THEORY OF COMPUTING, Volume 21 (8), 2025, pp. 1-38
www.theoryofcomputing.org

Seed-Protecting Extractors

Gil Cohen* Dean Doron’ Shahar Samocha?*

Received November 23, 2021; Revised December 18, 2022; Published October 28, 2025

Abstract. We introduce a new type of seeded extractors we dub seed-protecting
extractors. Informally, a seeded extractor is seed protecting against a class C of
functions, mappings seeds to seeds, if the seed Y remains close to uniform even
after observing the output Ext(X, A(Y)) for every choice of A € C (or, more generally,
observing the outputs corresponding to several adversaries from C).

The results of this paper are structural. We establish what we believe to be
surprising relations, in fact, equivalences between seed-protecting extractors and
each of the well-studied strengthenings of seeded extractors: strong extractors, non-
malleable extractors (albeit only against permutations), and two-source extractors,
where each case is classified by a suitable class C.

Our work motivates the study of non-malleable extractors against permutations
and puts forth a novel approach for their construction. Indeed, the existing machinery
developed for constructing non-malleable extractors focuses on the output and so
it is aimed towards breaking correlations. Instead, our work suggests developing
techniques for protecting the seed.
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1 Introduction

Informally, a seeded extractor is a function that “purifies” defective randomness using few
fresh random bits. A defective random source is modelled by a distribution X that has some
lower bound on its min-entropy. A random variable X is said to have min-entropy k, denoted
Heoo(X) > k, if for every x, Pr[X = x] < 27k, When X is supported over n-bit strings, we call
X an (1, k)-source. A function Ext: {0,1}" x {0,1}¢ — {0,1}" is a (k, €)-seeded extractor [26] if
for every (n, k)-source X it holds that Ext(X, Y) is e-close, in statistical distance, to the uniform
distribution over m-bit string. Here, Y is a random variable, independent of X, that is uniformly
distributed over d-bit strings. We write this as Ext(X, Y) =, U,,. Informally, using the “fresh”
randomness in the, hopefully short, string Y, the function Ext extracts the randomness from X
to a nearly perfect form, namely, to a distribution that is close to uniform. We refer to Y as the
seed of the extractor.

The notion of seeded extractors can be strengthened in different ways. Three such strengthen-
ings that emerged from the study of seeded extractors are strong seeded extractors, non-malleable
extractors [18], and two-source extractors [9]. The latter is the oldest notion, in fact, two-source
extractors predate the explicit definition of seeded extractors. Nevertheless, such extractors
proved to be the most challenging to construct. In a span of about a decade, strong seeded
extractors with nearly optimal parameters were constructed using sophisticated algebraic and
combinatorial ideas (see, e.g., [31, 25, 21, 19, 30] as well as [29] and [32, Chapter 6]). Non-
malleable extractors were introduced more recently, and despite their syntactic resemblance to
strong seeded extractors (see Section 1.1 below for the formal definitions), their constructions
required completely different techniques. Furthermore, it was the insight regarding the con-
nection between non-malleable extractors and the seemingly unrelated two-source extractors
that enabled the breakthrough work of Chattopadhyay and Zuckerman [8] who constructed
two-source extractors for polylogarithmic min-entropy:.

A brief and informal summary of our contribution

In this article we introduce a new, very natural, variant of seeded extractors we dub seed-
protecting extractors. Informally, a seeded extractor is seed protecting against a class C of
functions, mapping seeds to seeds, if the seed Y remains close to uniform even after observing
the output Ext(X, A(Y)) for every choice of A € C (and, of course, a source X with sufficient
min-entropy). See Definition 1.1 below for the formal definition. We establish what we believe
to be surprising and insightful relations, in fact, equivalences between seed-protecting extractors
and strong extractors, non-malleable extractors against permutations, and two-source extractors,
where each case is classified by a suitable class C.

This fresh point of view on non-malleable extractors suggests, in particular, a novel approach
for constructing such extractors as, indeed, the focus shifts from breaking output correlations
to protecting the seed. We first recall the definitions of strong and non-malleable extractors
(Section 1.1). Then, in Section 1.2, we give the definition of seed-protecting extractors and
present out results.
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1.1 Strong seeded extractors and non-malleable extractors
1.1.1 Strong seeded extractors

A (k, €)-seeded extractor Ext is called strong if the output distribution Ext(X,Y) is close to
uniform even given the seed Y used for the extraction. This can be expressed by writing
(Ext(X,Y),Y) ~¢ (Uy,Y). Seeded extractors and, more so, their strong counterparts have found
many applications. As mentioned, in a beautiful and deep line of work, efficiently computable
strong seeded extractors were constructed for any min-entropy k, having seed-length O(log %)
(see [21, 19, 30] and references therein). Furthermore, connections between strong seeded
extractors and other objects of study such as list decodable codes, samplers, and expander
graphs were found and enabled many applications.

1.1.2 Non-malleable extractors

A non-malleable extractor is a strong seeded extractor that has the following additional property.
The output of the extractor remains close to uniform even after observing the output of the
extractor on any altered seed. Formally, let A: {0, 1}"1 — {0, 1}d be an arbitrary function with no
fixed points, that is, A(y) # y for all y. The reader should think of A as an adversarially chosen
way of altering the seed. A function Ext: {0,1}" x {0, 1} — {0,1}™ is a (k, €)-non-malleable
extractor if for every (n, k)-source X and A as above,

(Ext(X,Y), Ext(X, A(Y)),Y) ~ (U, EXt(X, A(Y)),Y), (1.1)

where again Y is uniform over {0, 1} and is independent of X.

Non-malleable extractors were introduced by Dodis and Wichs [18]. The original motivation
for studying such extractors was for the classic problem of devising privacy amplification
protocols against active adversaries. Indeed, strong seeded extractors yield a solution to the
passive adversary variant. As we discuss later on, non-malleable extractors proved key for the
construction of good two-source extractors. More precisely, one requires a certain generalization
obtained by considering more than one adversarial function [15]. Let ¢ > 1 be an integer. The
function Ext above is called a (k, ¢) t-non-malleable extractor if for every t-tuple of functions
A1,..., A {0,1}¥ — {0,1}4 with no fixed points, it holds that

(EXt(X, Y), {EXt(X, Ai(Y )Yy, Y) ~e (U, (EXX, AV, Y).

In a large body of work, non-malleable extractors were constructed (see [17, 15, 22, 10, 6, 12,
16,7, 11, 23] and references therein). The state-of-the-art construction of (k, €)-non-malleable
extractors [24] has seed length d = O(log n) + O(log 1) - 20(@-(loglog D) for min-entropy as low
as k = O(loglogn + alog 1) for every choice of a > 2. All of these constructions generalize to
t-non-malleable extractors. Alternatively, a black-box reduction from ¢-non-malleable extractors
to non-malleable extractors [12] can be invoked to give explicit {-non-malleable extractors with
seed length poly(t) - d.
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1.1.3 Non-malleable extractors against permutations

In this article we initiate the study of non-malleable extractors against permutations. These are
functions that are ought to satisfy Equation (1.1) only for A a permutation with no fixed points.
While existing applications of non-malleable extractors (for the construction of two-source
extractors and for the design of privacy amplification protocols) consider a general adversarial
function A with no fixed points, we believe that the new notion of non-malleable extractors
against permutations is natural and interesting both in its own right as well for as a step towards
constructing full-fledged non-malleable extractors. It is interesting to note that non-malleable
two-source extractors against permutations were found useful in independent work by Goldreich
and Wigderson [20], where they were studied in connection to robustly self-ordered graphs.

1.2 Strong, non-malleable, and seed-protecting extractors

As mentioned, in this paper we introduce a new type of randomness extractors which we call
seed-protecting extractors. To give the formal definition, for an integer d, let A, be the set of all
functions from {0, 1}% to {0, 1}?. When d is clear from context, we simply write A.

Definition 1.1 (seed-protecting extractors). Let Ext: {0,1}" x {0, 1} — {0,1}" be a (k, €)-seeded
extractor. Let C C A,. We say that Ext is seed protecting against C if for every A € C and every
(n, k)-source X it holds that

where Y is uniformly distributed and is independent of X.

Both non-malleable extractors and seed-protecting extractors have a certain resilience
property against tampering with the seed. While non-malleable extractors focus on the output,
seed-protecting extractors are concerned about the seed. This shift of focus induces inherent
differences. Indeed, while fixed points trivially rule out the possibility of non-malleability
(hence, functions with fixed points are excluded by definition), fixed points turn out to be
a non-issue for seed-protecting extractors. Indeed, consider the extreme case — the identity
function. Clearly, non-malleability cannot be achieved against this function. However, note
that to be seed protecting against the identity function precisely means to be a strong seeded
extractor. In fact, the first observation we make in this preliminary discussion is that strong
extractors are equivalent to seed-protecting extractors against a class of permutations which we
denote by I'T C Aj.

Claim 1.2 (strong < seed protecting against IT). Let Ext: {0,1}" x {0,1}¥ — {0,1}" be a
(k, €)-seeded extractor. Then,

1. IfExtis a (k, €)-seed-protecting extractor against I then Ext is a (k, 2¢)-strong seeded extractor.

2. IfExtis a (k, €)-strong seeded extractor then Ext is a (k, 2¢)-seed-protecting extractor against I1.
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Proof. For the first item, a seed-protecting extractor against IT can be seen to be a strong seeded
extractor by taking A to be the identity function. Indeed, with this choice, since Ext is a seeded
extractor the right hand side of Equation (1.2) is e-close to U+, and so (Y, Ext(X, Y)) =2. (Y, Up).
For the other direction, as Ext is (k, ¢)-strong we have that (Y, Ext(X, Y)) =, (Y, U;;). Thus, for
any A € Iy, it holds that

(A(Y), Ext(X, A(Y))) ¢ (A(Y), Un) -

By the data processing inequality, one can apply any function to the first component A(Y') of
both sides and maintain the e-closeness. In particular, by applying A~! we get

(Y, Ext(X, A(Y))) = (Y, Up). (1.3)

Now, (Y, Uy;) has the same distribution as Uy, and Ext(X, A(Y)) =, U,,. This, together with
Equation (1.3), implies that (Y, Ext(X, A(Y))) =2, (Ug, Ext(X, A(Y))), completing the proof. O

Going back to non-malleable extractors, by the discussion above, it is not a priori clear
whether non-malleability is in any way related to seed protection. Nonetheless, one of the results
of this paper is an equivalence between the property of non-malleability and seed protection, at
least when focusing on permutation adversaries. By saying that Ext is a non-malleable extractor
against C € A, we mean that Equation (1.1) holds for every A € C (but not necessarily for other
functions) that, in addition, has no fixed points.

