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Abstract. Let A be an n-by-n 0/1-matrix with z zeroes and u ones and let x be
an n-dimensional vector of formal variables over a semigroup (S, ). How many
semigroup operations are required to compute the linear operator Ax?

It is easy to compute Ax using O(u) semigroup operations. The main question
studied in this paper is: can Ax be computed using O(z) semigroup operations? For
the case when the semigroup is commutative, we give a constructive proof of an O(z)
upper bound. This implies that in the commutative settings, the complements
of sparse matrices can be processed as efficiently as sparse matrices, though the
corresponding algorithms are more involved. This covers the cases of Boolean and
tropical semirings that have numerous applications, e. g., in graph theory. On the
other hand, we prove that in general this is not possible: for faithful non-commutative
semigroups there exists an n-by-n 0/1-matrix with exactly two zeroes in every row
(hence z = 2n) whose complexity is @(na(n)) where a(n) is the inverse Ackermann
function.

As a simple application of the linear-size construction presented, we show how
to multiply two 1 X n matrices over an arbitrary semiring in O(n?) time if one of
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these matrices is a 0/1-matrix with O(n) zeroes (i. e., the complement of a sparse
matrix).

1 Introduction

1.1 Problem statement and new results

Let A € {0,1}"" be a matrix with z zeroes and u ones, and x = (x1, ..., x,) be an n-dimensional
vector of formal variables over a semigroup (S, o). In this paper, we study the complexity of the
linear operator Ax, i.e., how many semigroup operations are required to compute a vector whose

i-th element is
Z X (1.1)
1<j<n A Ajj=1

where the summation is over the semigroup operation o.!

To give an example, consider the complement A € {0, 1}°* of the identity matrix. In this
case, the i-th output y; (fori = 1,...,6) is equal to the sum of all input variables x1, ..., x¢
except for x;.

X1 X2 X3 X4 X5 X6

O[1]1|1]|1|1| Y1=X20X30X40X50Xe
1(0[1]1{1]|1| Y2=X1°X30X40X50Xe
1(1(0]1]1]|1| Y3=X10X20X40X50Xg
1(1(1](0|1]|1| Y4a=X10X20X30X50X¢
1{1]1({1]|0|1]| Ys5=2X1°X20X30X40 Xg
1{1|1({1]|1|0| Ye=X10X20X30X40X5

How many operations are required to compute these six sums? The answer depends on the
properties of the semigroup S. For example, if S = ({0, 1}, ®), then one can first compute the
sum of all input variables a4 and then let y; = a ® x;. However, this strategy does not work for
S = ({0, 1}, v). For this semigroup, one can first compute all prefix sums p; and suffix sums s;
and then let y; = p;—1 V s;41, with appropriate adjustments at the boundaries. See the resulting
circuits below.

Note that the result of summation is undefined in case of an all-zero row, because semigroups have no neutral
element in general. One can trivially sidestep this technical issue by adding an all-one column 7 + 1 to the matrix A,
as well as the neutral element x,,,1 into the vector. Alternatively, we could switch from semigroups to monoids, but
we choose not to do that, since we have no use for the neutral element and associated laws in the rest of the paper.
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In this paper, we are interested in lower and upper bounds involving z and 1. Computing all
n outputs of Ax directly, i. e., using Definition (1.1) (above), takes O(u) semigroup operations.
The main question we study is:

Can Ax be computed using O(z) semigroup operations?

Note that it is easy to achieve O(z) complexity if o has an inverse. Indeed, in this case Ax can
be computed via subtraction: Ax = (U — A)x = Ux — Ax, where U is the all-ones matrix
whose linear operator can be computed trivially using O (1) semigroup operations, and A is the
complement of A and therefore has only z ones. Our solution for the above example involving
S =({0,1}, ®) is obtained in precisely this way, by noticing that @ is its own inverse.

1.1.1 Commutative case

Our first main result shows that in the commutative case, the complements of sparse matrices
can be processed as efficiently as sparse matrices. Specifically, we prove that if the semigroup
is commutative, Ax can be computed in O(z) semigroup operations; or, more formally, there
exists a circuit of size O(z) that uses x = (x1,...,x,) as an input and computes Ax by only
applying the semigroup operation o (we provide the formal definition of the computational
model in Section 2.3). Moreover, the constructed circuits are uniform in the sense that they can be
generated by an efficient algorithm. Hence, our circuits correspond to an elementary algorithm?
that uses no tricks like examining the values x;, i. e., the semigroup operation o is applied in
a (carefully chosen) order that is independent of the specific input x.

Theorem 1.1. Let (S, o) be a commutative semigroup, and A € {0, 1} be a matrix with z = Q(n)
zeroes. There exists a circuit of size O(z) that takes a vector x = (x1, ..., xy) of formal variables as an
input, uses only the semigroup operation o at internal gates, and outputs Ax. Moreover, there exists
a randomized algorithm that takes the positions of z zeroes of A as an input and outputs such a circuit in
time O(z) with probability at least 1 — O(log5 n)/n. There also exists a deterministic algorithm with
running time O(z + n log4 n).

We state the result for square matrices to simplify the presentation. Theorem 1.1 generalizes
easily to show that Ax for a matrix A € {0, 1} with z = ()(n) zeroes can be computed using

2We mostly think of computations over semigroups as circuits. However, whenever we discuss more general
algorithms operating with the semigroup, we assume that the algorithm can store semigroup elements and can
perform semigroup operation over them in one operation.
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O(m + z) semigroup operations. Also, we assume that z = ()(n) to be able to state an upper
bound O(z) instead of O(z + n). Note that when z < 1, the matrix A is forced to contain all-one
rows that can be computed trivially.

The following corollary generalizes Theorem 1.1 from vectors to matrices.

Corollary 1.2. Let S be a semiring. There exists a deterministic algorithm that takes a matrix
A €{0,1}" with z = O(n) zeroes and a matrix B € S™" and computes the product AB in
time O(n?).

1.1.2 Non-commutative case

As our second main result, we show that commutativity is essential: for any faithful non-
commutative semigroup S (the notion of faithful non-commutative semigroup is made formal
later in the text in Definition 4.5), the minimum number of semigroup operations required to
compute Ax for a matrix A € {0, 1}"*" with z = O(n) zeroes is @(na(n, n)), where a(n, n) is
the inverse Ackermann function [19]. For brevity further on we use the notation a(n) = a(n, n).

Theorem 1.3. There exists a matrix A € {0, 1}"*" with exactly two zeroes in every row such that for
any faithful non-commutative semigroup (S, o) the minimum number of semigroup operations required
to compute Ax is Q(na(n)). This lower bound is tight: Ax is computable using O(na(n)) semigroup
operations for any (S, o) and A € {0, 1}"*".

The upper bound O(na(n)) follows directly from Yao’s result [23]. Hence, our main
contribution in the non-commutative case is the lower bound Q(n«(n)), which we derive from
the result of Chazelle and Rosenberg [6].

1.2 Motivation

The complexity of linear operators is interesting for many reasons, some of which are listed
below.

1.2.1 Range queries

In the range query problem, given a vector x = (x1, ..., x,) over a semigroup (S, o) and multiple
queries of the form (I, r), one is required to output the result x; o x;41 o - - - o x, for each query.
It is a classical problem in data structures and algorithms with applications in many fields.
Yao [23] showed that, for any semigroup, it is possible to preprocess the input vector in
time O(n) so that any range query can be answered in time O(a(n)), where a(n) is the inverse
Ackermann function. Yao also proved a matching lower bound. Later, Alon and Schieber [1]
studied a more specific question: what is the minimum number of semigroup operations needed
at the preprocessing stage for being able to then answer any query in at most k steps? They
proved matching lower and upper bounds for every k. As a special case, they showed how
to preprocess the input sequence in time O(nlogn) so that one can answer any subsequent
query by applying at most one semigroup operation. Chazelle and Rosenberg [6] studied the
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commutative version of the problem. They proved the Q(na(n)) lower bound on the number of
commutative semigroup operations required to answer all queries.

The linear operator problem is a natural generalization of the range query problem: each
row of the matrix A defines a subset of the elements of x that needs to be summed up and this
subset is not required to be a contiguous range. The algorithms (Theorem 1.1) and hardness
results (Theorem 1.3) for the linear operator problem presented in this paper are very much
inspired by the above-mentioned classic results for the range query problem. The connection
to range queries is straightforward: zeros in a row split this row into a collection of ranges in
a natural way.

B == R EE R R R EE R REE

B - E R E R EEEE R EEEEEEE

s EEE - R

===~

We review applications as well as a rich variety of algorithmic techniques for the range query
problem in Sections A.1 and A.2.

1.2.2 Graph algorithms

In this paper, by “graphs” we mean “simple graphs,” i. e., undirected graphs without loops and
parallel edges.

