 9 . Assume now that � is

an internal gate with predecessors � and �. Consider the set of good variables in �. If there

are none, we let %� = �. If all first occurrences of good variables of � are lying in one of the

predecessors (� and �), then they are good in the corresponding input gate. We then set %� to

%� or %� .

The only remaining case is that some good variables have their first occurrence in � while

some others have their first occurrence in �. Then the largest variable G: of � has the first

occurrence in � and all variables of � are smaller than G: .

Claim 4.15. There are no gap variables for MAX� in �.

Proof. Suppose that some variable G8 in � is a gap variable for MAX� . Consider an output* such

that there is a path from � to* and along this path there are no multiplications of � from the

left by words containing variables greater than G: . Then we have* ∼ !�' where all variables

of ! are smaller than G: . Consider the prefix % of* preceding the variable G: and the prefix &

of !� preceding the variable G: . Then by Lemma 4.6 we have % ∼ &. Let us now read % and &

from right to left (note that we switch the order here, previously we read the words from left to

right). By Lemma 4.7 the variables in % and & should appear in the same order. But this is not

true (the variable in % are in the decreasing order and in & the variable G8 is not on its place),

a contradiction. �

Claim 4.16. There are no gap variables for MAX� in �.

Proof. Suppose that a variable G8 in � is a gap variable for MAX�. Consider an output * such

that there is a path from � to * and along this path there are no multiplications of � from

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 22

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

the left by words containing variables greater than G; , the largest variable of �. Then we have

* ∼ !�', where all variables of ! are smaller than G; . Consider the prefix % of* preceding G;
and the prefix & of !� preceding G; . Then by Lemma 4.6 we have % ∼ &. But then the variables

of % and & appear in the same order if we read the words from right to left. But this is not

true (the variables in % are in the decreasing order and in & the variable G8 is not on its place),

a contradiction. �

We are now ready to complete the proof of Lemma 4.12. Consider %� and %� . By Claims 4.15

and 4.16, we know that they are ranges in the same sequence of variables Var (%�) ∪ Var (%�).
We know that the largest variables of %� is greater than all variables of %�. Then either %� is

contained in %� , and then we can let %� = %� (it contains all good variables of �), or we have

%� = %& and%� = &' for somewords%, &, '. In this casewe let%� = %�◦%� = %&&' = %&'.
Clearly, MIN� is the suffix of %� and %� itself is the suffix of MAX�.

4.6 Reducing non-commutative range queries to commutative range queries

In this subsection, we prove the following lemma.

Lemma 4.17. If the (commutative) version of the range query problem over -BH< has size B circuits then
the (non-commutative) version over - also does.

Proof. We will show that any computation of ranges over -BH< can be reconstructed without

increase in the number of gates in such a way that each gate computes a range (recall, that we

call this a range circuit). It is easy to see that then this circuit can be reconstructed as a circuit

over - each gate of which computes the same range with the variables in the increasing order.

Indeed, we need to make sure that each gate computes a range in such a way that all variables

are in the increasing order and this is easy to do by induction. Each gate computes a product of

two ranges 0 and 1. If one of them is contained in the other, we simplify the circuit, since the

gate just computes the same range as one of its inputs (due to idempotency and commutativity).

It is impossible that 0 and 1 are non-intersecting and have a gap between them, since then our

gate does not compute a range (in a range circuit). So, if 0 and 1 are non-intersecting, then

they are consecutive and we just need to multiply them in the right order. If the ranges are

intersecting, we just multiply them in the right order and apply idempotency.

Thus it remains to show that each circuit for range query problem over -BH< can be

reconstructed into a range circuit. For this we will need some notation.

Suppose we have some circuit C. For each gate � denote by left(�) the smallest index of

the variable in � (the leftmost variable). Analogously denote by right(�) the largest index of

the variable in �. Denote by gap(�) the smallest 8 such that G8 is not in �, but there are some

9 , : such that 9 < 8 < : and G 9 and G: are in � (the smallest index of the variable that is in the

gap in �). Next, fix some topological ordering of gates in C (the ordering should be proper, that

is inputs to any gate should have smaller numbers). Denote by num(�) the number of a gate in

this ordering. Finally, by out(�) denote the out-degree of �.
For each gate that computes a non-range consider the tuple

tup(�) = (left(�), gap(�), num(�),−out(�)) .