For stating our result, we generalize seed protection to several adversarial functions. This
should be done with some care. Indeed, naively, one’s first suggestion might require that for
every two functions Ay, A, € C, it holds that

(Y, Ext(X, A1(Y)), Ext(X, A2(Y))) = (Uyg, Ext(X, A1(Y)), Ext(X, A2(Y))) .

This definition, we observe, is moot. Indeed, consider two functions A;, A,: {0,1}¢ — {0,1}4
that according to the first bit of the seed, Y;, decide whether to “behave” exactly the same or
very differently. More concretely, sample two permutations 7o, 771 on {0, 1}? at random, and
define A1(y) = mo(y) and A2(y) = 1y, (y). As o, 11 were chosen at random, and thus are usually
disagree, by observing Ext(X, A1(Y)) and Ext(X, A>(Y)) one can distinguish Y, in fact its first bit
Y7, from uniform by checking whether both outputs are equal.

As we prove, this “collusion,” in which two or more adversarial functions attain the same
value, is the only obstacle for seed protection against permutations. (Already here we stress that
there are other obstacles when considering functions other than permutations, as we discuss
in Section 1.3.) Given A1, ..., A;: {0,1}¥ — {0,1}%, we say A1, ..., A are non-colluding if for
every y € {0,1}4, all the evaluations A1(y), ..., A(y) are distinct. We denote by X* C ﬂfi
the set of t-tuples of functions that are non-colluding. With hindsight, we give the following
generalization of seed-protecting extractors to several adversarial functions.

Definition 1.3. Let Ext: {0,1}" x {0,1} — {0, 1} be a (k, ¢)-seeded extractor. Let C C A. We
say that Ext is t-seed protecting against C if for every (n, k)-source X and (A1, ..., As) € X' NC' it
holds that

(Y, {Ext(X, Ai(V)Y_,) =e (Ua, {(EXUX, AN} -

We also express this by saying that Ext is seed protecting against C".

THEORY OF COMPUTING, Volume 21 (8), 2025, pp. 1-38 5


http://dx.doi.org/10.4086/toc

GIL COHEN, DEAN DORON, AND SHAHAR SAMOCHA

The following lemma gives the equivalence’s easier direction, showing that non-malleable
extractors against permutations (with no fixed points) are seed protecting against (non-colluding)
permutations. We refer the reader to Lemma 4.4 for a more general statement.

Lemma 1.4 (non-malleable = seed protecting). Let t > 1 and assume Ext is a (k, €)-non-malleable
extractor against T1'. Then, Ext is a (k, 4t €)-seed-protecting extractor against TT'*1.

As a warm-up, in Section 2, we prove Lemma 1.4 for t = 1 as well as its converse which is
indeed more surprising and difficult to prove (see Theorem 2.1).

Towards stating the other direction, for A > 0, define ¥ to be the subset of A, containing all
functions A: {0,1}4 — {0, 1} such that Ho(A(Uy4)) > d — A. For example, note that o = IT. We
give a reduction from non-malleable extractors against ¥, to seed-protecting extractors against

Fa.

Theorem 1.5 (seed protecting = non-malleable). Let t > 1 be an integer, and A > max(1,logt).
Let Ext: {0,1}" x{0, 1}d — {0,1}" be a (k, &)-seed-protecting extractor against 7‘1*1 NX'*L, Assume
further that d = Q(logt). Then, Extis (k’, ¢’)-non-malleable against ?X with k' = k + mt + log% and
¢ = O(el/3).

We prove Theoren 1.5 in Section 3. We note that for A = 0 and t = 1, seed protection against
permutations is enough, and one does not need to devise an extractor against #7. Thus, for
A =0and t = 1 there is a strong equivalence, which we prove as a warm-up, in Theorem 2.1.

1.3 Two-source extractors as seed-protecting extractors

Discussing seed protection against permutations sufficed for characterizing both strong and
non-malleable extractors against permutations. But, what about other adversarial functions? Is
it the case that seed protection is achievable against any single function? (Of course, collusion
is irrelevant in such a setting.) The quick answer is “no.” Surprisingly, our next result is
a characterization we obtain for two-source extractors as 1-seed-protecting extractors i.e.,
seed-protecting extractors with a single adversarial function) against a suitable family. In
particular, known impossibility results on two-source extractors translate to impossibility results
on 1-seed-protecting extractors.

Before recalling the formal definition of two-source extractors and describing this family, we
believe it is instructive to first consider an extreme case and ask whether one can seed-protect
against an adversarial function A that, unlike a permutation, is allowed to “focus” on seeds of
its choice. The ultimate case is where A has range of size one. However, in such case, A(y) gives
no information about the seed v, and so seed protection trivially follows. What about a range of
size two? We have the following easy claim that establishes the impossibility of seed protection
against such functions. Let 7~ C A, be the set of all functions A: {0,1}? — {0, 1}* with range
of size precisely two.

Claim 1.6. Let Ext: {0,1}" x {0,1}¥ — {0,1} be a (k, ¢)-seeded extractor. Then, for k < n — 1 and
¢ < %, Extis not (k, &)-seed protecting against T.
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Proof. Fix an arbitrary w € {0, 1}4 and assume without loss of generality that Pr[Ext(U,, w) =
0] > % Define X to be the random variable that is uniformly distributed over all x € {0,1}"
such that Ext(x,w) = 0. Since Ext is a (k, ¢)-seeded extractor for min-entropy k and as
Ho(X) > n —1 > k, we have that Ext(X,Y) ~. U;. Thus,

Pr[Ext(X,Y)=1]> = —¢.

N —

By an averaging argument, there exists z € {0, 1} such that

Pr[Ext(X,z)=1] > = — ¢.

N =

Note that w # z. Define the function A : {0,1}¢ — {0,1}¢ by

w =0,
A(y) :{ e 3
z wn=1,

and note that A € 7. Denote Z = Ext(X,Y) and Z’ = Ext(X, A(Y)). We turn to show that

y =SD((Y,Z),(U4,2")) =

il M
N ™

To see this, note that
y>SD((V1,Z"),(U1,2") 2 Pr[Z' =Y1] - Pr[Z" = U4]. (1.4)
We have that
Pr(Z"' =1] = %Pr[Z' =Y |1 =0]+ %Pr[Z’ =Y |7 =1]
= % (Pr[Ext(X, w) = 0] + Pr[Ext(X, z) = 1])

1 1
> = I
_2(1+2 e)

3-2¢

o~

On the other hand, Pr[Z’ = U;] = 3, and so by Equation (1.4),

>3—25
V=7

=

N —
==
N| m

Thus, as we assume ¢ < %, we get that y > % which concludes the proof. m|
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We next recall the definition of a two-source extractor or, more generally, of an unbalanced
two-source extractor, and then present our characterization of two-source extractors as seed-
protecting extractors. A (ki, ky, €)-two-source extractor is a function Ext: {0,1}" x {0,1}"? —
{0, 1} such that for every (11, k1)-source X and an independent (15, kz)-source Y it holds that
Ext(X,Y) = U,;. The existence of a two-source extractor for min-entropies k1 = log n,+O(log %)
and k; = logny + O(log %) with m = ki + ko — O(log %) output bits was established in [9] but
the problem of explicitly constructing a (k, k, €)-two-source extractor with 71 = n, = n even for
min-entropy as high as k = 0.49n remained open for three decades [9, 5, 28].

Over the last few years, there has been remarkable progress on this problem. In particular,
in a breakthrough paper Chattopadhyay and Zuckerman [8] obtained a (k, k, 1)-two-source
extractor Ext: {0,1}" x {0,1}" — {0, 1} for min-entropy as low as k = poly(log ). Subsequent
work [4, 13, 24] improved the entropy requirement even further to k = 5(10g n). Constructing
two-source extractors for min-entropy O(log ) (or, more ambitiously, log(rn) + O(1)) is highly
motivated by the problem of constructing explicit Ramsey graphs [1, 2, 14, 13]. A second
important open problem is constructing two-source extractors with low error. Current techniques
do not yield explicit two-source extractors when ¢ = 1/n%®,

Our main result here is proving an equivalence of two-source extractors and seed-protecting
extractors for the class Fa.

Theorem 1.7 (two-source extractors as seed-protecting extractors). Let Ext: {0,1}" x {0, 1} —
{0,1}™,

1. If Ext is (k1, €)-seed-protecting extractor against Fa_r, then Ext is a (ki, ko, 3€)-two-source
extractor.

2. If Ext is a (kq, ko, €)-two-source extractor which is strong in the second source! then Ext is
(k1,2¢€)-seed protecting against Fy_,.

Theorem 1.7 is proven in Section 5 (see Lemma 5.1 and Lemma 5.3 for the proof of each
direction. By invoking a known lower bound result on the amount of min-entropy required
for two-source extractors, Theorem 1.7 in particular implies that seed protection cannot be
achieved against adversaries that are allowed to have small range. Claim 1.6 gives a direct proof
of that for the extreme case of range size two. We find it insightful that the natural notion of
seed protection gives a characterization of the three most well-studied types of randomness
extractors: strong, two-source, and non-malleable (albeit against adversaries with large range).

