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Abstract. We introduce a new type of seeded extractors we dub seed-protecting
extractors. Informally, a seeded extractor is seed protecting against a class C of

functions, mappings seeds to seeds, if the seed . remains close to uniform even

after observing the output Ext(-, �(.)) for every choice of � ∈ C (or, more generally,

observing the outputs corresponding to several adversaries from C).
The results of this paper are structural. We establish what we believe to be

surprising relations, in fact, equivalences between seed-protecting extractors and

each of the well-studied strengthenings of seeded extractors: strong extractors, non-

malleable extractors (albeit only against permutations), and two-source extractors,

where each case is classified by a suitable class C.
Our work motivates the study of non-malleable extractors against permutations

andputs forth a novel approach for their construction. Indeed, the existingmachinery

developed for constructing non-malleable extractors focuses on the output and so

it is aimed towards breaking correlations. Instead, our work suggests developing

techniques for protecting the seed.
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1 Introduction

Informally, a seeded extractor is a function that “purifies” defective randomness using few

fresh random bits. A defective random source is modelled by a distribution - that has some

lower bound on its min-entropy. A random variable - is said to have min-entropy :, denoted

�∞(-) ≥ :, if for every G, Pr[- = G] ≤ 2
−:
. When - is supported over =-bit strings, we call

- an (=, :)-source. A function Ext : {0, 1}= × {0, 1}3 → {0, 1}< is a (:, �)-seeded extractor [26] if
for every (=, :)-source - it holds that Ext(-,.) is �-close, in statistical distance, to the uniform

distribution over <-bit string. Here, . is a random variable, independent of -, that is uniformly

distributed over 3-bit strings. We write this as Ext(-,.) ≈� *< . Informally, using the “fresh”

randomness in the, hopefully short, string ., the function Ext extracts the randomness from -

to a nearly perfect form, namely, to a distribution that is close to uniform. We refer to . as the

seed of the extractor.

The notion of seeded extractors can be strengthened in different ways. Three such strengthen-

ings that emerged from the study of seeded extractors are strong seeded extractors, non-malleable

extractors [18], and two-source extractors [9]. The latter is the oldest notion, in fact, two-source

extractors predate the explicit definition of seeded extractors. Nevertheless, such extractors

proved to be the most challenging to construct. In a span of about a decade, strong seeded

extractors with nearly optimal parameters were constructed using sophisticated algebraic and

combinatorial ideas (see, e. g., [31, 25, 21, 19, 30] as well as [29] and [32, Chapter 6]). Non-

malleable extractors were introduced more recently, and despite their syntactic resemblance to

strong seeded extractors (see Section 1.1 below for the formal definitions), their constructions

required completely different techniques. Furthermore, it was the insight regarding the con-

nection between non-malleable extractors and the seemingly unrelated two-source extractors

that enabled the breakthrough work of Chattopadhyay and Zuckerman [8] who constructed

two-source extractors for polylogarithmic min-entropy.

A brief and informal summary of our contribution

In this article we introduce a new, very natural, variant of seeded extractors we dub seed-
protecting extractors. Informally, a seeded extractor is seed protecting against a class C of

functions, mapping seeds to seeds, if the seed . remains close to uniform even after observing

the output Ext(-, �(.)) for every choice of � ∈ C (and, of course, a source - with sufficient

min-entropy). See Definition 1.1 below for the formal definition. We establish what we believe

to be surprising and insightful relations, in fact, equivalences between seed-protecting extractors

and strong extractors, non-malleable extractors against permutations, and two-source extractors,

where each case is classified by a suitable class C.
This fresh point of view on non-malleable extractors suggests, in particular, a novel approach

for constructing such extractors as, indeed, the focus shifts from breaking output correlations

to protecting the seed. We first recall the definitions of strong and non-malleable extractors

(Section 1.1). Then, in Section 1.2, we give the definition of seed-protecting extractors and

present out results.
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1.1 Strong seeded extractors and non-malleable extractors

1.1.1 Strong seeded extractors

A (:, �)-seeded extractor Ext is called strong if the output distribution Ext(-,.) is close to

uniform even given the seed . used for the extraction. This can be expressed by writing

(Ext(-,.), .) ≈� (*< , .). Seeded extractors and, more so, their strong counterparts have found

many applications. As mentioned, in a beautiful and deep line of work, efficiently computable

strong seeded extractors were constructed for any min-entropy :, having seed-length $(log
=
� )

(see [21, 19, 30] and references therein). Furthermore, connections between strong seeded

extractors and other objects of study such as list decodable codes, samplers, and expander

graphs were found and enabled many applications.

1.1.2 Non-malleable extractors

A non-malleable extractor is a strong seeded extractor that has the following additional property.

The output of the extractor remains close to uniform even after observing the output of the

extractor on any altered seed. Formally, let � : {0, 1}3 → {0, 1}3 be an arbitrary function with no

fixed points, that is, �(H) ≠ H for all H. The reader should think of � as an adversarially chosen

way of altering the seed. A function Ext : {0, 1}= × {0, 1}3 → {0, 1}< is a (:, �)-non-malleable
extractor if for every (=, :)-source - and � as above,

(Ext(-,.),Ext(-, �(.)), .) ≈� (*< ,Ext(-, �(.)), .) , (1.1)

where again . is uniform over {0, 1}3 and is independent of -.

Non-malleable extractors were introduced by Dodis and Wichs [18]. The original motivation

for studying such extractors was for the classic problem of devising privacy amplification

protocols against active adversaries. Indeed, strong seeded extractors yield a solution to the

passive adversary variant. As we discuss later on, non-malleable extractors proved key for the

construction of good two-source extractors. More precisely, one requires a certain generalization

obtained by considering more than one adversarial function [15]. Let C ≥ 1 be an integer. The

function Ext above is called a (:, �) C-non-malleable extractor if for every C-tuple of functions

�1 , . . . , �C : {0, 1}3 → {0, 1}3 with no fixed points, it holds that

(Ext(-,.), {Ext(-, �8(.))}C8=1
, .) ≈� (*< , {Ext(-, �8(.))}C8=1

, .) .

In a large body of work, non-malleable extractors were constructed (see [17, 15, 22, 10, 6, 12,

16, 7, 11, 23] and references therein). The state-of-the-art construction of (:, �)-non-malleable

extractors [24] has seed length 3 = $(log =) + $(log
1

� ) · 2$(0·(log log
1

� )1/0) for min-entropy as low

as : = $(log log = + 0 log
1

� ) for every choice of 0 ≥ 2. All of these constructions generalize to

C-non-malleable extractors. Alternatively, a black-box reduction from C-non-malleable extractors

to non-malleable extractors [12] can be invoked to give explicit C-non-malleable extractors with

seed length poly(C) · 3.
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1.1.3 Non-malleable extractors against permutations

In this article we initiate the study of non-malleable extractors against permutations. These are

functions that are ought to satisfy Equation (1.1) only for � a permutation with no fixed points.