Many graph problems can be reduced to matrix multiplication. Two classic examples are: (i)
the all-pairs shortest path problem (APSP) is reducible to min-plus matrix multiplication [9],
and (ii) the number of triangles in a graph can be found by computing the third power (over
the integers) of its adjacency matrix [13, 21]. It is natural to ask what happens if a graph or its
complement has O(n) edges. (As usual, by n we denote the number of nodes.) In many cases,
an efficient algorithm for sparse graphs (O(n) edges) is straightforward whereas an algorithm
with the same efficiency for the complements of sparse graphs is not. For example, it is easy
to solve APSP and triangle counting on sparse graphs in time O(n?), but achieving the same
time complexity for the complements of sparse graphs is more complicated. Theorem 1.1 and
Corollary 1.2 give a black-box way to solve these two problems on the complements of sparse
graphs in time O(n?).

1.2.3 Matrix multiplication over semirings

Fast matrix multiplication methods rely essentially on the ring structure of the underlying
set of elements. The first such algorithm was given by Strassen, the current record upper
bound is O(n%%7) [20, 10]. The removal of the inverse operation often drastically increases
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the complexity of algorithmic problems over algebraic structures, and even the complexity of
standard computational tasks is not well understood over tropical and Boolean semirings (see,
e.g., [22,12]). For various important semirings, we still do not know an n3~¢ (for a constant ¢ > 0)
upper bound for matrix multiplication, e. g., the strongest known upper bound for min-plus
matrix multiplication is 173 /exp(y/log 1) [22].

The interest in computations over such algebraic structures has recently grown substantially
throughout the Computer Science community with the cases of Boolean and tropical semirings
being of main interest (see, e. g., [15, 22, 5]). From this perspective, the computational complexity
over sparse 0/1-matrices and their complements is one of the most basic questions. Theorem 1.1
and Corollary 1.2 therefore characterise natural special cases when efficient computations are
possible.

1.2.4 Functional programming

The diagonal A(V) of the set V is the set {(x, x) | x € V'}. By digraphs (directed graphs) we mean
pairs G = (V, E) of sets where E C V X V. So, self-loops, i. e., edges in A(V), are permitted. If we
wish to exclude such edges, we speak of loop-free digraphs. The complement of G is (V,V xV \ E).
The loop-free complement of a loop-free digraph Gis (V,V x V \ A(V) \ E). Graphs can be viewed
as loop-free digraphs where E is a symmetric relation on V. By the complement of a graph we
mean its loop-free complement.

One of the algebraic data structures developed in the functional programming community
for the representation and manipulation of digraphs G = (V, E) is based on the following
operations:

e (v) (the digraph with the single vertex v and no edges)
e union: G UGy = (V1 UV,, E{ UEy)
e join: Gy * Go = (V1 U V,, E1 U Ex U (Vh X V3)), including the resulting self-loops, if any.

Certain classes of digraphs can be generated by these operations in linear (in the number 7 of
vertices) time and memory. These obviously include all sparse digraphs (digraphs with O(n)
edges) but they also include digraphs of arbitrary density. For instance, (1) * ---* (n) is the
transitively oriented complete graph (transitive tournament) which has density 1/2.

It was not known whether the complements of sparse graphs admit such a concise represen-
tation. In fact, this specific question motivated our research. Our result gives a constructive
positive answer: Theorem 1.1 yields an efficient algorithm for deriving a linear-size algebraic
graph representation for the complements of sparse digraphs. It easily follows that the same
result is true for graphs and for loop-free digraphs.

1.2.5 Circuit complexity

Computing linear operators over the Boolean semiring ({0, 1}, V) is a well-studied problem in
circuit complexity. The corresponding computational model is known as rectifier networks. An
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overview of known lower and upper bounds for such circuits is given by Jukna [14, Section 13.6].
Theorem 1.1 states that linear operators on the complements of sparse matrices have linear
rectifier network complexity.

1.3 Organization and earlier publication

Background definitions are introduced in Section 2. The main results are presented in Section 3
(the commutative case) and Section 4 (the non-commutative case). This paper extends an
earlier conference publication [17] by providing complete proofs of all claimed results in
Sections 3 and 4.

2 Background

21 Semigroups and semirings

A semigroup (S, o) is an algebraic structure, where the set S is closed under the operation o, i.e.,
0:S5xS — S, and associative,i.e., x o (yoz) = (x oy) oz forall x, y, and z in S. Commutative (or
abelian) semigroups introduce one extra requirement: x oy = y o x forall x and y in S.

A commutative semigroup (S, o) can often be extended to a semiring (S, o, ®) by introducing
another associative (but not necessarily commutative) operation e that distributes over o, that is

xe(yoz)=(xey)o(rez) (xoy)ez=(xez)o(yez).

hold for all x, y, and z in S. Furthermore, zero 0 € S and one 1 € S are the additive and
multiplicative identities of the two operators, and zero is annihilating:

Qox=x00=x lex=xel=x Qex=xe¢0=0.

Since o and e behave similarly to numeric addition and multiplication, it is common to give e
a higher precedence to avoid unnecessary parentheses, and even omit e from formulas altogether,
replacing it by juxtaposition. This gives a terser and more convenient notation, for example, the
left distributivity law becomes: x(y o z) = xy o xz. We will use this notation, insofar as it does
not lead to ambiguity.

2.2 Range query problem and linear operator problem

In the range query problem, one is given a sequence x1, X2, . . ., X, of elements of a fixed semigroup
(S, 0). Then, a range query is specified by a pair (I, r) of indices such that 1 <1 < r < n. The
answer to such a query is the result of applying the semigroup operation to the corresponding
range, i.e., xX; © X;41 © - - - © X,. The range query problem is then to simply answer all given range
queries. There are two regimes: online and offline. In the online regime, one is given a sequence
of values x1 = v1,x2 = U,...,x, = v, and is asked to preprocess it so that one can efficiently
answer any subsequent query. By “efficiently” one usually means in time independent of the
length of the range (i.e., 7 — [ + 1, the time of a naive algorithm), say, in time O(logn) or O(1).
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In this paper, we focus on the offline version, where one is given a sequence together with all
the queries, and are interested in the minimum number of semigroup operations needed to
answer all the queries. Moreover, we study a more general problem: we assume that x1,..., x,
are formal variables rather than actual semigroup values. That is, we study the circuit size of the
corresponding computational problem.

The linear operator problem generalizes the range queries problem: now, instead of contiguous
ranges one wants to compute sums over arbitrary subsets. These subsets are given as rows of
a 0/1-matrix A.

2.3 Circuits

We consider circuits whose input consists of n formal variables {x1, ..., x, }. We are interested in
the minimum number of semigroup operations needed to compute all given words {w1, ..., Wy, }
(e.g., for the range query problem, each word has a form x; o x;,1 0 - -0 x,). We use the following
natural circuit model. A circuit computing all these queries is a directed acyclic graph. There are
exactly n nodes of zero in-degree. They are labelled with {1, ...,n} and are called input gates.
All other nodes have positive in-degree and are called internal gates. Finally, some m gates have
out-degree 0 and are labelled with {1, ..., m}; they are called output gates. The size of a circuit
is its number of edges (also called wires). Each gate of a circuit computes a word defined in
a natural way: input gates compute just {x1, ..., x, }; any other gate of in-degree r computes
aword fi o foo--- o f, where {fi, ..., f;} are words computed at its predecessors (therefore,
we assume that there is an underlying order on the incoming wires for each gate). We say that
the circuit computes the words {w1, ..., w,,} if the words computed at the output gates are
equivalent to {wy, ..., w,, } over the semigroup under consideration.

For example, the circuit below computes range queries (I1,71) = (1,4), (I, r2) = (2,5), and
(I3,3) = (4,5) over inputs {x1, ..., x5} or, equivalently, the linear operator Ax where the matrix
A is given below.

—_

A -

o O
o = =
O R
_
N )

For a 0/1-matrix A, by C(A) we denote the minimum size of a circuit computing the linear
operator Ax.

A binary circuit is a circuit having no gates of fan-in more than two. It is not difficult to see
that any circuit can be converted into a binary circuit of size at most twice the size of the original
circuit. For this, one just replaces every gate of fan-in k, for k > 2, by a binary tree with 2k — 2
wires (such a tree contains k leaves hence k — 1 inner nodes and 2k — 2 edges). In the binary
circuit the number of gates does not exceed its size (i. e., the number of wires). And the number
of gates in a binary circuit is exactly the minimum number of semigroup operations needed to
compute the corresponding function.
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We call a circuit C computing A regular if for every pair (i, j) such that A;; = 1, there exists
exactly one path from the input j to the output i. A convenient property of regular circuits is
the following observation.

Observation 2.1. Let C be a regular circuit computing a 0/1-matrix A over a commutative semigroup.
Then, by reversing all the wires in C one gets a circuit computing AT.