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 23

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

For the circuit C consider tup(C) = min� tup(�), where the minimum is considered in the

lexicographic order and is taken over all non-range gates. If there are no non-range gates we let

tup(C) = ∞. This is our semi-invariant, we will show that if we have a circuit that is not a range

circuit, we can reconstruct it to increase its tup (in the lexicographic order) without increasing

its size. Since tup ranges over a finite set, we can reconstruct the circuit repeatedly and end up

with a range circuit.

Now we are ready to describe a reconstruction of a circuit. Consider a circuit C that is not a

range circuit. And consider a gate � such that tup(�) = tup(C) (it is clearly unique). Denote by

� and � two inputs of � (see Figure 1). Let 8 = left(�) and 9 = gap(�), that is G8 is the variable
with the smallest index in � and G 9 is the first gap variable of � (it is not contained in �).

The variable G8 is contained in at least one of � and �. Consider the gate among � and � that

contains G8 . This gate cannot have G 9 or earlier variable as a gap variable: it would contradict

minimality of � (by the second or the third coordinate of tup). Thus this gate is a range [G8 , G 9′)
for some 9′ ≤ 9 (by this we denote the product of variables from G8 to G 9′ excluding G 9′). In

particular, only one of � and � contains G8 : otherwise they are both ranges and G 9 is not a gap

variable for �.

From now on we assume that � contains G8 , that is � = [G8 , G 9′).
Now we consider all gates �1 , . . . , �: that have edges leading from �. Denote by �1 , . . . , �:

their other inputs. If : is equal to 0, we can remove � and reduce the circuit. Now we consider

cases.

�1 �; �: �

�1 �; �:

� �

. . . . . .

. . . . . .

Figure 1: Before reconstruction

Case 1. Suppose that there is ; such that left(�;) ≤ left(�). If left(�;) < left(�), then �;
must contain all variables G8 , . . . , G 9 , since otherwise either �; or �; will have smaller tup then
�. Thus �; contains �. Then, we can restructure the circuit by feeding � to �; instead of �.

This does not change the value of the gate computed by �; and reduces out(�). Thus tup(C)
increases and we are done.

If left(�;) = left(�), then �; still cannot have gap variables among G8 , . . . , G 9−1 as it would

contradict the minimality of �. Thus, �; is either a range, or it is not a range, but contain all

variables G8 , . . . , G 9−1. In the latter case again �; contains �. In the former case �; either contains

�, or is contain in �. If �; contains �, we can again simplify the circuit as above. If �; is contained

in �, we have � = �; , so we can remove �; from the circuit and reduce the size of the circuit.

Case 2. Suppose that for all ; we have left(�;) > left(�). Consider ; such that �; has

the minimal right(�;) (if there are several such ; pick among them the one with the minimal

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 24

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

num(�;)). For convenience of notation let ; = :. Now we restructure the circuit in the following

way (see Figure 2). We feed �: to � instead of �. We feed � to �: instead of �: . We feed �: to

all other �?’s instead of �.

�1 �:−1

�:

�

�1 �:−1

�:

� �

. . .

. . .

Figure 2: Case 2 reconstruction

Observe that all these reconstructions are valid, that is, they do not create directed cycles in

the circuit. To verify this we need to check that there are no cycles using new edges. Indeed,

there cannot be a cycle going through one of the edges (�: , �?) since this would mean that

there was a directed path from �? to one of the vertices �: , � and � on the original circuit.

Such a path to � or � would mean a cycle in the original circuit. Such a path to �: violates the

minimality property of �: (minimal right(�:)). Next, there cannot be a cycle going through

both edges (�: , �) and (�, �:), since substituting these edges by (�: , �:) and (�, �) we obtain

one or two cycles in the original circuit. Next, there cannot be a cycle going through the edge

(�, �:) only, since �: is reachable from � in the original circuit and this would mean a cycle

in the original circuit. Finally, there cannot be a cycle going only through the edge (�: , �)
since this would mean a directed path from � to �: in the original circuit and this contradicts

left(�:) > left(�).
Note that our reconstruction might require reordering of the circuit gates, since we create

edges between previously incomparable �-gates and between �: and �. But the reordering

affect only the gates with num greater than num(�) and may only reduce num(�:) to be smaller

than num(�). But this can only increase tup(�) and since left(�:) > left(�) this can only

increase tup(C).
Observe, that the circuit still computes the outputs correctly. The changes are in the gates

�1 . . . , �: (and also in �, but �1 , . . . , �: are all of its outputs). �: does not change. Other �? ’s

might have changed, they now additionally include variables of �: . But note that all of these

variables are in between of left(�?) and right(�?), so they must be presented in the output

gates connected to �? anyway (recall that at the output gates we compute ranges).