While existing applications of non-malleable extractors (for the construction of two-source

extractors and for the design of privacy amplification protocols) consider a general adversarial

function � with no fixed points, we believe that the new notion of non-malleable extractors

against permutations is natural and interesting both in its own right as well for as a step towards

constructing full-fledged non-malleable extractors. It is interesting to note that non-malleable

two-source extractors against permutations were found useful in independent work by Goldreich

and Wigderson [20], where they were studied in connection to robustly self-ordered graphs.

1.2 Strong, non-malleable, and seed-protecting extractors

As mentioned, in this paper we introduce a new type of randomness extractors which we call

seed-protecting extractors. To give the formal definition, for an integer 3, letA3 be the set of all

functions from {0, 1}3 to {0, 1}3. When 3 is clear from context, we simply writeA.

Definition 1.1 (seed-protecting extractors). Let Ext : {0, 1}=×{0, 1}3 → {0, 1}< be a (:, �)-seeded
extractor. Let C ⊆ A3. We say that Ext is seed protecting against C if for every � ∈ C and every

(=, :)-source - it holds that

(.,Ext(-, �(.))) ≈� (*3 ,Ext(-, �(.))) , (1.2)

where . is uniformly distributed and is independent of -.

Both non-malleable extractors and seed-protecting extractors have a certain resilience

property against tampering with the seed. While non-malleable extractors focus on the output,
seed-protecting extractors are concerned about the seed. This shift of focus induces inherent
differences. Indeed, while fixed points trivially rule out the possibility of non-malleability

(hence, functions with fixed points are excluded by definition), fixed points turn out to be

a non-issue for seed-protecting extractors. Indeed, consider the extreme case – the identity

function. Clearly, non-malleability cannot be achieved against this function. However, note

that to be seed protecting against the identity function precisely means to be a strong seeded

extractor. In fact, the first observation we make in this preliminary discussion is that strong

extractors are equivalent to seed-protecting extractors against a class of permutations which we

denote by Π ⊆ A3.

Claim 1.2 (strong ⇐⇒ seed protecting against Π). Let Ext : {0, 1}= × {0, 1}3 → {0, 1}< be a
(:, �)-seeded extractor. Then,

1. If Ext is a (:, �)-seed-protecting extractor against Π then Ext is a (:, 2�)-strong seeded extractor.

2. If Ext is a (:, �)-strong seeded extractor then Ext is a (:, 2�)-seed-protecting extractor against Π.
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Proof. For the first item, a seed-protecting extractor against Π can be seen to be a strong seeded

extractor by taking � to be the identity function. Indeed, with this choice, since Ext is a seeded

extractor the right hand side of Equation (1.2) is �-close to*3+< , and so (.,Ext(-,.)) ≈2� (.,*<).
For the other direction, as Ext is (:, �)-strong we have that (.,Ext(-,.)) ≈� (.,*<). Thus, for
any � ∈ Π3, it holds that

(�(.),Ext(-, �(.))) ≈� (�(.), *<) .
By the data processing inequality, one can apply any function to the first component �(.) of
both sides and maintain the �-closeness. In particular, by applying �−1

we get

(.,Ext(-, �(.))) ≈� (.,*<) . (1.3)

Now, (.,*<) has the same distribution as*3+< , and Ext(-, �(.)) ≈� *< . This, together with

Equation (1.3), implies that (.,Ext(-, �(.))) ≈2� (*3 ,Ext(-, �(.))), completing the proof. �

Going back to non-malleable extractors, by the discussion above, it is not a priori clear

whether non-malleability is in anyway related to seed protection. Nonetheless, one of the results

of this paper is an equivalence between the property of non-malleability and seed protection, at

least when focusing on permutation adversaries. By saying that Ext is a non-malleable extractor

against C ⊆ A, we mean that Equation (1.1) holds for every � ∈ C (but not necessarily for other

functions) that, in addition, has no fixed points.

For stating our result, we generalize seed protection to several adversarial functions. This

should be done with some care. Indeed, naively, one’s first suggestion might require that for

every two functions �1 , �2 ∈ C, it holds that

(.,Ext(-, �1(.)),Ext(-, �2(.))) ≈� (*3 ,Ext(-, �1(.)),Ext(-, �2(.))) .

This definition, we observe, is moot. Indeed, consider two functions �1 , �2 : {0, 1}3 → {0, 1}3
that according to the first bit of the seed, .1, decide whether to “behave” exactly the same or

very differently. More concretely, sample two permutations �0 ,�1 on {0, 1}3 at random, and

define �1(H) = �0(H) and �2(H) = �H1
(H). As �0 ,�1 were chosen at random, and thus are usually

disagree, by observing Ext(-, �1(.)) and Ext(-, �2(.)) one can distinguish ., in fact its first bit

.1, from uniform by checking whether both outputs are equal.

As we prove, this “collusion,” in which two or more adversarial functions attain the same

value, is the only obstacle for seed protection against permutations. (Already here we stress that

there are other obstacles when considering functions other than permutations, as we discuss

in Section 1.3.) Given �1 , . . . , �C : {0, 1}3 → {0, 1}3, we say �1 , . . . , �C are non-colluding if for

every H ∈ {0, 1}3, all the evaluations �1(H), . . . , �C(H) are distinct. We denote by XC ⊆ AC
3

the set of C-tuples of functions that are non-colluding. With hindsight, we give the following

generalization of seed-protecting extractors to several adversarial functions.

Definition 1.3. Let Ext : {0, 1}= × {0, 1}3 → {0, 1}< be a (:, �)-seeded extractor. Let C ⊆ A. We

say that Ext is C-seed protecting against C if for every (=, :)-source - and (�1 , . . . , �C) ∈ XC ∩ CC it
holds that (

., {Ext(-, �8(.))}C8=1

)
≈�

(
*3 , {Ext(-, �8(.))}C8=1

)
.

We also express this by saying that Ext is seed protecting against CC .
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The following lemma gives the equivalence’s easier direction, showing that non-malleable

extractors against permutations (with no fixed points) are seed protecting against (non-colluding)

permutations. We refer the reader to Lemma 4.4 for a more general statement.

Lemma 1.4 (non-malleable =⇒ seed protecting). Let C ≥ 1 and assume Ext is a (:, �)-non-malleable
extractor against ΠC . Then, Ext is a (:, 4C�)-seed-protecting extractor against ΠC+1.

As a warm-up, in Section 2, we prove Lemma 1.4 for C = 1 as well as its converse which is

indeed more surprising and difficult to prove (see Theorem 2.1).

Towards stating the other direction, for Δ ≥ 0, define ℱΔ to be the subset ofA3 containing all

functions � : {0, 1}3 → {0, 1}3 such that �∞(�(*3)) ≥ 3−Δ. For example, note that ℱ0 = Π. We

give a reduction from non-malleable extractors against ℱΔ to seed-protecting extractors against

ℱΔ.