Instead of giving a formal proof, we provide an example of a reversed circuit from the
example given above. It is because of this observation that we require circuit outputs to be gates
of out-degree zero (so that when reversing all the wires the inputs and the outputs exchange
places).

[EE G S )
= _=O0 O O

3 Commutative case

This section is devoted to the proofs of Theorem 1.1 and Corollary 1.2, which we restate below.

Theorem 3.1 (Theorem 1.1 restated). Let (S, o) be a commutative semigroup, and A € {0, 1}"" be
a matrix with z = Q(n) zeroes. There exists a circuit of size O(z) that takes a vector x = (x1,...,Xn)
of formal variables as an input, uses only the semigroup operation o at internal gates, and outputs
Ax. Moreover, there exists a randomized algorithm that takes the positions of z zeroes of A as an input
and outputs such a circuit in time O(z) with probability at least 1 — O(log5 n)/n. There also exists
a deterministic algorithm with running time O(z + n log4 n).

Corollary 3.2 (Corollary 1.2 restated). Let S be a semiring. There exists a deterministic algorithm that
takes a matrix A € {0, 1}"" with z = O(n) zeroes and a matrix B € S™" and computes the product
AB in time O(n?).

3.1 Main ideas of the proof

Consider a matrix A € {0, 1}**" with z = Q(n) zeros (left picture below). Zeros split every
row of A into ranges. We construct a circuit of size O(z) that computes all these ranges. Then,
by using additional O(z) gates one can compute all outputs of Ax. It is ranges of length at most
logn (middle picture) that make the problem difficult: we prove that one can compute all
ranges of length at least log n using O(z) gates. Using this observation, we proceed as follows.
We partition the rows into two parts (right picture): every row in the top part contains at most
log n zeroes, whereas every row in the bottom part contains more than log n zeroes. The bottom
part contains at most z /log n rows, we transpose it and compute in time O(z/log 1 -log n) = O(z).
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For the top part, we employ the commutativity and shuffle the columns. Then, the expected
total length of all short ranges is o(1) and one can compute all of them directly.

[ [ [ [
[T [T [1 [T [
;[\HH [ ‘H [ ‘\ [ -
[ [ [ ‘ T ‘
[ [\[‘ ‘\ ‘ \H [
I [ [T [ T
[ 11 I [ [TT T
[ T
[ [TT T [ 1T
[ TT T
[H:[}[\ [ \}—T[\
‘\l:‘[l:l l ]
[ 1
I [T [ T1 ‘l_l
[T TTT [ T1
I [ [ [TT T

3.2 Formal proof

We start by proving two simpler statements to show how commutativity is important.

Lemma 3.3. Let S be a (not necessarily commutative) semigroup and let A € {0, 1}"*" contain at most
one zero in every row. Then C(A) = O(n).

Proof. To compute the linear operator Ax, we first precompute all prefix and suffix sums of
x = (x1,...,x,). Specifically, let p; = x; o xp 0 -+ 0 x;. All p;’s can be computed using (n — 1)
binary gates as follows:

P1=X1,p2=pP10X2,p3 =P2°X3,...,Ppi =Pi-1°Xi,--.,Pn=Pn-1°Xp.

Similarly, we compute all suffix sums s; = xj o0 xj41 - 0 x, using (n — 1) binary gates. From
these prefix and suffix sums all outputs can be computed as follows: if a row of A contains
no zeroes, the corresponding output is p,,; otherwise if a row contains a zero at position i, the
outputis p;_1 0 s;41 (for i = 1 and i = n, we omit the redundant term). O

In the rest of the section, we assume that the underlying semigroup is commutative.
Allowing at most two zeroes per row already leads to a non-trivial problem. Below, we show
how to construct a circuit of linear size for this special case (and later on we prove a more general
result). It is interesting to compare the following lemma with Theorem 1.3 that states that in the
non-commutative setting matrices with two zeroes per row are already non-linear.

Lemma 3.4. Let A € {0, 1}""" contain at most two zeroes in every row. Then C(A) = O(n).

Proof. Denote by R and C the (sets of) rows and columns of A, respectively. Let R = Ry LI R;
where every row in R; contains at most one zero, whereas every row in R, contains exactly
two zeros. Clearly, C(R1 X C) = O(n) (prefix and suffix sums), hence it remains to prove that
C(Ry x C) = O(n).

Let C = Cy U Cp such that every column of R, X C; contains at least one zero, whereas
Rj x Cy is an all-one matrix. It remains to prove that C(R, X C1) = O(n) gates: after computing
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Ry x C1, we compute the sum of all variables corresponding to the columns of Cy (this takes
|Col — 1 = O(n) gates) and then add this sum to every row of Ry X C1 (using |Rz| = O(n) gates).
(Working with columns C; and Cy separately is possible due to commutativity.)

To prove that C(R; x C1) = O(n), we prove that the complexity of a matrix B = Bg X B¢ €
{0, 1} containing exactly two zeros in every row and at least one zero in every column (hence,
t < 2m) is at most 30m. We prove this by induction on m. By flipping a coin for every column
of B, partition the columns B¢ into two parts: Bc = P LI Q. We say that r € B, is a split row if
exactly one of two zeros from r lies in P (hence, the other one belongs to Q). For every r € B,, the
probability that  is a split row is 1/2, hence the expected number of split rows is |Br|/2 = m /2.
Take a partition Bc = P LI Q ensuring that the set S C By of split rows has size at least 71/2 and
let N = Bgr \ S be the set of the non-split rows.

12345678910 621081,39547 62108 1,39547

AU WN -
NI LN -
G W INO -

p Q p Q

The matrix S X B¢ can be computed by a circuit of size 11m: each of S X P and S X Q has
exactly one zero in every column and can be computed using 2t + m gates (using prefix and suffix
sums); then one more gate suffices for every row; the total size is (2t + m) + (2t + m) + m < 11m.

Thus, it remains to compute the matrix N X Bc. Let Bc = X 1Y where the columns Y
do not contain zeros in N X Bc. By induction, the complexity of the matrix N X X is at most
30|N| < 30m /2 = 15m. Then, one computes the sum of all variables from Y (at most 2m gates)
and adds it to all the rows from N (at most m gates). Thus, the complexity of N X B¢ is at most
18m.

Overall,

C(B) < C(SxBRr)+C(N xXBg) <11m+18m < 30m . m|

Below, we state two auxiliary lemmas that will be used as building blocks in the proof
of Theorem 3.1. We prove Lemma 3.6 in Section 3.3.

Lemma 3.5. There exists a binary reqular circuit of size O(n log n) such that any range can be computed
in a single additional binary gate using two gates of the circuit. It can be generated in time O(n logn).

Proof. We adopt the divide-and-conquer construction by Alon and Schieber [1]. Split the input
range (1, n) into two half-ranges of length n/2: (1,1n/2) and (1n/2 + 1, n). Compute all suffixes of
the left half and all prefixes of the right half. Using these precomputed suffixes and prefixes
one can answer any query (I, ) such that / < n/2 < r in a single additional gate. It remains
to be able to answer queries that lie entirely in one of the halves. We do this by constructing
recursively circuits for both halves. The resulting recurrence relation T(n) < 2T(n/2) + O(n)
implies that the resulting circuit has size at most O(n log n). O
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Lemma 3.6. Let m < nand A € {0, 1}"*" be a matrix with z = ()(n) zeroes and at most log n zeroes
in every row. There exists a circuit of size O(z) computing Ax. Moreover, there exists a randomized
O(z)-time algorithm that takes as input the positions of z zeros and outputs a circuit computing Ax
with probability at least 1 — O(log® n)/n. There also exists a deterministic algorithm with running time
O(n 10g4 n).

Proof of Theorem 3.1. Denote the set of rows and the set of columns of A by R and C, respectively.
Let Rp € R be all the rows having at least logn zeroes and Ry = R\ Rq. Every row of A can
be decomposed into (maximal) contiguous ranges of ones. We call them ranges of A. Below,
we show that all the ranges of A can be computed by a circuit of size O(z). From these ranges, it
takes O(z) additional binary gates to compute all the outputs of Ax.

We compute the matrices Ry X C and R X C separately. The main idea is that Ry X C is easy
to compute because it has a small number of rows (at most z/log n), while R; X C is easy to
compute because it has a small number of zeroes in every row (at most log ).