Now, observe that tup(�) has increased (by the first coordinate). There are no new gates

with smaller left. Among gates with the minimal left there are no new gates with smaller gap.
Among gates with minimal (left, gap) all gates have larger num then �. Thus tup(C) increased
and we are done with the proof of Lemma 4.17, completing the proof of Theorem 4.1. �

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 25

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

5 Open problems

There are several natural problems left open.

1. Design a deterministic $(I) time algorithm for generating a circuit in the commutative

case. For this, it suffices to design an $(=) deterministic algorithm for the following

problem: given a list of positions of = zeroes of an = × = 0/1-matrix with at most log =

zeroes in every row, permute its columns so that the total length of all segments of length

at most $(log =) is $(=/log =).

2. Determine the asymptotic complexity of the linear operator in terms of the number of

zeroes in the non-commutative case.

3. After the preliminary version of our paper [17], Stasys Jukna posed a question on how

large the gap between the complexity of the operators �G and �G can be over the (ℕ,+)
semiring, where � ∈ {0, 1}=×= and � is the bitwise negation of �. Our result rules out the

possibility of achieving a super-constant (multiplicative) gap with sparse matrix �.

A Review

A.1 Applications of the range query problem

There are many natural applications of the range query problem for a collection of records in

a database: computing the total population of cities that are at most some distance away from

a given point, computing an average salary in a given period of time, finding theminimumdepth

on a given subrectangle on a sea map, etc. Below, we review some of the less straightforward

applications where efficient algorithms for the range query problem are usually combined with

other algorithmic ideas.

String algorithms and computational biology. It is possible to preprocess a given string

in $(=) time (where = is its length) so that then to find the longest common prefix of any two

suffixes of the original string in constant time. This is done by first constructing the suffix array

and the longest common prefix array of the string and then using an efficient RMQ algorithm.

Computational geometry. Algorithms for the range query problem can be used together

with the scanning line technique to solve efficiently various problems like: given a set of

segments on a line, compute the number of intersecting pairs of segments; or, given a set of

rectangles and a set of points on a plane, compute, for each each rectangle, the number of points

it contains.

A.2 Known approaches to range queries

In this subsection, we give a brief overview of a rich variety of known algorithms for the

range query problem. We say that an algorithm has type ( 5 (=), ,(=)) if it spends 5 (=) time on

preprocessing the input sequence, and then answers any query in time ,(=).

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 26

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

No preprocessing. A naive algorithm skips the preprocessing stage and answers a query

(; , A) directly in time $(A − ; + 1). It therefore has type ($(1), $(=)).
Full preprocessing. One may precompute the answers to all possible queries to be able

to answer any subsequent query immediately. Using dynamic programming, it is possible to

precompute the answers to all Θ(=2) queries in time $(=2): for this, it is enough to process the

queries in order of increasing length. This gives an ($(=2), $(1)) algorithm.

Fixed length queries (sliding window). In case one is promised that all the queries are

going to have the same length <, it is possible to do an $(=) time preprocessing and then to

answer any query in time $(1). For this, one partitions the input sequence of size = into =/<
blocks of size <. For each block, one computes all its prefixes and suffixes in time $(<). The
overall running time is $(=/< · <) = $(=). Then, each query of length < touches at most two

consecutive blocks and can be answered by taking a precomputed suffix of the left block and

a precomputed prefix of the right block in time $(1). This, in particular, implies that, given

a sequence of length = and an integer 1 ≤ < ≤ =, one may slide a window of length < through

the sequence and to output the answer to all such window queries in time $(=).
Prefix sums. In case the semigroup operation has an easily computable inverse, there is

an ($(=), $(1)) algorithm. We illustrate this for a group (ℤ,+). Given G1 , . . . , G= , we compute

(= + 1) prefix sums: (0 = 0, (1 = G1 , (2 = G1 + G2 , . . . , (= = G1 + · · · + G= . This can be done in

time $(=) since (8 = (8−1 + G8 . Then, the answer to any query (; , A) is just (A − (;−1.