Theorem 1.5 (seed protecting =⇒ non-malleable). Let C ≥ 1 be an integer, and Δ ≥ max(1, log C).
Let Ext : {0, 1}= ×{0, 1}3 → {0, 1}< be a (:, �)-seed-protecting extractor against ℱ C+1

Δ
∩XC+1. Assume

further that 3 = Ω(log C). Then, Ext is (:′, �′)-non-malleable against ℱ C
Δ
with :′ = : + <C + log

1

� and
�′ = $(�1/3).

We prove Theoren 1.5 in Section 3. We note that for Δ = 0 and C = 1, seed protection against

permutations is enough, and one does not need to devise an extractor against ℱ1. Thus, for

Δ = 0 and C = 1 there is a strong equivalence, which we prove as a warm-up, in Theorem 2.1.

1.3 Two-source extractors as seed-protecting extractors

Discussing seed protection against permutations sufficed for characterizing both strong and

non-malleable extractors against permutations. But, what about other adversarial functions? Is

it the case that seed protection is achievable against any single function? (Of course, collusion

is irrelevant in such a setting.) The quick answer is “no.” Surprisingly, our next result is

a characterization we obtain for two-source extractors as 1-seed-protecting extractors i. e.,

seed-protecting extractors with a single adversarial function) against a suitable family. In

particular, known impossibility results on two-source extractors translate to impossibility results

on 1-seed-protecting extractors.

Before recalling the formal definition of two-source extractors and describing this family, we

believe it is instructive to first consider an extreme case and ask whether one can seed-protect

against an adversarial function � that, unlike a permutation, is allowed to “focus” on seeds of

its choice. The ultimate case is where � has range of size one. However, in such case, �(H) gives
no information about the seed H, and so seed protection trivially follows. What about a range of

size two? We have the following easy claim that establishes the impossibility of seed protection

against such functions. Let T ⊆ A3 be the set of all functions � : {0, 1}3 → {0, 1}3 with range

of size precisely two.

Claim 1.6. Let Ext : {0, 1}= × {0, 1}3 → {0, 1} be a (:, �)-seeded extractor. Then, for : ≤ = − 1 and
� < 1

6
, Ext is not (:, �)-seed protecting against T .
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Proof. Fix an arbitrary F ∈ {0, 1}3 and assume without loss of generality that Pr[Ext(*= , F) =
0] ≥ 1

2
. Define - to be the random variable that is uniformly distributed over all G ∈ {0, 1}=

such that Ext(G, F) = 0. Since Ext is a (:, �)-seeded extractor for min-entropy : and as

�∞(-) ≥ = − 1 ≥ :, we have that Ext(-,.) ≈� *1. Thus,

Pr[Ext(-,.) = 1] ≥ 1

2

− � .

By an averaging argument, there exists I ∈ {0, 1}3 such that

Pr[Ext(-, I) = 1] ≥ 1

2

− � .

Note that F ≠ I. Define the function � : {0, 1}3 → {0, 1}3 by

�(H) =
{
F H1 = 0,

I H1 = 1,

and note that � ∈ T . Denote / = Ext(-,.) and /′ = Ext(-, �(.)). We turn to show that

� = SD ((., /′) , (*3 , /
′)) ≥ 1

4

− �
2

.

To see this, note that

� ≥ SD ((.1 , /
′) , (*1 , /

′)) ≥ Pr[/′ = .1] − Pr[/′ = *1] . (1.4)

We have that

Pr[/′ = .1] =
1

2

Pr[/′ = .1 | .1 = 0] + 1

2

Pr[/′ = .1 | .1 = 1]

=
1

2

(Pr[Ext(-, F) = 0] + Pr[Ext(-, I) = 1])

≥ 1

2

(
1 + 1

2

− �
)

=
3 − 2�

4

.

On the other hand, Pr[/′ = *1] = 1

2
, and so by Equation (1.4) ,

� ≥ 3 − 2�
4

− 1

2

≥ 1

4

− �
2

.

Thus, as we assume � < 1

6
, we get that � > 1

6
which concludes the proof. �
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We next recall the definition of a two-source extractor or, more generally, of an unbalanced

two-source extractor, and then present our characterization of two-source extractors as seed-

protecting extractors. A (:1 , :2 , �)-two-source extractor is a function Ext : {0, 1}=1 × {0, 1}=2 →
{0, 1}< such that for every (=1 , :1)-source - and an independent (=2 , :2)-source . it holds that

Ext(-,.) ≈� *< . The existence of a two-source extractor formin-entropies :1 = log =2+$(log
1

� )
and :2 = log =1 + $(log

1

� ) with < = :1 + :2 − $(log
1

� ) output bits was established in [9] but

the problem of explicitly constructing a (:, :, �)-two-source extractor with =1 = =2 = = even for

min-entropy as high as : = 0.49= remained open for three decades [9, 5, 28].

Over the last few years, there has been remarkable progress on this problem. In particular,

in a breakthrough paper Chattopadhyay and Zuckerman [8] obtained a (:, :, 1

= )-two-source

extractor Ext : {0, 1}= × {0, 1}= → {0, 1} for min-entropy as low as : = poly(log =). Subsequent
work [4, 13, 24] improved the entropy requirement even further to : = $̃(log =). Constructing
two-source extractors for min-entropy $(log =) (or, more ambitiously, log(=) + $(1)) is highly
motivated by the problem of constructing explicit Ramsey graphs [1, 2, 14, 13]. A second

important openproblem is constructing two-source extractorswith lowerror. Current techniques

do not yield explicit two-source extractors when � = 1/=$(1).
Our main result here is proving an equivalence of two-source extractors and seed-protecting

extractors for the class ℱΔ.

Theorem 1.7 (two-source extractors as seed-protecting extractors). Let Ext : {0, 1}= × {0, 1}3 →
{0, 1}< .

1. If Ext is (:1 , �)-seed-protecting extractor against ℱ3−:2
then Ext is a (:1 , :2 , 3�)-two-source

extractor.

2. If Ext is a (:1 , :2 , �)-two-source extractor which is strong in the second source1 then Ext is
(:1 , 2�)-seed protecting against ℱ3−:2

.

Theorem 1.7 is proven in Section 5 (see Lemma 5.1 and Lemma 5.3 for the proof of each

direction. By invoking a known lower bound result on the amount of min-entropy required

for two-source extractors, Theorem 1.7 in particular implies that seed protection cannot be

achieved against adversaries that are allowed to have small range. Claim 1.6 gives a direct proof

of that for the extreme case of range size two. We find it insightful that the natural notion of

seed protection gives a characterization of the three most well-studied types of randomness

extractors: strong, two-source, and non-malleable (albeit against adversaries with large range).

1.4 Open problems

For which other classes C do seed-protecting extractors against C exist? Can we get full-fledged

non-malleability (i. e., against general adversaries with no fixed points) from seed-protecting

extractors against these prospective classes C ? More generally, extending the connection

1Note that this strength requirement has the undesired effect of breaking the equivalence. However, one can

always assume that a two-source extractor is strong in each of its sources provided one is willing to increase the

error by a multiplicative factor of 2
$(<)

. See also a remark in the footnote of [28] just prior to Definition 1.3.
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between seed protecting and non-malleable extractors is an intriguing open question left for

future research.