The matrix R1 X C can be computed using Lemma 3.6. To compute Ry X C, it suffices to
compute C X Ry by a regular circuit, thanks to the Observation 2.1. Let |Ro| = t. Clearly,
t < z/logn. Using Lemma 3.5, one can compute all ranges of C X Rg by a circuit of size

z
O(tlogt +z) = O(@ -logz+z) =0(z+n)=0(z2),

since z = O(n?).
The algorithm for generating the circuit is just a combination of the algorithms from
Lemmas 3.5 and 3.6. O

Proof of Corollary 3.2. One deterministically generates a circuit for A of size O(n) in time
O(n log4 n) = O(n?) by Theorem 3.1. This circuit can be used to multiply A by any col-
umn of B in time O(n). For this, one constructs a topological ordering of the gates of the circuits
and computes the values of all gates in this order. Hence, AB can be computed in time O(n2). O

3.3 Deterministic algorithm and the proof of Lemma 3.6

Lemma 3.7. There exists a binary reqular circuit of size O(n) such that any range of length at least
log n can be computed in two additional binary gates from the gates of the circuit. It can be generated by
an algorithm in time O(n).

Proof. We use the block decomposition technique for constructing the required circuit. Partition
the input range (1, n) into n/log n ranges of length log n and call them blocks. Compute the
range corresponding to each block (in total size O(n)). Build a circuit from Lemma 3.5 on top of
these blocks. The size of this circuit is O(n) since the number of blocks is 1 /log n. Compute all
prefixes and all suffixes of every block. Since the blocks partition the input range (1, ), this also
can be done with an O(n) size circuit.

Consider any range of length at least log nn. Note that it cannot lie entirely inside the block.
Hence, any such range can be decomposed into three components: a suffix of a block, a sequence
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of whole blocks, and a prefix of a block (where any of the three components may be empty). For
example, for n = 16, a range (3, 13) is decomposed into a suffix (3, 4) of the first block, a sequence
(B2, B3) of whole blocks, and a prefix (13, 13) of the last block:

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

HEEEEEEEEEEEEEEE

By B, Bs By

All sequences of blocks can be precomputed by a circuit of size O(n) using the construction
from Lemma 3.5 (recall that the number of blocks is 1 /log 11). To combine these three components,
one needs two additional binary gates: one to add the suffix, and another to add the prefix. O

Proof of Lemma 3.6. The z zeroes of A break its rows into ranges. Let us call a range short is its
length is at most log 1. Below, we show that it is possible to permute the columns of A so that
the total length of all short ranges is at most o(n). Then, all such short ranges can be computed
by a circuit of size o(n) = O(n) = O(z). All the remaining ranges can be computed by a circuit
of size O(n) using Lemma 3.7.

Randomized algorithm. Permute the columns randomly. A uniform random permutation
of n objects can be generated in time O(#n) [16, Algorithm P (Shuffling)]. Let us compute the
expectation of the total length of short ranges. Let us focus on a single row and a particular cell
in it. Denote the number of zeroes in the row by . What is the probability that the cell belongs
to a short segment? There are two cases to consider.

1. The cell is at distance k for 1 < k < logn from the border, i. e., it belongs to the first log n
cells or to the last log 1 cells (the number of such cells is 21og ). Then, this cell belongs
to a short range if there is at least one zero in logn — k + 1 cells close to it (on the side
opposite to the border). Hence, one zero must belong to the set of logn — k + 1 cells while
the remaining t — 1 zeroes may be anywhere. The probability is then at most

) -o£2)

Z (logn —k+1)-

<logn - =
(”) & n—t+1 n
1<k<logn t

2. Itis not close to the border (the number of such cells is n — 21og n). Then, there must be
a zero on both sides of the cell: one at distance 1 < k < logn on the left and another at
distance at most log n — k on the right. The probability is then at most

Z (logn — k) - (tf) <log?n -
1<k<logn (t) (

tt—1) _0 log* n
n—t+1)(n—t+2) n2 |’

Hence, the expected total length of short ranges in one row is

log? n log* n log* n
21 : -21 : =0(——].
O [2logn —+ (n ogn) 2 @) ”
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Thus, the expected length of short ranges in the whole matrix A is O(log4 n). By Markov
inequality, the probability that the length of all short ranges is larger than 7 /logn is at most
O(log5 n/n).

Deterministic algorithm. It will prove convenient to assume that A is a t X t matrix with
exactly t zeros with at most log t zeroes in every row. To do this, we let = max{#n, z} and add
a number of all-ones rows and columns if needed. This enlargement of the matrix does not
make the computation simpler: additional rows mean additional outputs that can be ignored
and additional columns correspond to redundant variables that can be removed (substituted
by 0) once the circuit is constructed. Below, we show how to deterministically construct a circuit
of size O(t) for A. To do this, we present a greedy algorithm for permuting the columns of A in
such a way that the total length of all short segments is O(log® 7). This will follow from the fact
that all short ranges in the resulting matrix A will lie within the last O(log? t) columns.

We construct the required permutation of columns step by step by a greedy algorithm. After
step r, we will have a sequence of the first 7 columns chosen and we will maintain the following
properties:

e For each i < r, the first i columns contain at least i zeros.

e There are no short ranges within the first r rows (apart from those that can be extended by
adding columns on the right).

After t —log? t steps, short ranges will only be possible within the last log® t +1og t = O(log? t)
columns. The algorithm itself is presented below.

On the first step, we pick any column that has a zero in it. Suppose we have reached step r.
We explain how to add a column on step 7 + 1. Consider the last log t columns in the currently
constructed sequence. Consider the set R of rows that have zeros in them. These are exactly the
rows that constrain our choice for the next column. There are two cases.

1. There are at most log t rows in R. Then, for each row in R, there are at most log ¢ columns
that have zeros in this row. In total, there are at most log” t columns that have zeros in
some row of R. Denote the set of this columns by F. If there is an unpicked column
outside of F that has at least one zero in it, we add this column to our sequence. Clearly,
both properties are satisfied and the step is over. Otherwise, all other columns contain
only ones, so we add all of them to our sequence, place the columns from F to the end of
the sequence, and the whole permutation is constructed.

2. There are more that log t rows in R. This means that the last log t columns of the current
sequence contain more than log t zeros. By the first property, the first  — log t columns
contain at least r — log t zeros. So overall, in the current sequence of r columns there are
more than r zeros. Thus, in the remaining ¢ — r columns there are less then t — r zeros and
there is a column without zeros. We add this column to the sequence.

To implement this algorithm in time O(t log4 t), we store, for each column j of A, a sorted
array of rows i such that A;; = 0. Since the total number of zeros z is at most ¢ log ¢, these arrays
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can be computed in time O(t log2 t): if c1,..., c; are the numbers of zeros in the columns, then
sorting the corresponding arrays takes time

t t

Z cilogc; <log(tlogt)- Z c; <log(tlogt)-tlogt.

i=1 i=1

At every iteration, we need to update the set R. To do this, we need to remove some rows
from it (from the column that no longer belongs to the stripe of columns of width log t) and to
add the rows of the newly added column. Since the size of |R| is always at most f and the total
number of zeros is z < tlog t, the total running time for all such updates is O(t log2 t) (if one
uses, e. g., a balanced binary search tree for representing R).

If |R| > log t, one just takes an all-one column (all such columns can be stored in a list). If
|R| < logt, we need to find a column outside of the set F. To do this, we just scan the list of the
yet unpicked columns. For each column, we first check whether it belongs to the set F. This can
be checked in time O(log2 t): for every row in |R|, one checks whether this row belongs to the
sorted array of the considered column using binary search in time O(logt). Since |F| < log2 t,
we will find a column outside of F in time O(log4 t).

O

4 Non-commutative case

In the previous section, we have shown that for commutative semigroups, co-sparse linear
operators can be computed by linear-size circuits. A closer look at the circuit constructions
reveals that we use commutativity crucially: it is important that we may reorder the columns of
the matrix (we do this in the proof of Lemma 3.6). In this section, we show that this trick is
unavoidable: for non-commutative semigroups, it is not possible to construct linear-size circuits
for co-sparse linear operators. Specifically, we prove Theorem 1.3 which we restate here.

Theorem 4.1 (Theorem 1.3 restated). There exists a matrix A € {0, 1}"" with exactly two zeroes
in every row such that for any faithful non-commutative semigroup (S, o) the minimum number of
semigroup operations required to compute Ax is Q(na(n)). This lower bound is tight: Ax is computable
using O(na(n)) semigroup operations for any (S, o) and A € {0, 1}"*".

4.1 Faithful semigroups

We consider computations over general semigroups that are not necessarily commutative. In
particular, we will establish a lower bound for a large class of semigroups and our lower bound
does not hold for commutative semigroups. This requires a formal definition that captures
semigroups with rich enough structure and in particular captures the notion that a semigroup
is substantially non-commutative.

Previously lower bounds in the circuit model for a large class of semigroups were known for
the range query problem [23, 6]. These results were proven for a large class of commutative
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semigroups called faithful (see Definition 4.2). Since we are dealing with the non-commutative
case, we need to generalize the notion of faithfulness to non-commutative semigroups.