Note that the algorithm above solves a static version of the problem. For the dynamic version,
where one is allowed to change the elements of the input sequence, there is a data structure

known as Fenwick’s tree [7]. It allows to change any element as well as to retrieve any prefix

sum in time $(log =).
Block decomposition. One decomposes the input range (1, =) into =/1 blocks of length 1

and then computes, for each block, all its prefixes and suffixes. This can be done in time $(=).
Then, for each query, if it lies entirely in a block, we compute the answer directly (hence, in

time at most $(1)). If it crosses a number of blocks, we decompose it into a suffix of a block,

a number of consecutive blocks, and a prefix of a block. This allows us to answer such long

queries in time $(=/1). Setting 1 =
√
= to balance both cases, we get a ($(=), $(

√
=))-algorithm.

Sparse table. This data structure works for idempotent semigroups (bands) and has the type

($(= log =), $(1)). We illustrate its main idea for the range minimum query problem (i. e., for

a semigroup (ℤ,min)). One precomputes answers to $(= log =) queries—namely, those whose

length is a power of 2. More formally, for all 0 ≤ : ≤ log
2
= and 1 ≤ 8 ≤ = − 2

: + 1, let (:,8 be

the answer to a query (8 , 8 + 2
: − 1): (:,8 = G8 ◦ G8+1 ◦ · · · ◦ G8+2

:−1
. Since any range of length 2

:

consists of two ranges of length 2
:−1

, one can compute all (:,8 ’s in time$(= log =) using dynamic

programming. Then, any range (; , A) can be covered by two precomputed ranges: if : is the

smallest integer such that 2
: ≥ (A − ; + 1)/2, then the answer to this query is (:,; ◦ (:,A−2

:+1

(idempotency is required since we are covering the range, but not partitioning it). This gives an

($(= log =), $(1)) algorithm.

Hybrid strategy. One may extend the block decomposition approach further and use one

efficient data structure on top of blocks and possibly a different data structure for each block.

Namely, we decompose the input range into blocks of size 1, use a (?1(=), @1(=))-algorithm on

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 27

http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

top of blocks and a (?2(=), @2(=))-algorithm within each block. The resulting algorithm then has

type

($(= + ?1(=/1) + (=/1) · ?2(1), $(@1(=/1) + @2(1))) .

For example, for the range minimum problem, combining the sparse table data structure

(?1(=) = $(= log =), @1(=) = $(1)) with no preprocessing technique (?2(=) = $(1), @2 = $(=))
and block size 1 = log =, gives an ($(=), $(log =))-algorithm. Another example: using sparse

table in both cases (with block size 1 = log =) gives an ($(= log log =), $(1)) algorithm.

Segment tree. The segment tree data structure is also based on dynamic programming ideas

and works for any semigroup. Consider the following complete binary tree with $(=) nodes:
the root is labelled by a query (1, =), the two children of each inner node (; , A) are labelled by

the left and right halves of the current query (i. e., (; , <) and (< + 1, A) where < = (; + A)/2), the
leaves are labelled by length one queries. Going from leaves to the root, one can precompute

the answers to all the queries in this tree in time $(=). Then, it is possible to show that any

query (; , A) can be partitioned into $(log =) queries that are stored in the tree. This gives an

($(=), $(log =)) algorithm. It should be noted that the segment tree can also be used to solve

the dynamic version of the range query problem efficiently: to change the value of one of the

elements of the input sequence, one needs to adjust the answers to $(log =) queries stored in

the tree.

Algorithms by Yao and by Alon and Schieber. Yao [23] showed that, for any semigroup, it is

possible to preprocess the input sequence in time $(=) so that any range query can be answered

in time $(
(=))where 
(=) is the inverse Ackermann function and proved a matching lower

bound. Later, Alon and Schieber [1] studied a more specific question: what is the minimum

number of semigroup operations needed at the preprocessing stage for being able to then

answer any query in at most : steps? They proved matching lower and upper bounds for

every :. As a special case, they show how to preprocess the input sequence in time $(= log =)
so that any subsequent query can be answered by applying at most one semigroup operation.