For C = Π, i. e., for permutation adversaries, we proved that indeed seed protection implies

non-malleability. An interesting open problem is whether non-malleable extractors for permu-

tations (or even involutions) imply full-fledged non-malleability. A second interesting open

problem is whether non-malleability against permutations (or involutions) implies that for each

source- there exists a small set �- ⊂ {0, 1}3 of “bad” seeds such that (Ext(-, H1),Ext(-, H2)) ≈ *
for every two distinct H1 , H2 ∈ {0, 1}3 \ �- . Note that this weaker notion of non-malleability

already suffices for Chattopadhyay and Zuckerman’s construction of two-source extractors [8].

Also, note that Theorem 1.5 incurs C< entropy loss. Recall that non-malleable extractors

must satisfy : ≥ (C + 1)<, as the C + 1 outputs must be independent for a proper choice of

adversaries. On the other hand, intuitively, this requirement is unnecessary for seed-protecting

extractors, and it seems that the only requirement should be : ≥ < (we ignore the additive error

dependence for simplicity). Having said that, we do not know how to formalize the intuition

above regarding the entropy loss of seed-protecting extractors. Indeed, in Section 6 we prove

the existence of seed-protecting extractors via a probabilistic argument, and our proof technique

requires : ≥ C<. We leave the question of understanding the entropy loss of seed-protecting

extractors to future research.

Lastly, it would be interesting to investigate the connection between seed-protecting extractors

to other types of extractors. Concretely, can non-malleable two-source extractors be characterized
by seed-protecting extractors?

2 Warm-up

As a warm-up, in this section we give a proof sketch for the equivalence between non-malleable

extractors and seed-protecting extractors for permutations. For simplicity we focus on the case

C = 1. The case C > 1 follows by similar ideas but is somewhat more involved.

Theorem 2.1 (Π non-malleability ⇐⇒ Π2
seed protection). Let Ext : {0, 1}= × {0, 1}3 → {0, 1}< .

1. If Ext is (:, �)-seed protecting against Π2 then Ext is (:′, 14�1/3)-non-malleable against Π, where
:′ = : + 2< + $(log(1/�)).

2. If Ext is (:, �)-non-malleable against Π then Ext is (:, 3�)-seed-protecting extractor against Π2.

Proof. We start with the first and more difficult item.

Proof sketch of the first item

Set � = 14�1/3
. Assume towards a contradiction thatExt is not non-malleable againstΠ. Consider

then a source - ∼ {0, 1}= and adversarial permutation � ∈ Πwith no fixed points for which

SD
( (

Ext(-,.),Ext(-, �(.)), .
)
,
(
*< ,Ext(-, �(.)), .

) )
> � ,
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where . ∼ {0, 1}3 is uniform and independent of -. This implies

E
H∼.

[
SD

(
(Ext(-, H),Ext(-, �(H))), (*< ,Ext(-, �(H)))

) ]
> � . (2.1)

For every H, H1 ∈ {0, 1}3 we define the distributions

DH,H1
= (Ext(-, H),Ext(-, H1)) ,

ℐH1
= (*< ,Ext(-, H1)) .

Define the function ) : {0, 1}3 ×{0, 1}3 → [0, 1] by )(H, H1) = SD
(
DH,H1

,ℐH1

)
.With this notation,

Equation (2.1) can be written as E
H∼.
[)(H, �(H))] > �. By an averaging argument, there exists a

set � ⊆ {0, 1}3 of size |� | = �/2 · 23 such that )(H, �(H)) > �/2 for every H ∈ �.

Based on the fact that Ext is strong, we prove that there exists a subset �1 ⊆ {0, 1}3 of density
2�1/3

such that for every H ∉ �1, EH1∼*3 [)(H, H1)] ≤ �2/3.We remark that this is where one pays

2< + $(log(1/�)) in the entropy loss. We choose to skip the proof of this fact (see Claim 3.4).

A main part of the proof is extending �|� , the restriction of � to �, to a new permutation

�̂ over {0, 1}3 such that for almost every H outside of � it holds that )(H, �̂(H)) is small, in

particular, bounded by �1/3
. This is done via a greedy algorithm. We arrange the elements of

{0, 1}3 \ (� ∪�1) in some order H1 , . . . , Hℓ . By an averaging argument, for every H ∉ �1, there are

at most �1/3
fraction of seeds H1 for which )(H, H1) ≥ �1/3

. Denote this set by �(H). We proceed

iteratively, starting from 8 = 1, and choose an element I8 ∉ �(H8), also different from H8 , that

has not been assigned already as an element of the range of (the partially defined) �̂, and set

�̂(H8) = I8 . This can be done for most elements H8 . When 8 gets very close to ℓ we may have to

assign the remaining elements of the range in any way, but which will still guarantee that �̂ is a

permutation. At any rate, for simplicity, let us assume that for all elements H1 , . . . , Hℓ we have

that �̂(H8) ∉ �(H8) ∪ {H8}.
Define the random variablesD

�̂
= D

.,�̂(.) and ℐ�̂ = ℐ�̂(.), where . is uniformly distributed

over {0, 1}3. Using the fact that Ext is seed protecting, we prove the following.

Claim 2.2. There exists a set �2 ⊆ {0, 1}3 of density at most
√
� such that for every H ∈ {0, 1}3 \ �2,

SD(D
�̂
,D

H,�̂(H)) ≤
√
�.

Proof. Denote

/̂(H) = Ext(-, �̂(H)) .

With this notation, we have that

D
�̂
= (Ext(-,.), /̂(.)),

D
H,�̂(H) = (Ext(-, H), /̂(H)) .
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By construction, �̂ is a permutation with no fixed points (more importantly, it does not collude

with the identity function). Observe that as Ext is seed protecting against Π2 ∩ X2
with error �,

E
H∼*3

[SD(D
H,�̂(H) ,D�̂

)] ≤ �.

By Markov’s inequality, the set �2 ⊆ {0, 1}3 of all the H satisfying SD((D
H,�̂(H) ,D�̂

)) ≥
√
� has

density at most

√
�, as stated.

�

Using that Ext is a strong seeded extractor, one can prove that

Claim 2.3. There exists a set �3 ⊆ {0, 1}3 of density at most
√
� such that for every H ∈ {0, 1}3 \ �3,

SD(ℐ
�̂
,ℐ
�̂(H)) ≤

√
�.