1.4 Open problems

For which other classes C do seed-protecting extractors against C exist? Can we get full-fledged
non-malleability (i. e., against general adversaries with no fixed points) from seed-protecting
extractors against these prospective classes C? More generally, extending the connection

Note that this strength requirement has the undesired effect of breaking the equivalence. However, one can
always assume that a two-source extractor is strong in each of its sources provided one is willing to increase the
error by a multiplicative factor of 20("). See also a remark in the footnote of [28] just prior to Definition 1.3.
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between seed protecting and non-malleable extractors is an intriguing open question left for
future research.

For C =TI, i.e., for permutation adversaries, we proved that indeed seed protection implies
non-malleability. An interesting open problem is whether non-malleable extractors for permu-
tations (or even involutions) imply full-fledged non-malleability. A second interesting open
problem is whether non-malleability against permutations (or involutions) implies that for each
source X there exists a smallset Bx C {0,1}% of “bad” seeds such that (Ext(X, n), Ext(X, y2)) = U
for every two distinct y1, y2 € {0, 1}? \ Bx. Note that this weaker notion of non-malleability
already suffices for Chattopadhyay and Zuckerman’s construction of two-source extractors [8].

Also, note that Theorem 1.5 incurs tm entropy loss. Recall that non-malleable extractors
must satisfy k > (t + 1)m, as the t + 1 outputs must be independent for a proper choice of
adversaries. On the other hand, intuitively, this requirement is unnecessary for seed-protecting
extractors, and it seems that the only requirement should be k > m (we ignore the additive error
dependence for simplicity). Having said that, we do not know how to formalize the intuition
above regarding the entropy loss of seed-protecting extractors. Indeed, in Section 6 we prove
the existence of seed-protecting extractors via a probabilistic argument, and our proof technique
requires k > tm. We leave the question of understanding the entropy loss of seed-protecting
extractors to future research.

Lastly, it would be interesting to investigate the connection between seed-protecting extractors
to other types of extractors. Concretely, can non-malleable two-source extractors be characterized
by seed-protecting extractors?

2 Warm-up

As a warm-up, in this section we give a proof sketch for the equivalence between non-malleable
extractors and seed-protecting extractors for permutations. For simplicity we focus on the case
t = 1. The case t > 1 follows by similar ideas but is somewhat more involved.

Theorem 2.1 (IT non-malleability <= TI? seed protection). Let Ext: {0,1}" x {0, 1} — {0,1}™.

1. IfExtis (k, e)-seed protecting against T1% then Ext is (k’, 14&"/3)-non-malleable against T1, where
k" =k +2m + O(log(1/¢)).

2. IfExtis (k, €)-non-malleable against 1 then Ext is (k, 3¢)-seed-protecting extractor against T1.

Proof. We start with the first and more difficult item.

Proof sketch of the first item

Set & = 14¢1/3. Assume towards a contradiction that Ext is not non-malleable againstI1. Consider
then a source X ~ {0, 1}" and adversarial permutation A € IT with no fixed points for which

SD((EXt(X, Y), EX(X, A(Y), Y), (Un, EX(X, A(Y)), Y)) > 5,

THEORY OF COMPUTING, Volume 21 (8), 2025, pp. 1-38 9
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where Y ~ {0, 1}d is uniform and independent of X. This implies

E, [SD((Ext(X, y), Ext(X, A(W))), (Up, Ext(X,A(y))))] > 6. 2.1)

For every y, y1 € {0, 1}% we define the distributions

D%yl = (EXt(X/ y)/ EXt(X/ yl)) ’
Iyl = (UTH/ EXt(X/ yl)) :

Define the function T: {0,1}9x{0,1}¥ — [0,1] by T(y, y1) = SD (Dy,y,, Ly, ) - With this notation,
Equation (2.1) can be written as EY [T(y, A(y))] > 6. By an averaging argument, there exists a
yN

set H C {0, 1} of size |H| = 6/2 - 2 such that T(y, A(y)) > 6/2 for every y € H.

Based on the fact that Ext is strong, we prove that there exists a subset By € {0, 1} of density
2¢1/3 such that for every y ¢ By, Ey -, [T(y, y1)] < %3, We remark that this is where one pays
2m + O(log(1/¢)) in the entropy loss. We choose to skip the proof of this fact (see Claim 3.4).

A main part of the proof is extending A|y, the restriction of A to H, to a new permutation
A over {0,1}" such that for almost every y outside of H it holds that T(y,A\(y)) is small, in
particular, bounded by €13, This is done via a greedy algorithm. We arrange the elements of
{0,1}%\ (H U By) in some order Yi,-.., Y. By an averaging argument, for every y ¢ By, there are
at most ¢!/3 fraction of seeds y; for which T(y, y1) > €!/3. Denote this set by B(y). We proceed
iteratively, starting from i = 1, and choose an element z; ¢ B(y;), also different from y;, that
has not been assigned already as an element of the range of (the partially defined) A, and set
g(yi) = z;. This can be done for most elements y;. When i gets very close to { we may have to
assign the remaining elements of the range in any way, but which will still guarantee that Aisa
permutation. At any rate, for simplicity, let us assume that for all elements y1, ..., y, we have
that A(y;) ¢ B(yi) U {vi}.

Define the random variables D 7= D and I = I~

Y,A(Y) Ay
over {0, 1}". Using the fact that Ext is seed protecting, we prove the following.

where Y is uniformly distributed

Claim 2.2. There exists a set By C {0, 1}? of density at most /¢ such that for every y € {0,1} \ By,
SD(D3, Z)y/g(y)) < Ve

Proof. Denote
Z(y) = Ext(X, A(y)) -
With this notation, we have that
D; = (Ext(X, Y), Z(Y)),
D, iy = EX(X, ), Z(y)).
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By construction, Aisa permutation with no fixed points (more importantly, it does not collude
with the identity function). Observe that as Ext is seed protecting against [1? N X2 with error &,

E [SD(D

B y,ﬁ(y)’ﬂg)] <e.

By Markov’s inequality, the set B, C {0, 1}9 of all the y satisfying SD((D% Ay D7) = V¢ has

density at most V¢, as stated.
O

Using that Ext is a strong seeded extractor, one can prove that

Claim 2.3. There exists a set B3 C {0, 1}? of density at most /¢ such that for every y € {0,1}% \ Bs,
SD(]A‘, Ig(y)) < ve.

Write B = By U B U B3. Recall that [H| = 6/2-2¢ = 7¢1/3 . 24, By the above claims we can
bound |B| < 7¢'/3 .24, and so there exists y;, € H \ B. Take y; € {0,1} \ (H U B). By Claim 2.2,

since vy, yi € Ba, SD(Dy;,,Z(yh)’ D;) < Veand SD(DW,Z(W)'DZ) < +/e. Hence,

SD (Dwfg(w)’ Dyh/g(yh)) <2ve. (2.2)

By Claim 2.3 and since yy, y; € B3, SD(Z3,

(yh)’Ig) < /e and SD(I;

(W),Z'A‘) < +/e. Thus,

) (fg(w),fg(yh)) <2vE. 2.3)
Now, since vy, € {0,1}? \ (H U By),
_ n 1/3
SD (Dye,A(w)’IA(W)) ser. @4)

By Equations (2.2), (2.3), and (2.4), and the triangle inequality, SD(D
However, y, € H and so

- . 1/3
Ay Law,) < 57

- 1
SD (Z)yh,g(yh)’jg(yh)) =T (]/h,A(]/h)) = T(yn, Alyn) > 27

contradicting our choice of 6. This proves the first item.

Proof sketch of the second item

Moving on to the second item, let A;, A, € ITbe non-colluding. Let X be an (1, k)-source, and
let Y ~ {0, 1}d be a uniform random variable, independent of X. Denote

Z(y) = (Ext(X, A1(y)), Ex(X, Ax(y))).
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As AIl is a permutation, Afl (Y) distributes the same as Y does. Thus,
SD((Uq, Z(Y)), (Y, Z(Y))) = SD((Uy, Z(AT (Y))), (AT (Y), Z(ATH(Y)))).

By the data-processing inequality,? we can apply A; on the prefix of both random variables
without increasing the statistical distance; The above equation then becomes

SD((U4, Z(Y)), (Y, Z(Y))) = SD((Ua, Z(AT'(Y))), (Y, Z(AT'(Y)))).- (2.5)
Define P = A, o AIl. Then,
Z(ATH(Y)) = (Ext (X, Y), Ext(X, P(Y))) .

Note that P is a permutation. Furthermore, observe that as (A1, Az) € X 2 P has no fixed points.
Indeed, assuming towards a contradiction that P(y) = y for some y € {0, 1}, we get that
AT (y) = A} (y), which is impossible. By the non-malleability of Ext, we know that

SD((Y, Z(AT (), (Y, U, Ex(X, P(Y)))) < ¢,
Thus, by the triangle inequality, we get
SD((Ua, Z(AT' (), (Y, Z(AT(Y)))) < SD((Ua, Z(ATH(Y))), (Ug, Unm, EXY(X, P(Y))))+
SD((Ug, Uy, Ext(X, P(Y))), (Y, U, Ext(X, P(Y))))+
SD((Y, U, EXt(X, P(Y))), (Y, Z(AT'(Y))))
< 3e. (2.6)

The proof then follows by Equation (2.5). O

3 Seed-protecting extractors for high entropy adversaries are non-
malleable

In this section we prove Theorem 1.5, showing that a seed-protecting extractor with adversarial
entropy parameter A is non-malleable against roughly the same adversarial function class.

Definition 3.1 (non-colluding functions). We say that a tuple (A1, ..., As) € {ﬂ; do not collude, if
for every y € {0, 1}d, A1(y), ..., At(y) are pairwise distinct. When d is clear from context, we
denote by X' the set of t-tuples of non-colluding functions from {0, 1} to {0, 1}4.

We prove the following slight restatement of Theorem 1.5. Henceforth, we denoteby N' C Ay
the class of functions with no fixed points. Recall that ¥, is the set of functions A € A, for
which Ho(A(Uy)) > d — A.