To provide a formal definition of faithfulness it is convenient to introduce the following
notation. Suppose (S, o) is a semigroup. Consider variables x1, ..., x, and consider identities in
variables {x1,...,x,} over (S, o). That is, for two words W and W’ in the alphabet {x1, ..., x,}
we say W = W’ iff no matter which elements of the semigroup S we substitute for {x1,...,x,}
we obtain a correct equation over S. Let Xs , be a semigroup with generators {x1, ..., x,} and
relations being all identities in variables {x1,...,x,} over (S,0). In other words, Xs , is the
quotient of the free semigroup by the congruence relation generated by the given identities.
In particular, note that if S is commutative or idempotent then Xs , is also commutative or
idempotent, respectively. The semigroup Xs , is studied in algebra under the name of relatively
free semigroup of rank 7 of a variety generated by the semigroup S [18]. We will often omit the
subscript n and write simply X5 since the number of generators will be clear from the context.
Below we will use the following notation. Let W be a word in the alphabet {x1, ..., x,}. Denote
by Var (W) the set of letters that are present in W.

We are now ready to introduce, following Yao [23] and Chazelle-Rosenberg [6], the definition
of a commutative faithful semigroup.

Definition 4.2 (Yao, Chazelle-Rosenberg). A commutative semigroup (S, o) is faithful commutative
if for any equivalence W ~ W’ in X5 we have Var (W) = Var (W’).

Note that this definition does not pose any restrictions on the multiplicity of each letter in W
and W’. In particular, idempotent semigroups ({0, 1}, V) and (Z, min) are faithful commutative.

We need to study the non-commutative case, and moreover, our results establish the
difference between commutative and non-commutative cases. Thus, we need to extend the
notion of faithfulness to non-commutative semigroups to capture the whole power of their
non-commutativity. At the same time we would like to keep the case of idempotency. We
introduce the notion of faithfulness for the non-commutative case inspired by the properties of
free idempotent semigroups [11]. To introduce this notion, we need several definitions.

Definition 4.3. The initial mark of the non-empty word W W is the letter that is present in W
such that its first appearance is farthest to the right. Let U be the prefix of W consisting of the
letters preceding the initial mark. That is, U is the maximal prefix of W with a smaller number
of generators. We call U the initial stretch of W. Analogously we define the terminal mark of W
and the terminal of W.

For example, for W = abbacabca, the initial mark is the first letter c, the initial stretch is the
prefix abba, the terminal mark is the last letter b and the terminal is the suffix ca.

Definition 4.4. We say that a semigroup X with generators {xi,...,x,} is strongly non-
commutative if for any words W and W’ in the alphabet {x1, ..., x,} the equivalence W ~ W’
holds in X only if the initial marks of W and W’ are the same, terminal marks are the same,
the equivalence U ~ U’ holds in X, where U and U’ are the initial stretches of W and W,
respectively, and the equivalence V ~ V’ holds in X, where V and V’ are the terminal stretches
of W and W', respectively.
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In other words, this definition states that the first and the last occurrences of generators
in the equivalence separates the parts of the equivalence that cannot be affected by the rest of
the generators and must therefore be equivalent themselves. We also note that this definition
exactly captures the idempotent case: for a free idempotent semigroup the condition in this
definition is “if and only if” [11].

Definition 4.5. A semigroup (S, o) is faithful non-commutative if Xs is strongly non-commutative.

We note that this notion of faithfulness is relatively general and is true for semigroups
(S, o) with considerable degree of non-commutativity in their structure. It clearly captures
free semigroups with at least two generators. It is also easy to see that the requirements
in Definition 4.5 are satisfied for the free idempotent semigroup with n generators (if S is
idempotent, then X5 , is also clearly idempotent and no other relations are holding in Xs , since
we can substitute generators of S for x1,...,xy).

When reading through the proof of Theorem 4.1 it is instuctive to keep an example of the
free idempotent semigroup in mind. In fact, the very first step of the proof of the lower bound
reduces arbitrary semigroup to an idempotent semigroup.

Next we observe some properties of strongly non-commutative semigroups that we need in
our constructions.

Lemma 4.6. Suppose X is strongly non-commutative. Suppose the equivalence W ~ W’ holds in X and
|Var (W)| = |Var (W’)| = k. Suppose U and U’ are minimal (maximal) prefixes of W and W’ such that
|Var(U)| = |Var(U’)| =1 < k. Then the equivalence U ~ U’ holds in X. The same is true for suffixes.

Proof. The proof is by induction on the decreasing /. Consider the maximal prefixes first. For
I = k and maximal prefixes we just have U = W and U’ = W’. Suppose the statement is true
for some I, and denote the corresponding prefixes by U and U’, respectively. Then note that
the maximal prefixes with [ — 1 variables are initial stretches of U and U’. And the statement
follows by Definition 4.4.

The proof of the statement for minimal prefixes is completely analogous. Note that on the
step of induction the prefixes differ from the previous case by one letter that are initial marks of
the corresponding prefixes. So these additional letters are also equal by the Definition 4.4.

The case of suffixes is completely analogous. O

The next lemma is a simple corollary of Lemma 4.6.

Lemma 4.7. Suppose X is strongly non-commutative. Suppose W ~ W’ holds in X. Consider a
permutation ow of the letters of W in the order in which they appear first time in W when we read it from
left to right. Consider analogous permutation ow- for W’. Then ow = ow:. The same is true if we read
the words from right to left.

4.2 Proof strategy

We now proceed to the proof of Theorem 4.1. The upper bound follows easily by a naive
algorithm: split all rows of A into ranges, compute all ranges by a circuit of size O(na(n)) using
Yao’s construction [23], then combine ranges into rows of A using O(n) gates.
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Thus, we focus on lower bounds. We will view the computation of the circuit as a computation
in a strongly non-commutative semigroup X = Xg.

We will use the following proof strategy. First we observe that it is enough to prove the lower
bound for the case of idempotent strongly non-commutative semigroups X. Indeed, consider
an arbitrary semigroup X. Consider a new semigroup X;; over the same set of generators
that is a factorization of X by idempotency relations W? ~ W for all words W in the alphabet
{x1,...,x,}. We prove the following lemma.

Lemma 4.8. 1. If X is strongly non-commutative, then X;, is also strongly non-commutative.

2. If the co-sparse linear operator problem over X has size s circuit, the co-sparse linear operator
problem over X4 has size s circuit as well.

As a result a lower bound for the case of X;; implies the same lower bound for the case of X.
We provide a proof of Lemma 4.8 in Section 4.3.

Hence, from this point we can assume that X is idempotent and strongly non-commutative.
Next for idempotent case we show that our problem is equivalent to the commutative version of
the range query problem.

For a semigroup X with generators {x1,...,x,} denote by X, its factorization under
commutativity relations x;x; ~ x;x; for all 7,j. Note that if X is idempotent and strongly
non-commutative, then X, is just the semigroup in which W ~ W’ iff Var (W) = Var (W’) (this
is free idempotent commutative semigroup).

Theorem 4.9. For an idempotent strongly non-commutative X and for any s = Q(n) we have that the
(commutative) range query problem over Xsy, has size O(s) circuits iff (non-commutative) co-sparse
linear operator problem over X has size O(s) circuits.

For the commutative case it is known that the range query problem is non-linear (Chazelle-
Rosenberg [6]).

Theorem 4.10 (Chazelle-Rosenberg). There is a set of n ranges over Xsyy, such that any circuit
computing these ranges has size at least Q(na(n)).

Using these results, it is straightforward to finish the proof of Theorem 4.1.

Proof of Theorem 4.1. By Lemma 4.8 it is enough to prove the result for an idempotent strongly
non-commutative X. By Theorem 4.9 if non-commutative co-sparse linear operator problem has
size s circuit, then the commutative range query problem also does. However, by Theorem 4.10
for the latter problem s = Q(na(n)). Moreover, in our construction for the proof of Theorem 4.9
it is enough to consider co-sparse linear operators with exactly two zeroes in every row. From
this the lower bound in Theorem 4.1 follows. m|

Note that for the proof of Theorem 4.1 only one direction of Theorem 4.9 is needed. However,
we think that the equivalence in Theorem 4.9 might be of independent interest, so we provide
the proof for both directions.

Thus, it remains to prove Theorem 4.9. We do this by showing the following equivalences
for any s = Q(n).
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(commutative) Lemma 4.17 (non-commutative) straightforward (nOn-Comr;lutatwe)

range query prob- range query prob- co-sparse linear

lem over Xy, has lem over X has operator problem

O(s) size circuits special case O(s) size circuits Lemma 4.11 over X hés O(s)
size circuits

In these equivalences, non-commutative problems are considered over an arbitrary strongly
non-commutative semigroup and the commutative problem is considered over free idempotent
commutative semigroup Xs,,. Recall that if we factorize any strongly non-commutative
idempotent semigroup over commutativity equivalences, we obtain exactly free idempotent
commutative semigroup.