Write � = �1 ∪ �2 ∪ �3. Recall that |� | = �/2 · 23 = 7�1/3 · 23 . By the above claims we can

bound |�| < 7�1/3 · 23 , and so there exists Hℎ ∈ � \ �. Take Hℓ ∈ {0, 1}3 \ (� ∪ �). By Claim 2.2,

since Hℓ , Hℎ ∉ �2, SD(D
Hℎ ,�̂(Hℎ) ,D�̂

) ≤
√
� and SD(D

Hℓ ,�̂(Hℓ ) ,D�̂
) ≤
√
�. Hence,

SD
(
D
Hℓ ,�̂(Hℓ ) ,DHℎ ,�̂(Hℎ)

)
≤ 2

√
� . (2.2)

By Claim 2.3 and since Hℓ , Hℎ ∉ �3, SD(ℐ
�̂(Hℎ) ,ℐ�̂) ≤

√
� and SD(ℐ

�̂(Hℓ ) ,ℐ�̂) ≤
√
�. Thus,

SD
(
ℐ
�̂(Hℓ ) ,ℐ�̂(Hℎ)

)
≤ 2

√
� . (2.3)

Now, since Hℓ ∈ {0, 1}3 \ (� ∪ �1),

SD
(
D
Hℓ ,�̂(Hℓ ) ,ℐ�̂(Hℓ )

)
≤ �1/3 . (2.4)

By Equations (2.2), (2.3), and (2.4), and the triangle inequality, SD(D
Hℎ ,�̂(Hℎ) ,ℐ�̂(Hℎ)) ≤ 5�1/3.

However, Hℎ ∈ � and so

SD
(
D
Hℎ ,�̂(Hℎ) ,ℐ�̂(Hℎ)

)
= )

(
Hℎ , �̂(Hℎ)

)
= )(Hℎ , �(Hℎ)) >

�
2

,

contradicting our choice of �. This proves the first item.

Proof sketch of the second item

Moving on to the second item, let �1 , �2 ∈ Π be non-colluding. Let - be an (=, :)-source, and
let . ∼ {0, 1}3 be a uniform random variable, independent of -. Denote

/(H) = (Ext(-, �1(H)),Ext(-, �2(H))).
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As �−1

1
is a permutation, �−1

1
(.) distributes the same as . does. Thus,

SD((*3 , /(.)), (., /(.))) = SD((*3 , /(�−1

1
(.))), (�−1

1
(.), /(�−1

1
(.)))).

By the data-processing inequality,2 we can apply �1 on the prefix of both random variables

without increasing the statistical distance; The above equation then becomes

SD((*3 , /(.)), (., /(.))) = SD((*3 , /(�−1

1
(.))), (., /(�−1

1
(.)))) . (2.5)

Define % = �2 ◦ �−1

1
. Then,

/(�−1

1
(.)) = (Ext (-,.) ,Ext(-, %(.))) .

Note that % is a permutation. Furthermore, observe that as (�1 , �2) ∈ X2
, % has no fixed points.

Indeed, assuming towards a contradiction that %(H) = H for some H ∈ {0, 1}3, we get that

�−1

1
(H) = �−1

2
(H), which is impossible. By the non-malleability of Ext, we know that

SD((., /(�−1

1
(.))), (.,*< ,Ext(-, %(.)))) ≤ � ,

Thus, by the triangle inequality, we get

SD((*3 , /(�−1

1
(.))), (., /(�−1

1
(.)))) ≤ SD((*3 , /(�−1

1
(.))), (*3 , *< ,Ext(-, %(.))))+

SD((*3 , *< ,Ext(-, %(.))), (.,*< ,Ext(-, %(.))))+
SD((.,*< ,Ext(-, %(.))), (., /(�−1

1
(.))))

≤ 3� . (2.6)

The proof then follows by Equation (2.5). �

3 Seed-protecting extractors for high entropy adversaries are non-
malleable

In this section we prove Theorem 1.5, showing that a seed-protecting extractor with adversarial

entropy parameter Δ is non-malleable against roughly the same adversarial function class.

Definition 3.1 (non-colluding functions). We say that a tuple (�1 , . . . , �C) ∈ AC
3
do not collude, if

for every H ∈ {0, 1}3, �1(H), . . . , �C(H) are pairwise distinct. When 3 is clear from context, we

denote by XC the set of C-tuples of non-colluding functions from {0, 1}3 to {0, 1}3.

We prove the following slight restatement of Theorem 1.5. Henceforth, we denote byN ⊆ A3

the class of functions with no fixed points. Recall that ℱΔ is the set of functions � ∈ A3 for

which �∞(�(*3)) ≥ 3 − Δ.
2By this we refer to the fact that for any random variables -,. ∼ Ω

1
, and every 5 : Ω

1
→ Ω

2
, possibly randomized,

SD( 5 (-), 5 (.)) ≤ SD(-,.). Equality is attained when 5 is injective.
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Theorem 3.2. Let C ≥ 1 be an integer, and Δ ≥ 0. Let Ext : {0, 1}= × {0, 1}3 → {0, 1}< be a
(:, �)-seeded extractor with 3 ≥ 2 log C + log

1

� + 2 and � ≤ 10
−4. Assume that Ext is seed protecting

against ℱ C+1

max(Δ,log C ,1). Then, Ext is non-malleable against (ℱΔ ∩N)C∩XC for min-entropy :+<C+ log
1

�

and error guarantee 14�1/3.

Note that the non-malleability guaranteed by Theorem 3.2 is with respect to (ℱΔ ∩N)C ∩ XC .
That is, non-colluding is still required. In Theorem 3.1we show how to get rid of this requirement

in a “black-box” fashion.

Proof of Theorem 3.2. Assume towards a contradiction that Ext is not non-malleable against

(ℱΔ ∩N)C for min-entropy :′ = : + <C + log(1/�). Then, there exists an (=, :′) source - and

functions �1 , . . . , �C ∈ ℱΔ ∩N with (�1 , . . . , �C) ∈ XC , such that

SD
( (

Ext(-,.),Ext(-, �1(.)), . . . ,Ext(-, �C(.)), .
)
,(

*< ,Ext(-, �1(.)), . . . ,Ext(-, �C(.)), .
) )

> � ,

for � = 14�1/3
, where . ∼ {0, 1}3 is uniform and independent of -. That is,

E
H∼.

[
SD

(
(Ext(-, H),Ext(-, �1(H)), . . . ,Ext(-, �C(H))),

(*< ,Ext(-, �1(H)), . . . ,Ext(-, �C(H)))
) ]

> � . (3.1)

For H, H1 , . . . , HC ∈ {0, 1}3 define the distributions

DH,H1 ,...,HC = (Ext(-, H),Ext(-, H1), . . . ,Ext(-, HC)) ,
ℐH1 ,...,HC = (*< ,Ext(-, H1), . . . ,Ext(-, HC)) .

Define the function ) :

(
{0, 1}3

) C+1 → [0, 1] as follows. For H, H1 , . . . , HC ∈ {0, 1}3,

)(H, H1 , . . . , HC) = SD
(
DH,H1 ,...,HC ,ℐH1 ,...,HC

)
.