2By this we refer to the fact that for any random variables X, Y ~ Q;, and every f: Q1 — Qp, possibly randomized,
SD(f(X), f(Y)) < SD(X, Y). Equality is attained when f is injective.
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Theorem 3.2. Let t > 1 be an integer, and A > 0. Let Ext: {0,1}" x {0,1}* — {0,1}" be a
(k, €)-seeded extractor with d > 2logt + log % +2and ¢ <107, Assume that Ext is seed protecting

against 7-;;;1( Aog,1) Then, Ext is non-malleable against (Fo N N)' N X! for min-entropy k +mt +log %
1/3

and error guarantee 14¢

Note that the non-malleability guaranteed by Theorem 3.2 is with respect to (Fa N N)' N X!,
That is, non-colluding is still required. In Theorem 3.1 we show how to get rid of this requirement
in a “black-box” fashion.

Proof of Theorem 3.2. Assume towards a contradiction that Ext is not non-malleable against
(Fa NN for min-entropy k’ = k + mt + log(1/¢). Then, there exists an (1, k') source X and
functions A1, ..., A; € Fa NN with (Aq, ..., A;) € X!, such that

SD((Ext(X, Y),Ext(X, Ay(Y)), ..., Ext(X, A(Y)),Y),

(U, Ext(X, A1(Y)), ..., Ext(X, A/(Y)), Y)) >0,
for 6 = 14¢'/3, where Y ~ {0, 1}d is uniform and independent of X. That is,

E [SD((Ext(X, Y),Ext(X, A1), . .., Ext(X, Ai(y)),

(U EX(X, A1())), - - ., Ext(X,Af(y))))] 55, @3.1)

Fory,vi,...,y: € {0, 1}4 define the distributions

Dy,yl ..... Yt = (EXt(X, ]/)z EXt(X/ yl); sy EXt(X/ ]/t)) ’
iy = (Um, EXX(X, y1), .., EXX(X, y1))

t+1

— [0, 1] as follows. For y, y1,...,y: € {0, 1}4,

T(]// yll ceey yt) = SD (Dy,yl,...,yt/]—y] ..... y[) .

With this notation, Equation (3.1) can be written as EY [T(y, A1(y), ..., A:(y))] > 6. By an
y~

Define the function T: ({0,1}9)

averaging argument, there exists a set H C {0, 1} of size |H| = (6/2) - 29 such that for every
y€H,

T, Ai(y), - Ady) > 5

LetYi,...,Y; be independent random variables, that are jointly independent of X, and each
Y; is uniformly distributed over {0, 1}4. Denote

Z =Ext(X,Y])o--- 0 Ext(X,Y;).

For z = (z1,...,2:) € ({0,1}"")! define the random variable X, = X | {Z = z}.
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Claim 3.3. There exists a set B* C ({0, 1}™)! such that:

1. Pr[Z € B'] < ¢, and,

2. Foreveryz ¢ B', Ho(Xz) > Hoo(X) — tm —log(1/¢) > k.
Proof. Fix z € ({0,1}™)" and observe that

Heo(X:) > Hoo(X) — log ( (3.2)

1
Pr[Z = z]) ’

Define B’ = {z :Pr[Z =2z] < 2‘””&} . By Equation (3.2), for every z ¢ B’, item (2) holds. As
B’ c {0,1}™,

Pr[Z € B'] = Z Pr[Z=z] < |B|-2™e < ¢,

zeB’

and so item (1) follows as well. O

Claim 3.4. There exists a subset By C {0, 1} of size |B1| < 2¢'/3 - 29 such that for every y € By,

E [Ty, y1,...,y0)] < €23,
(Y1, y)~Usa

Proof. Recall the definition of X, and B’ from Lemma 3.3. Fix z ¢ B’. Let Y be uniform over
{0,1}4 and independent of (X, Y1, ..., Y;). Note that conditioned on the event Z = z, the random
variables X, Y are independent, and, furthermore, Y is uniformly distributed over {0, 1}d. In
addition, as z ¢ B’, Ho(X;) > k. Thus, as Ext is a strong (k, ¢) seeded extractor,

(EXt(XZ/ Y)I Y) e (um/ Y) :
Let Z’ be the distribution obtained by sampling z ~ Z conditioned on z ¢ B’. Then,

T(Y,Y1,...,Y:) = SD((Ext(X,Y), Z,Y),Un, Z,Y))
= E [SD((Ext(X,Y),Y), (U, Y))]

<Pr[ZeB]+ E [SD((ExX(Xz,Y),Y), (Un, V)] < 2¢.
27!
By Markov’s inequality, there exists a subset By C {0, 1} of size |B1| < 2¢!/3 - 24 such that for

every iy ¢ By,
T(y,Y1,..., 1) < 23

Thus, as Y3, ..., Y; are independent, we get that for every v ¢ By,

E [T(y/y1/-~-/yt)] < 82/3/
(}/1 ..... yt)NU[d

concluding the proof of the claim. m|
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Proposition 3.5. There exist (A}, ... ,A\t) e 7!

max(djog,1) | X' and By € {0,1}9 of size |By| <
3el/3 .24 4 t such that

1. Foreveryy € H, A}(y) = Ai(y), and,
2. Forevery y € {0,1}% \ (H U By) it holds that T (y,gl(y), . ,Et(y)) < ell3,

Proof. Denote g =27+ |B; \ H|. By Claim 3.4, B < 2¢!/3. Moreover, by Markov’s inequality, for
every y ¢ By, there exists B(y) C ({0, 1}%) of size at most |B(y)| < /3 - 24 such that for every

(y1,-..,y¢) € B(y),
Ty, y1,...,y) < /3.

LetL = {0,1}¢\ (H U By). Fixan (arbitrary) ordering of the elements in L and denote them by
y',y%, ...,y Let c be the least integer larger than max(e!/3 - 29, ), and set ¢ = |L| — c. Denote

B,=(Bi\H)U{y",...,y"},
observing that indeed
|Bo| < |Bi|+|L|—€=|By| +c <3e'/3 .27 +¢.
We define a family of functions
{Zj,mzlsjst,OSmse},
where A\jloz H — {0,1}% and for m > 1,
A HU{y', ..., y™ — {0,1}.

The above functions are constructed via the following algorithm which proceeds iteratively on
m.

The construction algorithm for the A\j,m functions
1. For every j € [t], set Ej,o = Ajln.

2. For m =1,...,¢, we will show in Claim 3.6 below that there exists (y{’,...,y;") €
({0, 1}t \ B(y™) such that y™, yi', ..., y;" are pairwise distinct; furthermore, for every j €

[£],

set

A\;;_l(y?)’ < t. Under these assumptions, for every j € [t]and y € HU {y!,...,y™"},

Ain(y) =34
! (y) {Af/m—l(y) otherwise.

Claim 3.6. The underlying assumption of step (2) in the algorithm above holds for every m € [{].
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Proof. We begin by setting notation. For every m € [{] and j € [t], we define the set G}" c
{0,1}\ {y™} of elements whose preimage is of size strictly less than t with respect to the
function A; ;,-1. Formally,
Gy ={y e O\ (") AL )| <t} -

With this notation, the hypothesis underlying step (2) holds at iteration m if there exists an
element in (G{" X --- X G{") \ B(y™) with pairwise distinct entries. To establish this, we start by
bounding the size of G;." from below for every fixed j € [t].

For an element y not to be contained in G;" there must be at least t elements whose image

under A jm—11s y. At the beginning of the m'™ iteration, m — 1 elements have been assigned an
image at step (2) and additional |H| = 6/2 - 24 elements were assigned at Equation (1). Hence,

H -1
G7] 2 10,13\ gy - L2
i g HI*E=T (3.3)
t
As { = |L| — c and since L N H = () we have that
|H +¢=|H|+|L|-c<|HUL|-c<2—¢,

and so

‘Gfﬂ’z(1—1)2d+”1—1.

] t t
Thus, as y™ ¢ By,

m m m 1 d c+1 t 1/3  »d
[(GJF x -+ x GJ") \ B(y™)| = 1-2)20+ —— 1) -7 20 (3.4)

Let NE C ({0, 1}%)! be the largest set of vectors v € ({0, 1}%)! such that v; # v; for every pair
of distinct 7, j € [t]. With this notation, to prove that the assumption underlying step (2) holds
at step m, one must show that

((GI'x---xG")\B(y™)) NNE # 0. (3.5)
To this end, note that |({0, 134t NE| < (E)Z(t ~D4_ Thus, by Equation (3.4), it suffices to show

that ,
1 t
((1 - 1)2d + C: - 1) > el/3 .00 4 (2)2“—1)‘*. (3.6)

t
For t = 1, Equation (3.6) is equivalent to ¢ > ¢!/3 - 24 which readily follows by the definition of c.

Consider then ¢ > 2. By definition, ¢ > t and so (c + 1)/t — 1 > 0. Note further that (1 - %)t > 1
Therefore, to satisfy Equation (3.6), it suffices to establish that

L a3 nd [t s-1)d
-2 > 29112 .
1 ° =° 2
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It is straightforward to verify that the above equation follows per our assumption d > 2logt +
2. O

We turn to extend the functions Ellg, .. ,A\t,e to the domain {0,1}%. To this end, let
D ={0,1}*\ (HU{y%,...,y’}) and denote its elements by y*, ...yt Form=1,...,e we
define the function R
Ajesm: DU "L, Lyt - {0,1)

using the following iterative algorithm.

The algorithm for extending A j¢to A}-

1. Form = 1,...,e, we will show in Claim 3.7 below that there exist pairwise distinct
yf+m, - ,yf“” € {0,1}%\ {y**™} such that for every j € [t], Z}}+m_1(yf+m) < 1. Under

these assumptions, for every j € [t]and y € HU {y!, ..., y""™"}, set

{+m — ql+m.
Apom(y) = =
Ajsm-1(y) otherwise.