Note that two of the reductions on this diagram are trivial. Thus it remains to prove the
other two directions.

1. If the (non-commutative) co-sparse linear operator problem over X has size s circuit then
the (non-commutative) range query problem over X has size O(s) circuit.

2. If the (commutative) version of the range query problem over X, has size s circuits then
the (non-commutative) version over X also does.

The first of these statements is proved in Sections 4.4 and 4.5. The second statement is proved
in Section 4.6.

4.3 From idempotent semigroups to general semigroups

In this section we provide a proof for Lemma 4.8.

First we show that if X is strongly non-commutative, then X;; is also strongly non-
commutative. Suppose W and W’ are words in the alphabet {x1,...,x,} and W ~ W’ in
X;4. This means that there is a sequence Wy, ..., Wi of words in the same alphabet such that
W =Wy, W = Wi and for each i either W; ~ Wiy in X, or Wiy is obtained from W; by one
application of the idempotency equivalence to some subword of W;. Clearly, it is enough to
check that the conditions of Definition 4.4 are satisfied in X;; for each consecutive pair W; and
Wz‘+1-

If Wi ~ Wiy in X, then the conditions of Definition 4.4 follows from the strong non-
commutativity of X.

Suppose now that Wi, is obtained from W; by substituting some subword A by A? (the
symmetrical case is analyzed in the same way). We will show that initial marks of W; and
Wi4q are the same and U; ~ U;;1 in X;3, where U; and U;,q are initial stretches of W; and W;;4
respectively. For the terminals and terminal marks the proof is completely analogous.

Suppose A lies to the left of initial mark in W; and we substitute A by A2. Then the initial
mark is unaltered and in the initial stretch U; we also substitute A by A2, Thus in this case Uj4q
is obtained from U; by idempotency relation.

Suppose A contains initial mark of W; or lies to the right of it. Then after the substitution of
A by A? the initial mark is still the same and the initial stretch U; also does not change.
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For the second part of the lemma, suppose X is strongly non-commutative and suppose
that for X there is a circuit of size at most s computing some co-sparse linear operator. Since
Xiq is a factorization of X any circuit computing co-sparse operator over X also computes the
same co-sparse operator over X;;. Thus there is a circuit of size at most s computing the same
co-sparse operator over Xj,.

4.4 Reducing co-sparse linear operator to range queries
In this subsection, we prove the following lemma.

Lemma 4.11. If the (non-commutative) co-sparse linear operator problem over X has size s circuit then
the (non-commutative) range query problem over X has size O(s) circuit.

Intuitively, the lemma holds as the best way to compute rows of a co-sparse matrix is to
combine input variables in the natural order. This intuition is formalized in Lemma 4.12 below.
Given this, it is easy to reduce co-sparse linear operator problem to the range query problem: we
just “pack” each range query into a separate row, i. e., for a query (I, r) we introduce a 0/1-row
having two zeroes in positions I — 1 and r + 1 (hence, this row consists of three ranges: (1,1 — 1),
(I,r), (r +1,n)). Then, if a circuit computing the corresponding linear operator has a nice
property of always using the natural order of variables (guaranteed by Lemma 4.12), one may
extract the answer to the query (I, r) from it.

It should be mentioned, at the same time, that the semigroup X might be complicated. In
particular, the idempotency is tricky and allows for computations using “‘unnatural” order in
multiplications. For example, it can be used to simulate commutativity: one can turn xy into
yx, by first multiplying xy by y from the left and then multiplying the result by x from the right
(obtaining (y(xy))x = (yx)(yx) = yx). Using similar ideas, one can place new variables inside
of already computed products. To get xyz from xz, one multiplies it by xyz first from the left
and then from the right: (xyz)xz(xyz) = xy(zxzx)yz = xy(zx)yz = xyz. This is not extremely
impressive, since to get xyz we multiply by xyz, but the point is that this is possible in principle.

We proceed to the formal proofs. Let’s call a word W in the alphabet {x1, ..., x, } increasing
if it is a product of variables in the increasing order. A binary circuit is called an increasing circuit
if each of its gates computes a word equivalent in X to increasing word. Note that if a gate in
an increasing circuit is fed by two gates G and H, then the increasing words computed by G
and H are matching in a sense that some suffix of G (possibly an empty suffix) is equal to some
prefix of H. Otherwise, the result is not equal to a product of variables in the increasing order,
due to Lemma 4.7.

Analogously, a binary circuit is called a range circuit if each of its gates computes a word that
is equivalent to a range.

The proof of Lemma 4.11 follows from the following two lemmas.

Lemma 4.12. Given a binary circuit computing Ax, one may transform it into an increasing circuit of
the same size computing the same function.

Lemma 4.13. Given an increasing circuit computing Ax, one may transform it into a range circuit of
the same size computing all ranges of A.
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Proof of Lemma 4.11. Given n ranges, pack them into a matrix A € {0,1}"*" with at most 2n
zeroes. Take a size-s circuit computing Ax and convert it into a binary circuit. Then, transform
it into an increasing circuit using Lemma 4.12. Finally, extract the answers to all the ranges from
this circuit using Lemma 4.13. o

Note that the proof of Lemma 4.11 deals with matrices with exactly two zeroes in every row.
Thus the lower bound in Theorem 4.1 is true for the same class of matrices.
Next we prove Lemma 4.13 and we prove Lemma 4.12 in the next section.

Proof of Lemma 4.13. Take an increasing circuit C computing Ax and process all its gates in some
topological ordering. Each gate G of C computes a (word that is equivalent to an) increasing
word. We split this increasing word into ranges and we put into correspondence to G an ordered
sequence Gi, ..., Gy of gates of the new circuit. Each of these gates compute one of the ranges
of the word computed by G and G ~ Gy o... 0 Gy.

Consider a gate G of C and suppose we have already computed all gates of the new circuit
corresponding to previous gates of C. G is the product F o H of previous gates of C, for which
new range gates are already computed. Since C is increasing we have that F and H are matching,
that is some suffix (maybe empty) of the increasing word computed in F is equal to some prefix
(maybe empty) of the increasing word computed in H and there are no other common variables
in these increasing words. It is easy to see that ranges for the sequence corresponding to G are
just the ranges for the sequences for F and H with possibly two of them united. If needed, we
compute the product of gates of the new circuit corresponding to the united ranges and the
sequence of new gates for G is ready.

Thus, to process each gate of C we need at most one operation in the new circuit and the
size of the new circuit is at most the size of C.

For output gates of C we have gates in the new circuit that compute exactly ranges of output
gates. Thus, in the new circuit all ranges of A are computed. O

4.5 Transforming circuit into an increasing one

In this section we provide a prove for Lemma 4.12.

Consider a binary circuit C computing Ax and its gate G together with a variable x; it
depends on. We say that x; is good in G if there is a path in C from G to an output gate, on which
the word is never multiplied from the left by words containing variables greater than or equal
to x;. Note that if x; and x; are both contained in G, i < i’, and x; is good in G, then x; is good
in G, too. That is, the set of all good variables in G is closed upwards.

Consider the largest good variable in G (if there is one), denote it by xj (xx is actually just
the largest variable in G, unless of course there are no good variables in G). Let us focus on the
first occurrence of x; in G.

Claim 4.14. All first occurrences of other good variables in G must be to the left of the first occurrence of
X.
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Proof. Suppose that a good variable x; has the first occurrence to the right of (the first occurrence
of) xx. Consider an output gate H such that there is a path from G to H and along this path
there are no multiplications of G from the left by words containing variables greater than x;.
Then we have H ~ LGR, where all variables of L are smaller than x;. Then in H the variable x;
appears before x; when we read from left to right, but at the same time we have that x; appears
before x; in LGR. This contradicts Lemma 4.7. O

Now, for a gate G, define two words MINg and MAX;. Both these words are products of
variables in the increasing order: MIN is the product of good variables of G in the increasing
order, MAXc is the product (in the increasing order) of all variables that has first occurrences
before (the first occurrence of) xix. Note that MING is a suffix of MAXg. If there are no good
variables in G we just let MIN, = MAX, = A (the empty word). For the word W that has the form
of the product of variables in the increasing order, we call x; a gap variable if it is not contained
in W while W contains variables x; and x; withi < j < k.

Below we show how for a given circuit C to construct an increasing circuit C’ that for each
gate G of C computes some intermediate product Pg between MING and MAXg: MIN, is a suffix
of Pg and Pg is a suffix of MAX,;. The size of C’ is at most the size of C. For an output gate G,
MIN, = MAX, = g hence the circuit C’ computes the correct outputs.