With this notation, Equation (3.1) can be written as E
H∼.
[)(H, �1(H), . . . , �C(H))] > �. By an

averaging argument, there exists a set � ⊆ {0, 1}3 of size |� | = (�/2) · 23 such that for every

H ∈ �,

)(H, �1(H), . . . , �C(H)) >
�
2

.

Let .1 , . . . , .C be independent random variables, that are jointly independent of -, and each

.8 is uniformly distributed over {0, 1}3. Denote

/ = Ext(-,.1) ◦ · · · ◦ Ext(-,.C) .

For I = (I1 , . . . , IC) ∈ ({0, 1}<)C define the random variable -I = - | {/ = I}.
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Claim 3.3. There exists a set �′ ⊆ ({0, 1}<)C such that:

1. Pr[/ ∈ �′] ≤ �, and,

2. For every I ∉ �′, �∞(-I) ≥ �∞(-) − C< − log(1/�) ≥ :.

Proof. Fix I ∈ ({0, 1}<)C and observe that

�∞(-I) ≥ �∞(-) − log

(
1

Pr[/ = I]

)
. (3.2)

Define �′ =
{
I : Pr[/ = I] ≤ 2

−<C�
}
. By Equation (3.2), for every I ∉ �′, item (2) holds. As

�′ ⊆ {0, 1}<C ,

Pr[/ ∈ �′] =
∑
I∈�′

Pr[/ = I] ≤ |�′ | · 2−<C� ≤ � ,

and so item (1) follows as well. �

Claim 3.4. There exists a subset �1 ⊆ {0, 1}3 of size |�1 | ≤ 2�1/3 · 23 such that for every H ∉ �1,

E
(H1 ,...,HC )∼*C3

[)(H, H1 , . . . , HC)] ≤ �2/3 .

Proof. Recall the definition of -I and �
′
from Lemma 3.3. Fix I ∉ �′. Let . be uniform over

{0, 1}3 and independent of (-,.1 , . . . , .C). Note that conditioned on the event / = I, the random

variables -I , . are independent, and, furthermore, . is uniformly distributed over {0, 1}3. In
addition, as I ∉ �′, �∞(-I) ≥ :. Thus, as Ext is a strong (:, �) seeded extractor,

(Ext(-I , .), .) ≈� (*< , .) .

Let /′ be the distribution obtained by sampling I ∼ / conditioned on I ∉ �′. Then,

)(.,.1 , . . . , .C) = SD
(
(Ext(-,.), /, .) , (*< , /, .)

)
= E
I∼/
[SD ((Ext(-I , .), .) , (*< , .))]

≤ Pr[/ ∈ �′] + E
I′∼/′
[SD ((Ext(-I′ , .), .) , (*< , .))] ≤ 2� .

By Markov’s inequality, there exists a subset �1 ⊆ {0, 1}3 of size |�1 | ≤ 2�1/3 · 23 such that for

every H ∉ �1,

)(H, .1 , . . . , .C) ≤ �2/3 .

Thus, as .1 , . . . , .C are independent, we get that for every H ∉ �1,

E
(H1 ,...,HC )∼*C3

[)(H, H1 , . . . , HC)] ≤ �2/3 ,

concluding the proof of the claim. �
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Proposition 3.5. There exist (�̂1 , . . . , �̂C) ∈ ℱ C
max(Δ,log C ,1) ∩ X

C and �2 ⊆ {0, 1}3 of size |�2 | ≤
3�1/3 · 23 + C such that

1. For every H ∈ �, �̂ 9(H) = � 9(H), and,

2. For every H ∈ {0, 1}3 \ (� ∪ �2) it holds that )
(
H, �̂1(H), . . . , �̂C(H)

)
≤ �1/3.

Proof. Denote � = 2
−3 · |�1 \ � |. By Claim 3.4, � ≤ 2�1/3

. Moreover, by Markov’s inequality, for

every H ∉ �1, there exists �(H) ⊆ ({0, 1}3)C of size at most |�(H)| ≤ �1/3 · 23C such that for every

(H1 , . . . , HC) ∉ �(H),
)(H, H1 , . . . , HC) ≤ �1/3 .

Let ! = {0, 1}3 \ (� ∪ �1). Fix an (arbitrary) ordering of the elements in ! and denote them by

H1 , H2 , . . . , H |!| . Let 2 be the least integer larger than max(�1/3 · 23 , C), and set ℓ = |!| − 2. Denote

�2 = (�1 \ �) ∪ {Hℓ+1 , . . . , H |!|} ,

observing that indeed

|�2 | ≤ |�1 | + |!| − ℓ = |�1 | + 2 ≤ 3�1/3 · 23 + C .

We define a family of functions {
�̂ 9 ,< : 1 ≤ 9 ≤ C , 0 ≤ < ≤ ℓ

}
,

where �̂ 9 ,0 : � → {0, 1}3 and for < ≥ 1,

�̂ 9 ,< : � ∪ {H1 , . . . , H<} → {0, 1}3 .

The above functions are constructed via the following algorithm which proceeds iteratively on

<.

The construction algorithm for the �̂ 9 ,< functions

1. For every 9 ∈ [C], set �̂ 9 ,0 = � 9 |� .

2. For < = 1, . . . , ℓ , we will show in Claim 3.6 below that there exists (H<
1
, . . . , H<C ) ∈

({0, 1}3)C \ �(H<) such that H< , H<
1
, . . . , H<C are pairwise distinct; furthermore, for every 9 ∈

[C],
����̂−1

9 ,<−1
(H<
9
)
��� < C. Under these assumptions, for every 9 ∈ [C] and H ∈ � ∪ {H1 , . . . , H<},

set

�̂ 9 ,<(H) =
{
H<
9

H = H< ;

�̂ 9 ,<−1(H) otherwise.

Claim 3.6. The underlying assumption of step (2) in the algorithm above holds for every < ∈ [ℓ ].
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Proof. We begin by setting notation. For every < ∈ [ℓ ] and 9 ∈ [C], we define the set �<
9
⊆

{0, 1}3 \ {H<} of elements whose preimage is of size strictly less than C with respect to the

function �̂ 9 ,<−1. Formally,

�<9 =
{
H ∈ {0, 1}3 \ {H<} :

����̂−1

9 ,<−1
(H)

��� < C
}
.

With this notation, the hypothesis underlying step (2) holds at iteration < if there exists an

element in (�<
1
× · · · × �<C ) \ �(H<)with pairwise distinct entries. To establish this, we start by

bounding the size of �<
9
from below for every fixed 9 ∈ [C].

For an element H not to be contained in �<
9
there must be at least C elements whose image

under �̂ 9 ,<−1 is H. At the beginning of the <th
iteration, < − 1 elements have been assigned an

image at step (2) and additional |� | = �/2 · 23 elements were assigned at Equation (1). Hence,����<9 ��� ≥ |{0, 1}3 \ {H<}| − |� | + < − 1

C

≥ 2
3 − 1 − |� | + ℓ − 1

C
. (3.3)

As ℓ = |!| − 2 and since ! ∩ � = ∅ we have that

|� | + ℓ = |� | + |!| − 2 ≤ |� ∪ !| − 2 ≤ 2
3 − 2 ,

and so ����<9 ��� ≥ (
1 − 1

C

)
2
3 + 2 + 1

C
− 1.