2. For j € [t], set A}- = Zj,e.
Claim 3.7. The underlying assumption in step (1) of the algorithm above holds.

—~

Proof. Fix m € [e]. For every j € [t], the number of elements z for which |A;} meg () = 21s

bounded above by % -2 Thus, when setting A j b (y“m) one has at least 2¢/2 choices for an
image with respect to this restriction. Recall that we also need to guarantee that

Y AL e (), A ()

are pairwise distinct. This can be achieved as % 24+t +1 < 24 per our assumption d >
2logt + 2. ]

Analyzing the A functions. First, note that the domain of each A}, e, Zt is {0, 1}d. Recall
that each of Ay, ..., A; has no fixed points by assumption and, furthermore, are non-colluding.

Thus, Ay, ..., At have no fixed points and are non-colluding when restricted to H. Moreover, by
construction, the functions A 1,eee, A ¢ are defined to have no fixed points and to be non-colluding
outside of H as well. Thus, (id, Zl, .. .,A}) e X'*1 whereid: {0,1}¥ — {0,1}% is the identity
function.

We turn to show that A j € Fmax(alogt,1) forevery j € [t]. Recall that A; € F4. Both algorithms
above assure that for any j € [t],and y ¢ Im(gj |g) it holds that, ‘E;l (y)‘ < max(t, 2). Observe

that f € Fog; if and only if for every y € Im(f), |f ~I(y)| < t, and so it holds that
A\] € FaU ﬁogmax(t,Z) = ¢max(A,log t,1) -
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This concludes the proof of Proposition 3.5. m]
We turn back to the proof of Theorem 3.2. Define the random variables
D;=D

1= IZ(Y) ’

Y,A(Y)’

where Y is uniformly distributed over {0, 1}4 and E(Y) = (A\l(Y), ceey A\t(Y)).
Claim 3.8. There exists a set B3 C {0,1}¢ of size |B3| < Ve - 24 such that for every y € {0, 1}4\ B,

SD (D7, D, 7)) < Ve.
Proof. Denote
Z(y) = (Ext(X, A(y), ..., Ext(X, Zl(y))) .
With this notation,
Dy = (Bxt(X,Y), Z(1)) ,

D, 7 = (Ext(x, y),Z(y)) .

By Proposition 3.5, A}, ceny A\t € Tmax(A,logm) ; moreover, note that id € fmax(A,logt,ly Observe

that as Ext is seed protecting against Tr;;i( Aogt1)’ and since (id, A}, ., A}) e X**1. it holds that

E [SD((Ext(X, v), Z(y)), (Ext(X,Y), Z(Y)))] < . (37)

y~ta
Let B3 C {0, 1} be the set of all elements y satisfying

SD((Ext(X, y), Z(y)), (Ext(X,Y), Z(Y))) = Ve .

By Markov’s inequality, it follows that | B3| < /e - 2%, as stated.
O

Claim 3.9. There exists a set By C {0, 1} of size |By| < /e - 29 such that for every y € {0,1} \ By,
SD (73, Iz, ) < Ve
Proof. Note that for every y € {0,1} it holds that
SD (I3, Iz, ) = SD(Z(¥), Z(y)).

THEORY OF COMPUTING, Volume 21 (8), 2025, pp. 1-38 18


http://dx.doi.org/10.4086/toc

SEED-PROTECTING EXTRACTORS

By Equation (3.7),

V1, [SD (IAf g(y))] <e.

Let B4 C {0, 1}9 be the set of all elements y satisfying
SD(I3, I5,,) > Ve.
By Markov’s inequality, it follows that |By| < Ve - 24 as stated. O
We are now ready to complete the proof. Write B = B; U B U B3 U By. Recall that
|H| = O gt oyl pf
2
By the above claims and using our hypothesis on d,
Bl < (5e® +2ve) - 24 ++ <713 .24,

and so there exists y, € H \ B. On the other hand,
|HUB| < (g +581/3+2\/E)2d+t <24,

where the last inequality follows as ¢ < 107 and, again, using our hypothesis on d. Hence,
there exists y, € {0,1}¢ \ (H U B).
By Claim 3.8, since y¢, yi, ¢ B3,

SD (Z)yh/g(yh),ﬂg) <,

SD (@yeﬁ(w)’ Z)A) < Ve,

and so
SD (Dyeﬁ(w)’ D.‘/hrg(yh)) < 2\/5' (38)
By Claim 3.9 and since vy, y, ¢ Ba,
SD (Zz,,, T5) < V&,
SD (Zz,,,,, 7) < Ve
Thus,
SD (Ig(w),fg(yh)) <2vE. (3.9)
Now, since y; € {0, 1}4\ (H U By), by item (2) of Proposition 3.5,
~ . 1/3
SD(D,, 71 i) < €7 (3.10)
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By Equation (3.8), Equation (3.9), Equation (3.10), and the triangle inequality,

- . 1/3
SD (Dyh,A(yh)’IA(yh)) <5e7.
However, y, € H and so
SD (Dyhzg(yh)’jg(yh)) =T (yh'A(yh))
0
= T(yn A > 5,
contradicting our choice of 6. O

Observe thatfor A = 0and t = 1, Theorem 2.1 shows that seed protection against permutations
is enough, and one does not need to devise an extractor against . For a general t > 1 however,
we suspect it is not true, and one needs to to handle A for A > 0 to get non-malleability
against permutations. We note however, that if one is willing to tolerate “smoothness” (in
the sense of Definition 4.3 and Definition 4.1 below), or a slight error degradation, we can get
non-malleability against permutations from seed-protecting extractors against permutations, as
long as t is small enough. We omit the details.

3.1 Colluding does not harm non-malleability

Theorem 3.2 established non-malleability against (73 N )" N X*.> However, in sharp contrast
to seed-protecting extractors, colluding cannot help adversaries in breaking non-malleable
extractors. Intuitively this should be clear, as redundant information should not help the
adversary in distinguishing Ext(X, Y) from uniform. Here we make it formal.

Lemma 3.10. Let Ext: {0,1}" x {0, 1}d — {0,1}" be a (k, €)-non-malleable extractor against N* N X!
(i. e., non-colluding functions with no fixed points), so that d > log(t + 2). Then, Ext is (k, £)-non-
malleable against N* (i. e., a t-non-malleable extractor).

Proof. Let Ay,...,A; € Az N N be any adversarial functions with no fixed points. Fix an
(n, k)-source X and let Y ~ {0, 1}d be a uniform random variable, independent of X.

We define the tuple of non-colluding functions A7, ..., A; as follows. Let B C {0, 1}d be the
set of y-s in which a colluding occurs. Namely, for each y € B there exist distinct i, j € [¢] for
which A;(y) = A;(y). Note that it is possible that different set of functions collude separately,
say Ai(y) = Aj(y) =z and Ay(y) = Aj(y) =z’ for z # z’. Given y € {0, 119, let B(y) C [t] be the
set of “redundant” adversaries for y. Formally,

B(y) = {i € [t] : there exists j < i such that A;(y) = Ai(y)} .

3We recall that Fy is the set of functions A € A, for which Hoo(A(Uy)) > d — A, N is the set of functions with no
fixed points, and X is the set of t-tuples of non-colluding functions.
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Note that if y ¢ B, B(y) is empty. Also, given y € B, we denote by I(y) = {A1(y), ..., A«(y)}, and
take E1(y), ..., Et(y) to be the first t elements in {0, 1}d \ (I(y) U {y}) in some fixed order. As
d > log(t + 2), we can indeed do so. For every i € [t], we define

Aily) y¢B,
Ai(y) = Aily) y€BAi¢B(y),
Ei(y) otherwise.

It then follows that (A}, ..., A}) € X'
Denote Z(y) = (Ext(X, A1(y)), - .., Ext(X, A:(y))), and likewise,

Z'(y) = (Ext(X, A1(v)), ..., Ext(X, A{(v))) .

We further define Zequce(y) to be joint distribution of the Ext(X, A;(y)) for i-s which are not in
B(y). Namely,

Zreduce(Y) = Oie[i\y) EXU(X, Ai(y))

where o denotes concatenation. We record the following two easy claims.
Claim 3.11. For every y € {0, 1}d, it holds that

SD((Ext(X, y), Z(y)), (Um, Z(y))) =
SD((Ext(X, ]/)/ Zreduce(y))r Uy, Zreduce(y))) .

Proof. The claim follows from the following observation: For every three random variables A, B,
and C, it holds that SD((A4, B, C,C),(U,B,C,C)) = SD((A, B, C), (U, B, C)), where U is uniform
over the support of A and independent of all other random variables. O

Claim 3.12. For every y € {0, 1} it holds that

SD((EXt(X, y), Zreduce(]/))r Uy, Zreduce(]/))) <
SD((Ext(X, ¥), Z'(y)), Um, Z'(y))) -

Proof. The claim readily follows from the data processing inequality, observing that Z’(y) =
(Zreduce(y), A) for some random variable A. O

We can now finish the proof. As Ext is non-malleable against non-colluding functions, we
know that

SD((Ext(X,Y), Z'(Y),Y), U, Z'(Y),Y)) < ¢.

But

SD((Ext(X, Y), Z'(Y), Y), (U, Z'(Y),Y)) = y]iud [SD((EXt(X, y), Z'(y)), (U, Z'(y)] ,
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so combining the above with Claim 3.11 and Claim 3.12, it follows that
SD((Ext(X, Y), Z(Y),Y), Um, Z(Y),Y)) = y]iud [SDU(EXX(X, y), Z(y)), (Um, Z(y)))]

= y~EU,,, [SD((Ext(X, y), Zreduce(y))r (U, Zreduce (y)))]

< ) ~Eud [SD((Ext(X, v), Z'(y)), (Um, Z'(y)))]
<eg,

as desired. m]

The above lemma can be adapted to cases when the non-malleability is against more restricted
family of functions. In particular, we will need the following lemma.

Lemma 3.13. Let Ext: {0,1}" x {0,1}% — {0,1}" be a (k, ¢)-non-malleable extractor against
(Fan N)t N X! for A > 1, so that d > logt + 3. Then, Ext is (k, €)-non-malleable against (Fa N N)t.