To construct C’, we process the gates of C in a topological ordering. If G is an input gate,
everything is straightforward: in this case MAXg = MING is either A or x;. Assume now that G is
an internal gate with predecessors F and H. Consider the set of good variables in G. If there
are none, we let P = A. If all first occurrences of good variables of G are lying in one of the
predecessors (F and H), then they are good in the corresponding input gate. We then set P¢ to
p F Or P H-

The only remaining case is that some good variables have their first occurrence in F while
some others have their first occurrence in H. Then the largest variable x; of G has the first
occurrence in H and all variables of F are smaller than xj.

Claim 4.15. There are no gap variables for MAXy in F.

Proof. Suppose that some variable x; in F is a gap variable for MAXy;. Consider an output U such
that there is a path from G to U and along this path there are no multiplications of G from the
left by words containing variables greater than x;. Then we have U ~ LGR where all variables
of L are smaller than x. Consider the prefix P of U preceding the variable x; and the prefix Q
of LG preceding the variable xx. Then by Lemma 4.6 we have P ~ Q. Let us now read P and Q
from right to left (note that we switch the order here, previously we read the words from left to
right). By Lemma 4.7 the variables in P and Q should appear in the same order. But this is not
true (the variable in P are in the decreasing order and in Q the variable x; is not on its place),
a contradiction. m]

Claim 4.16. There are no gap variables for MAXr in H.

Proof. Suppose that a variable x; in H is a gap variable for MAXr. Consider an output U such
that there is a path from G to U and along this path there are no multiplications of G from
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the left by words containing variables greater than x;, the largest variable of F. Then we have
U ~ LGR, where all variables of L are smaller than x;. Consider the prefix P of U preceding x;
and the prefix Q of LG preceding x;. Then by Lemma 4.6 we have P ~ Q. But then the variables
of P and Q appear in the same order if we read the words from right to left. But this is not
true (the variables in P are in the decreasing order and in Q the variable x; is not on its place),
a contradiction. O

We are now ready to complete the proof of Lemma 4.12. Consider Pr and Py. By Claims 4.15
and 4.16, we know that they are ranges in the same sequence of variables Var (Pr) U Var (Pg).
We know that the largest variables of Py is greater than all variables of Pr. Then either Pr is
contained in Py, and then we can let Pg = Py (it contains all good variables of G), or we have
Pr = PQ and Py = QR forsome words P, Q, R. In this case welet P = ProPy = PQQR = PQR.
Clearly, MINg is the suffix of Pg and Pg itself is the suffix of MAX.

4.6 Reducing non-commutative range queries to commutative range queries

In this subsection, we prove the following lemma.

Lemma 4.17. If the (commutative) version of the range query problem over X, has size s circuits then
the (non-commutative) version over X also does.

Proof. We will show that any computation of ranges over X;,;, can be reconstructed without
increase in the number of gates in such a way that each gate computes a range (recall, that we
call this a range circuit). It is easy to see that then this circuit can be reconstructed as a circuit
over X each gate of which computes the same range with the variables in the increasing order.
Indeed, we need to make sure that each gate computes a range in such a way that all variables
are in the increasing order and this is easy to do by induction. Each gate computes a product of
two ranges 4 and b. If one of them is contained in the other, we simplify the circuit, since the
gate just computes the same range as one of its inputs (due to idempotency and commutativity).
It is impossible that 2 and b are non-intersecting and have a gap between them, since then our
gate does not compute a range (in a range circuit). So, if 2 and b are non-intersecting, then
they are consecutive and we just need to multiply them in the right order. If the ranges are
intersecting, we just multiply them in the right order and apply idempotency.

Thus it remains to show that each circuit for range query problem over X, can be
reconstructed into a range circuit. For this we will need some notation.

Suppose we have some circuit C. For each gate G denote by left(G) the smallest index of
the variable in G (the leftmost variable). Analogously denote by right(G) the largest index of
the variable in G. Denote by gap(G) the smallest i such that x; is not in G, but there are some
j,ksuch that j < i < k and x; and xx are in G (the smallest index of the variable that is in the
gap in G). Next, fix some topological ordering of gates in C (the ordering should be proper, that
is inputs to any gate should have smaller numbers). Denote by num(G) the number of a gate in
this ordering. Finally, by out(G) denote the out-degree of G.

For each gate that computes a non-range consider the tuple

tup(G) = (left(G), gap(G), num(G), —out(G)).
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For the circuit C consider tup(C) = ming tup(G), where the minimum is considered in the
lexicographic order and is taken over all non-range gates. If there are no non-range gates we let
tup(C) = oo. This is our semi-invariant, we will show that if we have a circuit that is not a range
circuit, we can reconstruct it to increase its tup (in the lexicographic order) without increasing
its size. Since tup ranges over a finite set, we can reconstruct the circuit repeatedly and end up
with a range circuit.

Now we are ready to describe a reconstruction of a circuit. Consider a circuit C that is not a
range circuit. And consider a gate G such that tup(G) = tup(C) (it is clearly unique). Denote by
A and B two inputs of G (see Figure 1). Let i = 1eft(G) and j = gap(G), that is x; is the variable
with the smallest index in G and x; is the first gap variable of G (it is not contained in G).

The variable x; is contained in at least one of A and B. Consider the gate among A and B that
contains x;. This gate cannot have x; or earlier variable as a gap variable: it would contradict
minimality of G (by the second or the third coordinate of tup). Thus this gate is a range [x;, x;)
for some j* < j (by this we denote the product of variables from x; to x; excluding x;/). In
particular, only one of A and B contains x;: otherwise they are both ranges and x; is not a gap
variable for G.

From now on we assume that A contains x;, thatis A = [x;, xj/).

Now we consider all gates Hy, . .., Hy that have edges leading from G. Denote by Fy, ..., Fx
their other inputs. If k is equal to 0, we can remove G and reduce the circuit. Now we consider
cases.

Figure 1: Before reconstruction

Case 1. Suppose that there is I such that left(F;) < left(G). If left(F;) < left(G), then F;
must contain all variables x;, . .., xj, since otherwise either F; or H; will have smaller tup then
G. Thus F; contains A. Then, we can restructure the circuit by feeding B to H; instead of G.
This does not change the value of the gate computed by H; and reduces out(G). Thus tup(C)
increases and we are done.

If left(F;) = left(G), then F; still cannot have gap variables among x;, ..., xj-1 as it would
contradict the minimality of G. Thus, F; is either a range, or it is not a range, but contain all
variables x;, ..., xj-1. In the latter case again F; contains A. In the former case F; either contains
A, oris contain in G. If F; contains A, we can again simplify the circuit as above. If F; is contained
in G, we have G = H;, so we can remove H; from the circuit and reduce the size of the circuit.

Case 2. Suppose that for all I we have left(F;) > left(G). Consider I such that F; has
the minimal right(F;) (if there are several such [ pick among them the one with the minimal
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num(F;)). For convenience of notation let / = k. Now we restructure the circuit in the following
way (see Figure 2). We feed Fy to G instead of A. We feed A to Hy instead of Fx. We feed Hy to
all other H,’s instead of G.

Figure 2: Case 2 reconstruction

Observe that all these reconstructions are valid, that is, they do not create directed cycles in
the circuit. To verify this we need to check that there are no cycles using new edges. Indeed,
there cannot be a cycle going through one of the edges (Hy, Hy) since this would mean that
there was a directed path from H, to one of the vertices Fy, A and G on the original circuit.
Such a path to A or G would mean a cycle in the original circuit. Such a path to Fj violates the
minimality property of Fy (minimal right(Fx)). Next, there cannot be a cycle going through
both edges (Fi, G) and (A, Hy), since substituting these edges by (Fx, Hx) and (A, G) we obtain
one or two cycles in the original circuit. Next, there cannot be a cycle going through the edge
(A, Hy) only, since Hy is reachable from A in the original circuit and this would mean a cycle
in the original circuit. Finally, there cannot be a cycle going only through the edge (F, G)
since this would mean a directed path from G to Fy in the original circuit and this contradicts
left(Fy) > left(G).

Note that our reconstruction might require reordering of the circuit gates, since we create
edges between previously incomparable H-gates and between F; and G. But the reordering
affect only the gates with num greater than num(G) and may only reduce num(Fy) to be smaller
than num(G). But this can only increase tup(G) and since left(Fy) > left(G) this can only
increase tup(C).

Observe, that the circuit still computes the outputs correctly. The changes are in the gates
Hj...,Hi (and also in G, but Hy, ..., Hy are all of its outputs). Hyx does not change. Other Hy's
might have changed, they now additionally include variables of Fi. But note that all of these
variables are in between of left(H,) and right(H,), so they must be presented in the output
gates connected to H, anyway (recall that at the output gates we compute ranges).

Now, observe that tup(G) has increased (by the first coordinate). There are no new gates
with smaller left. Among gates with the minimal left there are no new gates with smaller gap.
Among gates with minimal (left, gap) all gates have larger num then G. Thus tup(C) increased
and we are done with the proof of Lemma 4.17, completing the proof of Theorem 4.1. m|
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5 Open problems

There are several natural problems left open.