Thus, as H< ∉ �1,�� (�<
1
× · · · × �<C

)
\ �(H<)

�� ≥ ((
1 − 1

C

)
2
3 + 2 + 1

C
− 1

) C
− �1/3 · 23 . (3.4)

Let NE ⊆ ({0, 1}3)C be the largest set of vectors E ∈ ({0, 1}3)C such that E8 ≠ E 9 for every pair

of distinct 8 , 9 ∈ [C]. With this notation, to prove that the assumption underlying step (2) holds

at step <, one must show that( (
�<

1
× · · · × �<C

)
\ �(H<)

)
∩NE ≠ ∅ . (3.5)

To this end, note that

��({0, 1}3)C \NE

�� ≤ (C
2

)
2
(C−1)3

. Thus, by Equation (3.4), it suffices to show

that ((
1 − 1

C

)
2
3 + 2 + 1

C
− 1

) C
> �1/3 · 23 +

(
C

2

)
2
(C−1)3 . (3.6)

For C = 1, Equation (3.6) is equivalent to 2 > �1/3 · 23 which readily follows by the definition of 2.

Consider then C ≥ 2. By definition, 2 ≥ C and so (2 + 1)/C − 1 > 0. Note further that

(
1 − 1

C

) C ≥ 1

4
.

Therefore, to satisfy Equation (3.6), it suffices to establish that

1

4

· 23C ≥ �1/3 · 23 +
(
C

2

)
2
(C−1)3 .
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It is straightforward to verify that the above equation follows per our assumption 3 ≥ 2 log C +
2. �

We turn to extend the functions �̂1,ℓ , . . . , �̂C ,ℓ to the domain {0, 1}3. To this end, let

� = {0, 1}3 \ (� ∪ {H1 , . . . , Hℓ }) and denote its elements by Hℓ+1 , . . . , Hℓ+4 . For < = 1, . . . , 4 we

define the function

�̂ 9 ,ℓ+< : � ∪ {Hℓ+1 , . . . , Hℓ+<} → {0, 1}3

using the following iterative algorithm.

The algorithm for extending �̂ 9 ,ℓ to �̂ 9

1. For < = 1, . . . , 4, we will show in Claim 3.7 below that there exist pairwise distinct

Hℓ+<
1

, . . . , Hℓ+<C ∈ {0, 1}3 \ {Hℓ+<} such that for every 9 ∈ [C],
����̂−1

9 ,ℓ+<−1
(Hℓ+<
9
)
��� ≤ 1. Under

these assumptions, for every 9 ∈ [C] and H ∈ � ∪ {H1 , . . . , Hℓ+<}, set

�̂ 9 ,ℓ+<(H) =
{
Hℓ+<
9

H = Hℓ+< ;

�̂ 9 ,ℓ+<−1(H) otherwise.

2. For 9 ∈ [C], set �̂ 9 = �̂ 9 ,4 .

Claim 3.7. The underlying assumption in step (1) of the algorithm above holds.

Proof. Fix < ∈ [4]. For every 9 ∈ [C], the number of elements I for which |�̂−1

9 ,ℓ+<−1
(I)| ≥ 2 is

bounded above by
1

2
· 23. Thus, when setting �̂ 9 ,ℓ+<(Hℓ+<) one has at least 2

3/2 choices for an

image with respect to this restriction. Recall that we also need to guarantee that

Hℓ+< , �̂1,ℓ+<(Hℓ+<), . . . , �̂C ,ℓ+<(Hℓ+<)

are pairwise distinct. This can be achieved as
1

2
· 23 + C + 1 < 2

3
per our assumption 3 ≥

2 log C + 2. �

Analyzing the �̂ functions. First, note that the domain of each �̂1 , . . . , �̂C is {0, 1}3. Recall
that each of �1 , . . . , �C has no fixed points by assumption and, furthermore, are non-colluding.

Thus, �̂1 , . . . , �̂C have no fixed points and are non-colluding when restricted to �. Moreover, by

construction, the functions �̂1 , . . . , �̂C are defined to have no fixed points and to be non-colluding

outside of � as well. Thus, (id, �̂1 , . . . , �̂C) ∈ XC+1
, where id: {0, 1}3 → {0, 1}3 is the identity

function.

We turn to show that �̂ 9 ∈ ℱmax(Δ,log C ,1) for every 9 ∈ [C]. Recall that� 9 ∈ ℱΔ. Both algorithms

above assure that for any 9 ∈ [C], and H ∉ Im(�̂ 9 |�) it holds that,
����̂−1

9
(H)

��� ≤ max(C , 2). Observe

that 5 ∈ ℱlog C if and only if for every H ∈ Im( 5 ), | 5 −1(H)| ≤ C, and so it holds that

�̂ 9 ∈ ℱΔ ∪ ℱlog max(C ,2) = ℱmax(Δ,log C ,1) .
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This concludes the proof of Proposition 3.5. �

We turn back to the proof of Theorem 3.2. Define the random variables

D
�̂
= D

.,�̂(.) ,

ℐ
�̂
= ℐ

�̂(.) ,

where . is uniformly distributed over {0, 1}3 and �̂(.) = (�̂1(.), . . . , �̂C(.)).
Claim 3.8. There exists a set �3 ⊆ {0, 1}3 of size |�3 | ≤

√
� · 23 such that for every H ∈ {0, 1}3 \ �3,

SD
(
D
�̂
,D

H,�̂(H)

)
≤
√
�.

Proof. Denote

/̂(H) =
(
Ext(-, �̂1(H)), . . . ,Ext(-, �̂1(H))

)
.

With this notation,

D
�̂
=

(
Ext(-,.), /̂(.)

)
,

D
H,�̂(H) =

(
Ext(-, H), /̂(H)

)
.

By Proposition 3.5, �̂1 , . . . , �̂C ∈ ℱmax(Δ,log C ,1); moreover, note that id ∈ ℱ
max(Δ,log C ,1). Observe

that as Ext is seed protecting against ℱ C+1

max(Δ,log C ,1), and since (id, �̂1 , . . . , �̂C) ∈ XC+1
. it holds that

E
H∼*3

[
SD

(
(Ext(-, H), /̂(H)), (Ext(-,.), /̂(.))

) ]
≤ � . (3.7)

Let �3 ⊆ {0, 1}3 be the set of all elements H satisfying

SD
(
(Ext(-, H), /̂(H)), (Ext(-,.), /̂(.))

)
≥
√
� .

By Markov’s inequality, it follows that |�3 | ≤
√
� · 23, as stated.

�

Claim 3.9. There exists a set �4 ⊆ {0, 1}3 of size |�4 | ≤
√
� · 23 such that for every H ∈ {0, 1}3 \ �4,

SD
(
ℐ
�̂
,ℐ
�̂(H)

)
≤
√
� .