Proof. Inspecting the proof of Lemma 3.10, we just need to make sure that A7, ..., A} stay inside
the family #a. For every i € [t], let C; C {0, 1} be the set of seeds we re-wired. Namely,

Ci:{ye{o,l}d:yeB/\ieB(y)}.

Recall that if y € C; then A’(y) = E;(y). We will modify the definition of E; to guarantee that
A’ € Fa, while still satisfying (A7, ..., A}) € Xin Nt

Let G1(y) = {0, 119\ (I(y) U {y}) be the set of “safe” seeds. In Lemma 3.10 we simply set
Ei(y) to be the i-th element of G1(y). Now, we need to be just a bit more careful. Let

Go={ze 0,1} :]A](2)] <2} .
By an averaging argument, |G| > 2772, Thus,
IG1(y) NGy 227 -t 1272 >¢,
and we can set E;(y) to be the i-th element of G1(y) N G,. Both properties now hold. o

Combining Therorem 3.2 and Lemma 3.13, we get our main result.

Corollary 3.14. Let t > 1 be an integer, and A > 1. Let Ext: {0,1}" x {0,1}¥ — {0,1}" be a

(k, €)-seeded extractor with d > 2logt +log L + 2 and e < 107*. Assume that Ext is seed protecting
against Tnt;i( Aogt) NX'*1. Then, Ext is non-malleable against (Fo N N))' for min-entropy k+mt +log 1
and error guarantee 14'/3,
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4 Seed-protecting extractors from non-malleable extractors

In this section, we show that non-malleability against permutations implies seed protection
for the class of permutations. We also prove a similar claim for a more restricted kind of
permutations — t-cliques, which we define below. For the sake of generality, we consider the
“smooth” variants of these classes.

Definition 4.1 (smooth permutations). Given A € A; and 7 € [0, 1], we say that A € I1; if there
exists a set G C {0,1}" with |G| > (1 — 7) - 27 such that A|g is injective.

To describe our next family of structured adversaries, we introduce the following notation.
We say that a function A € A is 1-close to an involution if for all but t-fraction of y € {0, 1}*
it holds that A(A(y)) = y and A(y) # y. That is, the directed graph induced by the function
A has, but for one component of density 7, an involution structure (i. e., a perfect matching).
More generally, for t > 1, we formalize what it means for an adversarial function to be 7-close
to (t + 1)-cliques, or clusters. Fix functions Ay,...,A; € A. For y € {0, 1}4, we define the
neighborhood of y by I'(y) = {y, A1(y), ..., A:(y)} . We say that (A1, ..., A;) € ML if there exists
G c {0,1}¥ with |G| = (1 - 1) - 2% such that for every y € G it holds that T(T'(y)) = I'(y), and
IT'(y)| =t + 1. So, intuitively, but for a density-7 component, the vertices are partitioned to
cliques, or clusters, of size t + 1. In fact, we consider a more structured variant, which we now
formally define.

Definition 4.2 (t-cliques). Given A1,...,A; € Az and p > t, we say (A1, ..., Ar) € M![p] if
there exists a partition {0, 1}d =C1W---W(Cy,eacht <|C;| <p,such that the following holds.
For every i € [{] let ¢; = |C;| and denote C; = {yo, ... ,yci‘l}, and A1 (y/) = z/. Then,

1. Aj restricted to C; is a permutation. That is, {yo, ., yci‘l} = {zo, ., ch‘l}.
2. For any integers j € [c;]and 2 <r <t, A, (yf) = gf+r-1modec;
Note, in particular, that M![p] c IT*. For brevity, we denote M![t] = M.

Definition 4.3 (smooth t-cliques). For positive integers p > t, and 7 € [0, 1], we define the
set ML[p] C ﬂ; as follows. A tuple A = (A1, ..., A;) € ML[p] if there exists G C {0, 1}* with
|G| > (1 = 1) - 2% such that

(Ailg, ., Alc) € M'[p]

where by the latter we mean formally that there exists a partition G = C1 W --- W Cy, each
t < |Ci] £ p, such that the conditions of Definition 4.2 are met. For brevity, we denote

MLt = ML

We begin with permutations, and recall that X' denotes the set of ¢-tuples of non-colluding
functions.

Lemma4.4. Let Ext: {0,1}"x{0,1}% — {0,1}" bea (k, )-non-malleable extractor against (IT N N)'
(i. e., permutations with no fixed points), and fix any T > 0. Then, Ext is (k, ’)-seed protecting against
I N X for ¢ =2t + 1)(T + €).
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Proof. Let Ay, ..., A1 € I1; be non-colluding. Let X be an (1, k)-source, and let Y ~ {0, 1}d be
a uniform random variable, independent of X. Foreachi € [t + 1], let G; C {0, 1}d be such that
Ailc, is injective. Writing G = G1 N -+ N Gt41, we have that |G| > (1 = (t +1)7) - 2. For each
i € [t +1], denote by A; € IT the permutation that is obtained by keeplng the function’s value on
G and completing it to a permutation on {0, 1}¥ insucha way that Ai,...,Aps do not collude.

Observe that it is possible to do so as long as ‘{0, 139\ G) > t + 1, which certainly holds.* In

what follows, we denote
Z1(Y) = (Ext(X, A1(Y)), - .., Ext(X, At11(Y))),
Z1(Y) = (Ext(X, A1(Y)), ..., Ext(X, As1(Y))) .

First, note that _
SD((Y, Z1(Y)), (Y, Z1(Y))) <Pr[Y ¢ G] < (t + )7 4.1)

Next, as g;l is a permutation, g;l(Y) distributes the same as Y does. Thus,
SD((Ug, Z1(Y)), (Y, Z1(Y))) = SD((Ug, Z1(AT (V) (AT (Y), Z1(AT (V). (42)

By the data-processing inequality, we can apply A1 on the prefix of both random variables
without increasing the statistical distance; Equation (4.2) becomes

SD((Ua, Z1(Y)), (Y, Z1(Y))) = SD((Ua, Z1 (AT (Y))), (Y, Z1 (AT (Y)))) - (4.3)
For i € [t], define P; = Ei+1 ) E{l. Then,

Z1(ATH(Y)) = (Ext(X, Y), Ext (x,ﬁz(ﬁgl(y))) ... Ext (X Zm(ﬁgl(y))))
= (Ext(X,Y),Ext(X, Pi(Y)),...,Ext(X, Pi(Y))) .

Note that for every i € [t], P; is a permutation. Furthermore, observe that as (;{1, .. Zt+1) €
X'*1, P; has no fixed points. Indeed, assuming towards a contradiction that P; satisfies P (y) =

for some y € {O 117, we get that AT 1(y) +1(y) which is impossible since A1(z) # Aia(z) for
any z € {0, 134, By the non-malleability of Ext, we know that

SD((Y, Z1(ATX(Y))), (Y, U, Zo(Y))) < &,

for Z,(Y) = (Ext(X, P1(Y)), ..., Ext(X, P+(Y))), and the same is true without conditioning on Y.
Thus, by the triangle inequality, we get
SD((Ug, Z1(AT (Y)), (Y, Z1 (AT (Y)))) < SD((Ug, Z1(ATM(Y))), (U, Ui, Za(Y)))+
SD((Ug, U, Z2(Y)), (Y, U, Z2(Y)))+
SD((Y, U, Z2(Y)), (Y, Z1(AT(Y))))
<2e+SD((Uy, Uy, Zo(Y)), (Y, Uy, Z2(Y))) . (4.4)

4Otherwise, 7 < 274 which implies T = 0 and we can simply take Ei = A; foreachi € [t +1].
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We continue in the same manner. Observing that P} 1(Y) distributes the same as Y does, and
using the data-processing inequality, we have

SD((Ud1m, Z2(Y)), (Y, U, Zo(Y))) = SD(Uasm, Zo(PT (V) (Y, U, Zo(PTH(Y)))) . (45)

For i € [t — 1] define the permutation Q; = P;41 o Py 1, Similarly to the above argument,

Zo(P7(Y)) = (EX(X, Y), EXt(X, Po(PyA(Y))), .., EXt(X, Py(P (V)
= (Bxt(X, Y), Bxt(X, Qu(Y)), ..., BXX(X, Qt-1(Y))) -
This time, the fact that every Q; has no fixed points follows from the fact that gz (z) # gi+2 (2)

for any z € {0, 1}d. Using the non-malleability, together with Equations (4.4), Equations (4.3),
and Equations (4.5), we get

SD((Ua, Z1(Y)), (Y, Z1(Y))) < 2& + SD(Ua, U, Zo(Y)), (Ua, U, Z3(Y)))+
SD((Uy, Uzm, Z3(Y)), (Y, Uzm, Z3(Y)))+
SD((Y, Uz, Z3(Y)), (Y, U, Z2(Y)))
< 4e + SD((Ua, Uzm, Z3(Y)), (Y, Uzm, Z3(Y))),

for Z3(Y) = (Ext(X, Q1(Y)), ..., Ext(X, Qt-1(Y))). We continue this process inductively, and
eventually obtain

SD((Ua, Z1(Y)), (Y, Z1(Y))) < 2(t + 1)e + SD((Ua, Uges1ym), (¥, Ugsiym)) = 2(t + e (4.6)
Combining Equations (4.6) and Equation (4.1), we get

SD((Ua, Z1(Y)), (Y, Z1(Y))) < SD((Y, Z1(Y)), (Y, Z1(Y))+
SD((Y, Z1(Y)), (U4, Z1(Y)))+
SD((Uy, Z1(Y), (Ug, Z1(Y)))

< (t+1)(2¢ + 1) + SD(Z1(Y), Z1(Y)).

To bound the last term of the above inequality, note that
SD(Z1(Y), Z1(Y)) < SD((Y, Z1(Y)), (Y, Z1(Y))) < (¢ + 1)z,
where the last inequality follows by Equation (4.1). This concludes the proof. O

Next, we prove a similar lemma for t-cliques.