This algorithm generalizes the sparse table data structure (as it does not require the semigroup

to be idempotent) and is particularly easy to describe. It is based on the divide-and-conquer

paradigm. Let < = =/2. We precompute answers to all queries of the form (8 , <) and (< + 1, 9),
where 1 ≤ 8 ≤ < and < + 1 ≤ 9 ≤ = (i. e., suffixes of the left half and prefixes of the right half).

This allows to answer in a single step any query that intersects the middle of the sequence, i. e.,

queries (; , A) such that ; ≤ < ≤ A. All the remaining preprocessing boils down to answering

queries that lie entirely in either left or right half. This can be done recursively for the halves. The

corresponding recurrence relation )(=) = 2)(=/2) + $(=) implies an upper bound $(= log =)
on preprocessing time (and hence, the number of semigroup operations).

($(=), $(1))-type algorithms. There is a sequence of ($(=), $(1))-type algorithms designed

specifically for the range minimum query problem and a related problem called least common

ancestor (LCA) [4, 3, 2, 8]. Here, we briefly sketch the algorithm by Bender and Farach-Colton.

Its main idea is to first reduce RMQ to LCA (the least common ancestor problem). One then

reduces LCA back to RMQ and notices that the resulting instance of RMQ has a convenient

property: the difference between any two consecutive elements is ±1. This property allows to

do the following trick: we precompute answers to all relatively short queries (this can be done

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 28

http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

even without knowing the input sequence because of the ±1 property); we also partition the

input sequence into blocks and build a segment tree out of these blocks.

Acknowledgments

We thank Paweł Gawrychowski for pointing us to the paper [6], and Alexey Talambutsa for

fruitful discussions on the theory of semigroups. We are also grateful to the reviewers for their

thorough reviews that helped us improve the final version of the paper. We are grateful to

László Babai for numerous suggestions that greatly improved the readability of the paper.

References

[1] Noga Alon and Baruch Schieber: Optimal preprocessing for answering on-line product

queries. Technical Report 71/87, Inst. Computer Science, Tel Aviv University, 1987.

[arXiv:2406.06321] 4, 11, 28

[2] Michael A. Bender and Martin Farach-Colton: The LCA problem revisited. In Proc.
Latin American Symp. on Theoretical Informatics (LATIN’00), pp. 88–94. Springer, 2000.
[doi:10.1007/10719839_9] 28

[3] Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and

Pavel Sumazin: Lowest common ancestors in trees and directed acyclic graphs. J. Algorithms,
57(2):75–94, 2005. [doi:10.1016/j.jalgor.2005.08.001] 28

[4] Omer Berkman and Uzi Vishkin: Recursive star-tree parallel data structure. SIAM J.
Comput., 22(2):221–242, 1993. [doi:10.1137/0222017] 28

[5] Peter Butkovič: Max-linear Systems: Theory and Algorithms. Springer, 2010. [doi:10.1007/978-
1-84996-299-5] 6

[6] Bernard Chazelle and Burton Rosenberg: The complexity of computing partial sums

off-line. Internat. J. Comput. Geom. Appl., 1(1):33–45, 1991. [doi:10.1142/S0218195991000049]
4, 15, 16, 18, 29

[7] Peter M. Fenwick: A new data structure for cumulative frequency tables. Softw., Pract.
Exper., 24(3):327–336, 1994. [doi:10.1002/spe.4380240306] 27

[8] Johannes Fischer and Volker Heun: Theoretical and practical improvements on the

RMQ-problem, with applications to LCA and LCE. In Proc. Annual Symp. on Combinatorial
Pattern Matching (CPM’06), pp. 36–48. Springer, 2006. [doi:10.1007/11780441_5] 28

[9] Michael J. Fischer and Albert R. Meyer: Boolean matrix multiplication and transitive

closure. In Proc. 12th Annual Symp. on Switching and Automata Theory (SWAT’71), pp. 129–131.
IEEE Comp. Soc., 1971. [doi:10.1109/SWAT.1971.4] 5