1. Design a deterministic O(z) time algorithm for generating a circuit in the commutative
case. For this, it suffices to design an O(n) deterministic algorithm for the following
problem: given a list of positions of n zeroes of an n X n 0/1-matrix with at most log n
zeroes in every row, permute its columns so that the total length of all segments of length
at most O(logn) is O(n/logn).

2. Determine the asymptotic complexity of the linear operator in terms of the number of
zeroes in the non-commutative case.

3. After the preliminary version of our paper [17], Stasys Jukna posed a question on how
large the gap between the complexity of the operators Ax and Ax can be over the (N, +)
semiring, where A € {0, 1}"*" and A is the bitwise negation of A. Our result rules out the
possibility of achieving a super-constant (multiplicative) gap with sparse matrix A.

A Review

A.1 Applications of the range query problem

There are many natural applications of the range query problem for a collection of records in
a database: computing the total population of cities that are at most some distance away from
a given point, computing an average salary in a given period of time, finding the minimum depth
on a given subrectangle on a sea map, etc. Below, we review some of the less straightforward
applications where efficient algorithms for the range query problem are usually combined with
other algorithmic ideas.

String algorithms and computational biology. It is possible to preprocess a given string
in O(n) time (where 7 is its length) so that then to find the longest common prefix of any two
suffixes of the original string in constant time. This is done by first constructing the suffix array
and the longest common prefix array of the string and then using an efficient RMQ algorithm.

Computational geometry. Algorithms for the range query problem can be used together
with the scanning line technique to solve efficiently various problems like: given a set of
segments on a line, compute the number of intersecting pairs of segments; or, given a set of
rectangles and a set of points on a plane, compute, for each each rectangle, the number of points
it contains.

A.2 Known approaches to range queries

In this subsection, we give a brief overview of a rich variety of known algorithms for the
range query problem. We say that an algorithm has type (f(n), g(n)) if it spends f (1) time on
preprocessing the input sequence, and then answers any query in time g(n).
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No preprocessing. A naive algorithm skips the preprocessing stage and answers a query
(1, r) directly in time O(r — [ + 1). It therefore has type (O(1), O(n)).

Full preprocessing. One may precompute the answers to all possible queries to be able
to answer any subsequent query immediately. Using dynamic programming, it is possible to
precompute the answers to all ®(n2) queries in time O(n?): for this, it is enough to process the
queries in order of increasing length. This gives an (O(12), O(1)) algorithm.

Fixed length queries (sliding window). In case one is promised that all the queries are
going to have the same length m, it is possible to do an O(n) time preprocessing and then to
answer any query in time O(1). For this, one partitions the input sequence of size n into n/m
blocks of size m. For each block, one computes all its prefixes and suffixes in time O(m). The
overall running time is O(n/m - m) = O(n). Then, each query of length m touches at most two
consecutive blocks and can be answered by taking a precomputed suffix of the left block and
a precomputed prefix of the right block in time O(1). This, in particular, implies that, given
a sequence of length n and an integer 1 < m < 1, one may slide a window of length m through
the sequence and to output the answer to all such window queries in time O(n).

Prefix sums. In case the semigroup operation has an easily computable inverse, there is
an (O(n), O(1)) algorithm. We illustrate this for a group (Z, +). Given x1, ..., x,, we compute
(n 4+ 1) prefix sums: So =0, S1 =x1, So =x1 +x2,...,5, = x1 + -+ + x,, . This can be done in
time O(n) since S; = S;_1 + x;. Then, the answer to any query (I, r) isjust S, — S;—1.

Note that the algorithm above solves a static version of the problem. For the dynamic version,
where one is allowed to change the elements of the input sequence, there is a data structure
known as Fenwick’s tree [7]. It allows to change any element as well as to retrieve any prefix
sum in time O(logn).

Block decomposition. One decomposes the input range (1, n) into /b blocks of length b
and then computes, for each block, all its prefixes and suffixes. This can be done in time O(n).
Then, for each query, if it lies entirely in a block, we compute the answer directly (hence, in
time at most O(b)). If it crosses a number of blocks, we decompose it into a suffix of a block,
a number of consecutive blocks, and a prefix of a block. This allows us to answer such long
queries in time O(n/b). Setting b = \/n to balance both cases, we get a (O(n), O(v/n))-algorithm.

Sparse table. This data structure works for idempotent semigroups (bands) and has the type
(O(nlogn), O(1)). We illustrate its main idea for the range minimum query problem (i.e., for
a semigroup (Z, min)). One precomputes answers to O(n log 1) queries—namely, those whose
length is a power of 2. More formally, forall 0 < k < log,nand 1 <i <n —2F+1,let S, be
the answer to a query (7,7 + 2k —1): Sk,i = Xi © Xj41 0 -+ 0 X;,ok_q . Since any range of length 2k
consists of two ranges of length 2¥1, one can compute all Sy ;’s in time O (1 log ) using dynamic
programming. Then, any range ([, r) can be covered by two precomputed ranges: if k is the
smallest integer such that 25 > (r — I + 1)/2, then the answer to this query is Sy o S K r—2k+1
(idempotency is required since we are covering the range, but not partitioning it). This gives an
(O(nlogn), O(1)) algorithm.

Hybrid strategy. One may extend the block decomposition approach further and use one
efficient data structure on top of blocks and possibly a different data structure for each block.
Namely, we decompose the input range into blocks of size b, use a (p1(n), g1(n))-algorithm on
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top of blocks and a (p2(1), g2(n))-algorithm within each block. The resulting algorithm then has
type
(O(n + p1(n/b) + (n/b) - p2(b), O(q1(1/b) + g2(b))) .

For example, for the range minimum problem, combining the sparse table data structure
(p1(n) = O(nlogn), g1(n) = O(1)) with no preprocessing technique (p2(n) = O(1), g2 = O(n))
and block size b = logn, gives an (O(n), O(log n))-algorithm. Another example: using sparse
table in both cases (with block size b = log 1) gives an (O(n loglogn), O(1)) algorithm.

Segment tree. The segment tree data structure is also based on dynamic programming ideas
and works for any semigroup. Consider the following complete binary tree with O(n) nodes:
the root is labelled by a query (1, n), the two children of each inner node (I, r) are labelled by
the left and right halves of the current query (i.e., (I, m) and (m + 1, r) where m = (I +r)/2), the
leaves are labelled by length one queries. Going from leaves to the root, one can precompute
the answers to all the queries in this tree in time O(n). Then, it is possible to show that any
query (I, r) can be partitioned into O(log 1) queries that are stored in the tree. This gives an
(O(n), O(log n)) algorithm. It should be noted that the segment tree can also be used to solve
the dynamic version of the range query problem efficiently: to change the value of one of the
elements of the input sequence, one needs to adjust the answers to O(log 1) queries stored in
the tree.

Algorithms by Yao and by Alon and Schieber. Yao [23] showed that, for any semigroup, it is
possible to preprocess the input sequence in time O(n) so that any range query can be answered
in time O(a(n)) where a(n) is the inverse Ackermann function and proved a matching lower
bound. Later, Alon and Schieber [1] studied a more specific question: what is the minimum
number of semigroup operations needed at the preprocessing stage for being able to then
answer any query in at most k steps? They proved matching lower and upper bounds for
every k. As a special case, they show how to preprocess the input sequence in time O(n log 1)
so that any subsequent query can be answered by applying at most one semigroup operation.
This algorithm generalizes the sparse table data structure (as it does not require the semigroup
to be idempotent) and is particularly easy to describe. It is based on the divide-and-conquer
paradigm. Let m = n/2. We precompute answers to all queries of the form (i, m) and (m + 1, j),
wherel <i <mandm+1 < j <n (i e, suffixes of the left half and prefixes of the right half).
This allows to answer in a single step any query that intersects the middle of the sequence, i.e.,
queries (I, r) such that I < m < r. All the remaining preprocessing boils down to answering
queries that lie entirely in either left or right half. This can be done recursively for the halves. The
corresponding recurrence relation T(n) = 2T(n/2) + O(n) implies an upper bound O(n log n)
on preprocessing time (and hence, the number of semigroup operations).

(O(n), O(1))-type algorithms. There is a sequence of (O(n), O(1))-type algorithms designed
specifically for the range minimum query problem and a related problem called least common
ancestor (LCA) [4, 3, 2, 8]. Here, we briefly sketch the algorithm by Bender and Farach-Colton.
Its main idea is to first reduce RMQ to LCA (the least common ancestor problem). One then
reduces LCA back to RMQ and notices that the resulting instance of RMQ has a convenient
property: the difference between any two consecutive elements is +1. This property allows to
do the following trick: we precompute answers to all relatively short queries (this can be done
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even without knowing the input sequence because of the +1 property); we also partition the
input sequence into blocks and build a segment tree out of these blocks.
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