Lemma 4.5. Let Ext: {0,1}" x{0,1}* — {0,1}" bea (k, €)-non-malleable extractor against M' N N?,
and fix any T > 0. Then, Ext is a (k, ¢')-seed-protecting extractor against M N X1 for & =
2(t +1)e + 27.
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Proof. Given non-colluding A = (Ay,..., A1) € Mi“, an (n, k)-source X and a uniform
Y ~ {0,1}* independent of X, the proof proceeds similarly to Lemma 4.4. Let G C {0, 1}“ be the
set defined in Definition 4.3 with respect to (A1, ..., A+1) € ML, and recall that |G| < 7 - 24,
We define

sz (glz---/ng) S MHl

by setting A; to agree with A; on G for every i. Completing Al¢ to functions on {0,1}? while
maintaining the M'*! property can be done by arbitrarily selecting ¢ + 1 inputs that were not
assigned yet, iteratively, and assigning them to form a clique.®> Note that by the definition of
M1 the functions in A do not collude.

Define, inductively, the following set of functions. For i € [t + 1], Pl@ = A;. For every j € [t]
and i € [t + 1 — j], we define

. M . _1
PV =P Ve (PU) 47)

i+1

Next, define, exactly as in Lemma 4.4,
Z1(Y) = (Ext (X, P(O)(Y)) ... Ext (X, Pt(?l(Y))) .
Moreover, for every j € [t + 1], we define
Zia(Y) = (Ext (X PY)(Y)) ... Ext (X Pff_)jﬂ(y))) .
The crux of the proof is establishing the following inequality for every j > 2.

SD((Ua, Z1(Y)), (Y, Z1(Y))) < 2(j — D)e+
SD((Ua, Uj—1ym, Zj(Y)), (Y, U(j—1ym, Zj(Y))) . (4.8)

Following the same reasoning as in Lemma 4.4, Equation (4.8) holds if the following conditions
are met:

-1
1. For everyj >0, (PY )) (Y) distributes the same as Y does.

2. Foreveryj>landi<t+1-j, P;j) has no fixed points.

3. For every j > 0 it holds that (P;j )., Pt(];)]. )€ M=+t 4+ 1]. Note that a non-malleable
extractor against M!*! is also non-malleable against M [t + 1] for any ¢’ < t + 1.

SFormally, choose y1, ..., yt+1 that were not assigned by A yet, namely, with no preimage in Allg. Assign
Y1 = Y1, Y41 = Y41 IN AL Y1 = Y2, Y2 = Y3,..., Y41 — Y1 in Ap, and so on. Note that when t + 1 does

not divide 2, we can make some cliques larger. We do not address this issue formally and it does not affect the
statement.
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Item (1) readily holds, since each /Ti is a permutation, and permutations are closed under
inversion and composition. To see that item (2) holds, fix some j € [t]and i € [t +1 — j] and

consider Pfj ). Assume towards a contradiction that Pfj )(y) = y for some y € {0,1}“. Thus,

Py ((PY _1))_1 (y)) =y,
SO
(7)) = (PY) " ),
which means there exists z € {0, 1}d such that Pgr_ll) (z) = Pij _1)(2). But due to item (3) which
we NOwW prove, (Pij_l), .., pU b

rLi-j+2
contradiction. Indeed, what is left is to prove item (3).

) € M!'71*2, 50 in particular they do not collude, so we have a

Claim 4.6. For every j > 0 it holds that (Pij), . ,Pt(];)jﬂ) e MU+ 1]

Proof. Starting from (f + 1)-cliques in the 0-th level, in general, the j-th level will also form
(t + 1)-cliques. We will prove this by induction on j. For j = 0, it follows by our construction.
Assuming that it holds for some j > 0, we inspect the (j + 1)-th level.

We characterize the cliques in the j-th level as follows. We can partition the domain (and
codomain) to {0, 1}d = C1 W--- W Cy. By definition, a full characterization of PY ), ceny Pt(]_)j 41 can
be given by a permutation ¢;: C; — C;, for each i € [¢]. Indeed, for any y € C; for some i € [¢],
PY ) (y) = ¢i(y), and for r > 2, P;J = ¢7. Namely, ¢; generates the permutations Pij . , P:]_)]. 1
restricted to C;. We claim that this structure is preserved for the next level, with the same

clique structure. Indeed, for each i € [¢] observe that the permutation ¢; is also a generator for

PY +1), R Pt(]_ J;l) restricted to C; as, by Equation (4.7) applied with i =1,

G+ _ i) (pD) 7" -
P/ :szo(Plj) =0 = ¢

. . ~\ —1 .
Recalling that Pi] = pY o (Pij )) , we see that indeed computing Pij +1)(y) amounts to finding

r+1

the i for which y € C; and computing ¢/ (y). Thus, the (j + 1)-th level belong to M' /[t +1]. O

O

5 1-seed protecting and two-source extractors

In this section we prove Theorem 1.7. We prove each direction separately in Lemma 5.1 and
Lemma 5.3 below. Recall that #, is the set of functions A € A, for which Ho(A(Uy)) = d — A.

Lemma 5.1. Let Ext: {0,1}" x{0,1}* — {0,1}" bea (k1, €) 1-seed-protecting extractor against Fy_p,
for ko < d —1. Then, Extis a (k1, ky, 3¢) two-source extractor.
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Proof. Assume towards a contradiction that Ext is not such a two-source extractor, and let X;,X>
with He(X1) > k1 and Heo(X2) > ko be such that
SD(EXt(Xl, XQ), LIm) > 3¢ ,

and we assume without loss of generality that both X; and X, are flat.® Let Y be the uniform
distribution over {0, 1}¢, independent of (Xj, X5). Recall that Ext is a (ki, €) extractor, so

SD(Ext(X1,Y), Uy) < ¢.

Order the y-s according to SD(Ext(X1, v), Uy,), and let G € {0, 1}d be the 2971 bottom ones (i.e.,
for which SD(Ext(X1, y), Uy,) is smaller). As G1 can be indexed using d — 1 bits, there exists an
injection Ag: {0, 1}"1_1 — {0, 1}d that maps to G1 uniformly, and satisfies

SD(EXt(Xl,A()(Yl)), LIm) <eg, (5.1)

where Y’ is the uniform distribution over {0, 1}d‘1, independent of all other variables.
Denote G, = Supp(Xz) and recall that |G| = 2k, Again, since k, < d — 1, we can define an
injection A1 : {0,1}%"1 — {0,1}% so that A;(U,_1) = Ug,, and then

SD(Ext(Xy, A1(Y")), U,,) > 3¢. 5.2)

Next, define A € A, such that
Ay) = Ay (Y2n)) -
Claim 5.2. It holds that A € Fy_g,.

Proof. Let Z = A(Uy). Clearly, Supp(Z) € G1 U Gy. If z € Gy,

1 1
P A = == P A = + = - P A =
y~5d[ (v) = z] 5 wald[ o(y2,n) = z] 5 y%r[d[ 1(y[2,n)) = z]
= 1 . 1 1 . IZGGZ S 2—k2 .
2 |Gl 2 |Gl
The same bound applies for z € G, in a similar manner. m|

We will now show that using A, an adversary can learn the first bit of the seed, in contradiction
to the fact that Ext is seed protecting. Define

RY] = EXt(X], AY1 (Y[Zd])) ’

and note that by Equation (5.1), Equation (5.2) and the triangle inequality, it holds that
SD(Rg, R1) > 2¢. Then,

SD((Y, Ext(X1, A(Y))), (Uyg, Ext(X1, A(Y)))) = SD((Y1, Ext(X1, A(Y))), (U3, Ext(X1, A(Y))))
= SD((Y1, Ry,), (U1, Ry,)).

A k-source is flat if it is uniformly distributed over a set of size 2k Tt is well-known that one can assume X1 and
X are flat, since any k-source is a convex combination of flat k-sources [9].
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Finally, observe that

1

SD((M1, Ry,), (Un, Ry) = 5 >

-
1
+§Z

= 4112 |PI‘[R0 = 7’] - PI'[Rl = }’]|

1
Pr[Y1=1ARy=7r] - 5 PI‘[RYl =r]

1
PI‘[Yl =0ARp = 1’] - E PT[RYl = 1’]

1
= E : SD(RO/ Rl)
> €,

which is a contradiction to that Ext is 1-seed protecting per our hypothesis.

The other direction also holds.

Lemma 5.3. Let Ext: {0,1}" x {0, 1}d — {0, 1}" be a (kq, ko, €) two-source extractor which is strong
in the second source. Then, Ext is a (k1,2¢) 1-seed protecting against Fy_r,.

Proof. Assume towards a contradiction that Ext is not 1-seed protecting, so there exists an
(n, k1)-source X; and A € F_k, such that

SD((Ext(X1, A(Y)), Y), (Ext(X1, A(Y)), Y')) > 2¢,

where Y, Y’ ~ {0, 1}d are uniform and independent random variables, also independent of X;.
By the triangle inequality, it follows that at least one of the following holds:

1. SD((Ext((X1, A(Y)),Y"), (U, Y)) > ¢,
2. SD((Ext(X1,A(Y)),Y), (U, Y)) > .
First assume the first inequality holds. As Y’ is independent of X; and Y,
SD((Ext((X1, A(Y)),Y"), (U, Y)) = SD(Ext(X1, A(Y)) XY, Uy X Y)

= SD(Ext(X1, A(Y)) X Y', Uy, X Y')
= SD(Ext(X1, A(Y)), Uy

As A € Fi_k,, Ho(A(Y)) > ko and by the fact that Ext is a two-source extractor, it follows that
SD(Ext(X1, A(Y)), Uy) < €, contradicting item (1).
Next, assume that the second inequality holds. We have that

SD(Ext(X1, A(Y), A(Y)), (U, AXY)) = _E _[SDEXI(X1, 2), U]
= E, [SD(EXt(X1, Aly)), )]

= SD((Ext(X1, A(Y)),Y), Uy, Y)) > €.
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But since Ext is a strong (k1, ko, €) two-source extractor,
SD((Ext(X1, A(Y)), A(Y)), Um, A(Y))) < €,

in contradiction. O

5.1 Lower bounds for 1-seed-protecting extractors

In light of the above result, lower bounds for (unbalanced) two-source extractors imply lower
bounds for 1-seed-protecting extractors. We use the following standard lower bound.”