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 29

http://arxiv.org/abs/2406.06321
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1016/j.jalgor.2005.08.001
http://dx.doi.org/10.1137/0222017
http://dx.doi.org/10.1007/978-1-84996-299-5
http://dx.doi.org/10.1007/978-1-84996-299-5
http://dx.doi.org/10.1142/S0218195991000049
http://dx.doi.org/10.1002/spe.4380240306
http://dx.doi.org/10.1007/11780441_5
http://dx.doi.org/10.1109/SWAT.1971.4
http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

[10] François Le Gall: Powers of tensors and fast matrix multiplication. In Proc. 39th Internat.
Symp. Symbolic and Algebraic Computation (ISSAC’14), pp. 296–303. ACM Press, 2014.

[doi:10.1145/2608628.2608664] 5

[11] James A. Green and David Rees: On semi-groups in which GA = G. Math. Proc. Cambridge
Phil. Soc., 48(1):35–40, 1952. [doi:10.1017/S0305004100027341] 16, 17

[12] Dima Grigoriev and Vladimir V. Podolskii: Complexity of tropical and min-plus linear

prevarieties. Comput. Complexity, 24(1):31–64, 2015. [doi:10.1007/s00037-013-0077-5] 6

[13] Alon Itai and Michael Rodeh: Finding a minimum circuit in a graph. SIAM J. Comput.,
7(4):413–423, 1978. [doi:10.1137/0207033] 5

[14] Stasys Jukna: Boolean Function Complexity - Advances and Frontiers. Volume 27 of Algorithms
and Combinatorics. Springer, 2012. [doi:10.1007/978-3-642-24508-4] 7

[15] Stasys Jukna: Tropical complexity, Sidon sets, and dynamic programming. SIAM J. Discr.
Math., 30(4):2064–2085, 2016. [doi:10.1137/16M1064738] 6

[16] Donald Ervin Knuth: The Art of Computer Programming, Volume II: Seminumerical Algorithms,
3rd Edition. Addison-Wesley, 1997. Available via ACM DL. 13

[17] Alexander S. Kulikov, Ivan Mikhailin, Andrey Mokhov, and Vladimir Podolskii: Com-

plexity of linear operators. In Proc. Internat. Symp. on Algorithms and Computation (ISAAC’19),
pp. 17:1–12. Springer, 2019. 1, 7, 26

[18] Hanna Neumann: Varieties of Groups. Springer, 1967. [doi:10.1007/978-3-642-88599-0] 16

[19] Robert Endre Tarjan: Efficiency of a good but not linear set union algorithm. J. ACM,

22(2):215–225, 1975. [doi:10.1145/321879.321884] 4

[20] Virginia Vassilevska Williams: Multiplying matrices faster than Coppersmith–Winograd.

In Proc. 44th STOC, pp. 887–898. ACM Press, 2012. [doi:10.1145/2213977.2214056] 5

[21] Virginia Vassilevska Williams and R. Ryan Williams: Subcubic equivalences between

path, matrix, and triangle problems. J. ACM, 65(5):27:1–38, 2018. Preliminary version in

FOCS’10. [doi:10.1145/3186893] 5

[22] R. Ryan Williams: Faster all-pairs shortest paths via circuit complexity. SIAM J. Comput.,
47(5):1965–1985, 2018. Preliminary version in STOC’14. [doi:10.1137/15M1024524] 6

[23] Andrew Chi-Chih Yao: Space-time tradeoff for answering range queries (extended abstract).

In Proc. 14th STOC, pp. 128–136. ACM Press, 1982. [doi:10.1145/800070.802185] 4, 15, 16,

17, 28

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 30

http://dx.doi.org/10.1145/2608628.2608664
http://dx.doi.org/10.1017/S0305004100027341
http://dx.doi.org/10.1007/s00037-013-0077-5
http://dx.doi.org/10.1137/0207033
http://dx.doi.org/10.1007/978-3-642-24508-4
http://dx.doi.org/10.1137/16M1064738
https://dl.acm.org/doi/10.5555/270146
http://dx.doi.org/10.1007/978-3-642-88599-0
http://dx.doi.org/10.1145/321879.321884
http://dx.doi.org/10.1145/2213977.2214056
https://doi.org/10.1109/FOCS.2010.67
http://dx.doi.org/10.1145/3186893
https://doi.org/10.1145/2591796.2591811
http://dx.doi.org/10.1137/15M1024524
http://dx.doi.org/10.1145/800070.802185
http://dx.doi.org/10.4086/toc