Theorem 5.4. Let Ext: {0,1}" x {0,1}% — {0,1}" be a (ki, ky, €) two-source extractor which is
strong in the second source. Then, m < k1 —2log(1/e) + O(1), k > log(n — k1) + 2log(1/¢) — O(1)
and ki > log(d — k) + 21og(1/¢e) — O(1).

We can thus conclude:

Corollary 5.5. Let Ext: {0,1}" x {0,1}d — {0,1}" be a (k, €) 1-seed protecting against Fa for
some A > 0. Then, m < k —2log(l/e) + O(1), d > log(n — k) + A + 2log(1/¢) — O(1) and
k >log A +2log(l/e) — O(1).

The fact that no 1-seed-protecting extractors against ¥ exist for A approaching d can be
established in a more straightforward way. Indeed, in Claim 1.6 we showed why A =d —11is
unattainable.

6 Non-explicit t-seed-protecting extractors

In this section we prove the existence of a seed-protecting extractor against non-colluding,
entropy-preserving, adversaries via a probabilistic argument.

Theorem 6.1. Letn,k,m,d,t € N, A > 0and € > 0 be such that
k>tm +2A+210g% + O(logd +logt).

Then, there exists a (k, €)-seed-protecting extractor Ext: {0,1}" x {0, 1}d — {0, 1}" against ?'At nX!
with .
d =log(n — k) +2A + ZIOgE + O(logd +logt).

Remark 6.2. Theorem 6.1 tells us we cannot take A to be larger than d/2, meaning we are at the
weak seeds regime. In contrast, for t = 1, we know from the equivalence to two-source extractors
(see Lemma 5.3) that we can take A to be much larger, roughly 4 — log n. An interesting open
problem is whether there is a real barrier going from t = 1 to larger ¢-s or whether it is a mere
artifact of our proof.

"The lower bound for m = 1 and any nontrivial ¢ follows from bounds on strong dispersers and their connection
to Ramsey graphs [27, 3]. The entropy loss and the 21log(1/¢) factor in d and k follows from lower bounds on strong
seeded extractors [27].
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Proof. Choose Ext: {0,1}" x {0,1}¥ — {0,1}" uniformly at random. Fix an (1, k) source X,
and we assume without loss of generality that it is flat. Also, fix non-colluding functions
A1, ..., A € Fa. LetY ~ {0, 1}d be uniform and independent of X. Write N = 2", K = 2k,
D =27 and

Z(x,y) = (Ext(x, A1(y)), . ., Ext(x, Ar(y))) ,
observing that for every fixed x and y, Z is a random variable whose randomness comes from
Ext. We want to bound the probability that

SD((Y, Z(X, Y)), (U4, Z(X,Y))) > €.
Fix T: {0,1}*"™" — {0,1} and for each y € [D], denote by T,: {0, 1} — {0,1} the corre-

sponding restriction of T. Then, we want to bound the probability over Ext that

e [pmzoc |- e | mee)|>e.

w~

~[

Write the expression on the left hand side as

e [zt - simee |

x~X,w~[

and define
Qx, w) = Ty(Z(x, w)) - E [To(Z(x,Y))] .

First, we argue,
Claim 6.3. Forany x € {0,1}" and w € [D] it holds that E[Q(x,w)] = 0.

Proof. By our assumption on Ay, ..., A, the values Aq(w), ..., Ai(w) are distinct, so Z(x, w)
is uniform over {0,1}", and thus E[T,(Z(x,w))] = w(Tw). The claim now follows from the
linearity of expectation. O

Write
Qx, w) = (Tw(Z(x, w)) = p(Tw)) — | E[Tw(Z(x, Y))] - p(Tw) | = Qu(x, w) = Qa(x, ),
each Q;(x, w) being a random variable with expectation zero. We handle each term separately.

Handling Q;. Define the random variable

Q= _E [Qilx,w)].

x~X,w~[D]

Unfortunately, the random variables Q1(x, w), for x € X and w € [D], are not independent. In
particular, it may be the case that Q1(x, w) and Q1(x, w2) query the same input to Ext. The next
observation will help us overcome this issue.
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Claim 6.4. Assume there exists a subset V. C [D] such that {Ai(w)} ;) wey are all distinct, and
enumerate {Q1(x, W)} rex wey = Q1, - ., Qs=x|v| arbitrarily. Then, for every i € [s],

E[Qi | Q1,...,Qi-1] =0.

Proof. Fix i € [s]. First note that for x, # xp, Q, = Qi(x,, w,) and Qp = Q1(xp, wp) are
independent. Assume that Q; = Qi(x,w) and let {i1,...,i;} C [i — 1] be the indices that
correspond to the same x, i. e., each Qi]. = Q1(x, w;) for some w; # w. Thus,

E[Ql | Ql/-- -lQi—l] = E[Ql | Qill"'lQi[]'

Next, fix all values of Ext queried by the Qi].-s. Keeping the notation Qij = Qi(x, wj), this
means we fix every Ext(x, A,(w;)) for j € [¢{] and r € [t]. These fixings do not affect Q;, by our
assumption on V. Thus, under these fixings, E[Q;] = 0, as desired. O

We now argue that we can partition [D] to a bounded number of such V-s.

Lemma 6.5. There exists a partition [D] = V4 U -+ U V| for L = O(dt?22) such that for every i € [L],
{Aj(w)}je[t] ey, are all distinct.

Proof. Let G’ = (W = [D], U = [D], Ep) be the bipartite graph in which each w € W is connected
to A1(w), ..., A(w). Thus, G is left-regular with degree t and its right-degree is bounded by
t-2% Let G = (V = [D], E) be the two-step walk graph of G’. Namely, (x, y) € E if and only if
there exists a path x ~ z ~ y in G’, where x, y € W and z € U. Note that the maximal degree in
G is at most +2 - 2. We will repeatedly use the following standard claim, which can be shown
by a simple greedy algorithm.

Claim 6.6. Let G be an undirected graph over n vertices with maximal degree 6. Then, the size of the
largest independent set in G is at least n /(0 + 1).

The crucial observation is that an independent set in G corresponds to a valid partition. To
see this, take any wy, wy € V such that (w1, w;) ¢ E. By definition, there are no r, 1, € [t] such
that A, (w1) = Ay, (w2). In light of this observation, we can greedily define V3, ...,V in the
following manner.

1. Set Gg « G, i < 0and 6 = 224,
2. Aslong as G; has more than 26 vertices,

o Let Vi1 be the largest independent set in G;.

e Remove Vj,1 and all its adjacent edges and denote the resulting graph by G;.1. Set
ie—i+1.

3. The graph G; has b < 26 vertices. Put each of these vertices in a separate set.

4. The resulting partitionis Vi,..., Vi, ..., Vi—ip.
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Claim 6.6 guarantees that at each iteration, V;,; contains at least 1 — 1/(6 + 1) fraction of the
remaining vertices. Let j be the smallest integer for which

1\
1-——| 29 <26.
155y 2s
One can verify that j = O(6d), so overall L < j + 26 = O (dt?2%), as desired. O

In light of the above lemma and Claim 6.4, we can define, for each i € [L],

S; = Z Qi(x,w),

xeX,weV;

s0Q = % Yie[r] Si- Note that every sequence in S; is a martingale, and also, that |Q1(x, w)| < 1
with probability 1. Thus, using Azuma'’s inequality,

_KD,
<2L-e 82" . (6.1)

Handling Q. Similarly, we define Q; = E,.x ~[p][Q2(x, w)], but we write it as

Q= E

x~X,y~Y

E [Tw(Z(xzy))]—#(T)] ,

w~[D]

i.e., we switched the order of w and y. Now, define

Qv )= B [TulZ(x, )] - u(T),

50 Q2 = Eyx.x,y~p][Q5(x, y)]. We follow the same reasoning as before: For arbitrary y1 # y2,
Q5 (x,y1) may depend on Q/(x,y2), but with the same partitioning we can overcome the
dependencies. Also, for any x € {0,1}" and y € [D] it holds that

B[, B, (T2, 1| =),

so overall,
D .2

e _kp,
Pr [|Q2| > E] <2L-¢ 6.2)

as well.

THEORY OF COMPUTING, Volume 21 (8), 2025, pp. 1-38 33


http://dx.doi.org/10.4086/toc

GIL COHEN, DEAN DORON, AND SHAHAR SAMOCHA
Putting it all together. Combining Equation (6.1) and Equation (6.2), we get

_KD .2 oKD .2
Pr E [Q(x,w)] >¢el <4L-e sr2 € <2 C17,4,7A € +log d+2log t+c2

x~X,w~[D]

for some universal constants c1, c; > 0. To complete our analysis, we require Ext to work for any
X,Aq,...,Arand T. By the union bound, the probability for a random Ext to fail, denote it by p,
is at given by

p < (N DtDZDMfZ—Cl%62+10gd+210gt+62
~\K

Klog(5¢)+tDd+DM!-c, dZﬁlZZA e2+log d+2log t+ca

<2

< 2K(n—k+2)+th+DMt+logd+2 log t-+c2—c1 45 € .

To prove that p < 1 (in fact, we will show that p < 1) it is sufficient to argue that:
1. Kn-k+2) < %%82, and,
2. D(td + M') + logd + 2logt + ¢z < § P e?, or, D(4td + M') < § 0 e2.

Item (1) is true whenever
4 (n—k+2)d?t*2%A

D>—
T &2
Item (2) it true whenever
4 (4td + MHd?t422A
Kz—- :
c1 €2
The bounds on d and k follow from the above two inequalities. O
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