COMPLEXITY OF LINEAR OPERATORS

AUTHORS

Alexander S. Kulikov

Steklov Mathematical Institute at St. Petersburg

Russian Academy of Sciences

alexander s kulikov gmail com

https://alexanderskulikov.github.io/

Ivan Mikhailin

Steklov Mathematical Institute at St. Petersburg

Russian Academy of Sciences

ivmihajlin gmail com

https://dblp.org/pid/40/11440.html

Andrey Mokhov

Jane Street Singapore

and School of Engineering

Newcastle University, U.K.

andrey.mokhov ncl ac uk

Vladimir V. Podolskii

Tufts University

and Steklov Mathematical Institute

Russian Academy of Sciences

vladimir.podolskii tufts edu

https://engineering.tufts.edu/cs/people/faculty/vladimir-podolskii

ABOUT THE AUTHORS

Alexander Kulikov holds Ph.D. (2009) and Dr. Sci. (2017) degrees from the St. Pe-

tersburg Department of the Steklov Mathematical Institute. His Ph.D. advisor

was Edward A. Hirsch. Currently, Alexander is a researcher at JetBrains Research

and the Head of the Computer Science and Artificial Intelligence B. Sc. program

at Neapolis University Pafos. His scientific interests include algorithms, circuit

complexity, and Computer Science education. He coauthored three books and

sixteen massive open online courses on algorithms and discrete mathematics

with over a million enrolled students. In his spare time, he enjoys discussing the

circuit complexity of the MOD3 function with Alexander Golovnev.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 31

https://alexanderskulikov.github.io/
https://dblp.org/pid/40/11440.html
https://engineering.tufts.edu/cs/people/faculty/vladimir-podolskii
http://dx.doi.org/10.4086/toc


A. S. KULIKOV, I. MIKHAILIN, A. MOKHOV, V. V. PODOLSKII

Ivan Mikhailin is a researcher at JetBrains Research. His research areas are circuit

complexity, fine-grained complexity, and algorithmic theory. Ivan did his

Ph.D. studies (2014–2019) at the University of California San Diego under the

supervision of Russell Impagliazzo.

Andrey Mokhov is a software engineer at Jane Street Singapore, and a visiting fellow

at Newcastle University, UK. His research interests are in applying abstract mathe-

matics and functional programming to solving large-scale engineering problems.

During his Ph.D. studies (2005–2009), Andrey worked on asynchronous circuits

and concurrency theory under the supervision of Alex Yakovlev. In 2014, he be-

came interested in functional programming and software build systems, which

eventually led him to writing more and more code, and in 2019, he switched

from academia to industry, joining the Jane Street’s Tools and Compilers team.

Andrey is originally from Kyrgyzstan where he helps to run the ACM ICPC

regional programming contest.

Vladimir Podolskii defended his Ph.D. thesis in 2009 at Moscow State University

advised by Nikolay Vereshchagin. He defended his Dr. Sci. thesis in 2021 at

Steklov Mathematical Institute. His research areas are circuit complexity, its

applications to databases augmented with ontologies, min-plus geometry. He is

an Associate Professor at Tufts.

THEORY OF COMPUTING, Volume 21 (9), 2025, pp. 1–32 32

http://dx.doi.org/10.4086/toc

	Introduction
	Problem statement and new results
	Commutative case
	Non-commutative case

	Motivation
	Range queries
	Graph algorithms
	Matrix multiplication over semirings
	Functional programming
	Circuit complexity

	Organization and earlier publication

	Background
	Semigroups and semirings
	Range query problem and linear operator problem
	Circuits

	Commutative case
	Main ideas of the proof
	Formal proof
	Deterministic algorithm and the proof of Lemma 3.6

	Non-commutative case
	Faithful semigroups
	Proof strategy
	From idempotent semigroups to general semigroups
	Reducing co-sparse linear operator to range queries
	Transforming circuit into an increasing one
	Reducing non-commutative range queries to commutative range queries

	Open problems
	Review
	Applications of the range query problem
	Known approaches to range queries

	References