Proof. Note that for every H ∈ {0, 1}3 it holds that

SD
(
ℐ
�̂
,ℐ
�̂(H)

)
= SD

(
/̂(.) , /̂(H)

)
.
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By Equation (3.7),

E
H∼*3

[
SD

(
ℐ
�̂
,ℐ
�̂(H)

)]
≤ � .

Let �4 ⊆ {0, 1}3 be the set of all elements H satisfying

SD
(
ℐ
�̂
,ℐ
�̂(H)

)
≥
√
� .

By Markov’s inequality, it follows that |�4 | ≤
√
� · 23, as stated. �

We are now ready to complete the proof. Write � = �1 ∪ �2 ∪ �3 ∪ �4. Recall that

|� | = �
2

· 23 = 7�1/3 · 23 .

By the above claims and using our hypothesis on 3,

|�| ≤ (5�1/3 + 2

√
�) · 23 + C < 7�1/3 · 23 ,

and so there exists Hℎ ∈ � \ �. On the other hand,

|� ∪ �| ≤
(
�
2

+ 5�1/3 + 2

√
�

)
2
3 + C < 2

3 ,

where the last inequality follows as � ≤ 10
−4

and, again, using our hypothesis on 3. Hence,

there exists Hℓ ∈ {0, 1}3 \ (� ∪ �).
By Claim 3.8, since Hℓ , Hℎ ∉ �3,

SD
(
D
Hℎ ,�̂(Hℎ) ,D�̂

)
≤
√
�,

SD
(
D
Hℓ ,�̂(Hℓ ) ,D�̂

)
≤
√
� ,

and so

SD
(
D
Hℓ ,�̂(Hℓ ) ,DHℎ ,�̂(Hℎ)

)
≤ 2

√
� . (3.8)

By Claim 3.9 and since Hℓ , Hℎ ∉ �4,

SD
(
ℐ
�̂(Hℎ) ,ℐ�̂

)
≤
√
�,

SD
(
ℐ
�̂(Hℓ ) ,ℐ�̂

)
≤
√
� .

Thus,

SD
(
ℐ
�̂(Hℓ ) ,ℐ�̂(Hℎ)

)
≤ 2

√
� . (3.9)

Now, since Hℓ ∈ {0, 1}3 \ (� ∪ �2), by item (2) of Proposition 3.5,

SD
(
D
Hℓ ,�̂(Hℓ ) ,ℐ�̂(Hℓ )

)
≤ �1/3 . (3.10)
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By Equation (3.8), Equation (3.9), Equation (3.10), and the triangle inequality,

SD
(
D
Hℎ ,�̂(Hℎ) ,ℐ�̂(Hℎ)

)
≤ 5�1/3 .

However, Hℎ ∈ � and so

SD
(
D
Hℎ ,�̂(Hℎ) ,ℐ�̂(Hℎ)

)
= )

(
Hℎ , �̂(Hℎ)

)
= )(Hℎ , �(Hℎ)) >

�
2

,

contradicting our choice of �. �

Observe that forΔ = 0 and C = 1, Theorem2.1 shows that seedprotection against permutations

is enough, and one does not need to devise an extractor against ℱ1. For a general C > 1 however,

we suspect it is not true, and one needs to to handle ℱΔ for Δ > 0 to get non-malleability

against permutations. We note however, that if one is willing to tolerate “smoothness” (in

the sense of Definition 4.3 and Definition 4.1 below), or a slight error degradation, we can get

non-malleability against permutations from seed-protecting extractors against permutations, as

long as C is small enough. We omit the details.

3.1 Colluding does not harm non-malleability

Theorem 3.2 established non-malleability against (ℱΔ ∩N)C ∩ XC .3 However, in sharp contrast

to seed-protecting extractors, colluding cannot help adversaries in breaking non-malleable

extractors. Intuitively this should be clear, as redundant information should not help the

adversary in distinguishing Ext(-,.) from uniform. Here we make it formal.

Lemma 3.10. Let Ext : {0, 1}= ×{0, 1}3 → {0, 1}< be a (:, �)-non-malleable extractor againstN C ∩XC
(i. e., non-colluding functions with no fixed points), so that 3 ≥ log(C + 2). Then, Ext is (:, �)-non-
malleable againstN C (i. e., a C-non-malleable extractor).

Proof. Let �1 , . . . , �C ∈ A3 ∩ N be any adversarial functions with no fixed points. Fix an

(=, :)-source - and let . ∼ {0, 1}3 be a uniform random variable, independent of -.

We define the tuple of non-colluding functions �′
1
, . . . , �′C as follows. Let B ⊆ {0, 1}3 be the

set of H-s in which a colluding occurs. Namely, for each H ∈ B there exist distinct 8 , 9 ∈ [C] for
which �8(H) = � 9(H). Note that it is possible that different set of functions collude separately,

say �8(H) = � 9(H) = I and �8′(H) = � 9′(H) = I′ for I ≠ I′. Given H ∈ {0, 1}3, let �(H) ⊆ [C] be the
set of “redundant” adversaries for H. Formally,

�(H) =
{
8 ∈ [C] : there exists 9 < 8 such that � 9(H) = �8(H)

}
.

3We recall that ℱΔ is the set of functions � ∈ A3 for which �∞(�(*3)) ≥ 3 − Δ,N is the set of functions with no

fixed points, and XC is the set of C-tuples of non-colluding functions.
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Note that if H ∉ B, �(H) is empty. Also, given H ∈ B, we denote by �(H) = {�1(H), . . . , �C(H)}, and
take �1(H), . . . , �C(H) to be the first C elements in {0, 1}3 \ (�(H) ∪ {H}) in some fixed order. As

3 ≥ log(C + 2), we can indeed do so. For every 8 ∈ [C], we define

�′8(H) =


�8(H) H ∉ B,
�8(H) H ∈ B ∧ 8 ∉ �(H),
�8(H) otherwise.

It then follows that

(
�′

1
, . . . , �′C

)
∈ XC .

Denote /(H) = (Ext(-, �1(H)), . . . ,Ext(-, �C(H))), and likewise,

/′(H) = (Ext(-, �′
1
(H)), . . . ,Ext(-, �′C(H))) .

We further define /reduce(H) to be joint distribution of the Ext(-, �8(H)) for 8-s which are not in

�(H). Namely,

/reduce(H) = ©8∈[C]\�(H)Ext(-, �8(H))

where ◦ denotes concatenation. We record the following two easy claims.

Claim 3.11. For every H ∈ {0, 1}3, it holds that

SD((Ext(-, H), /(H)), (*< , /(H))) =
SD((Ext(-, H), /reduce(H)), (*< , /reduce(H))) .

Proof. The claim follows from the following observation: For every three random variables �, �,

and �, it holds that SD((�, �, �, �), (*, �, �, �)) = SD((�, �, �), (*, �, �)), where* is uniform

over the support of � and independent of all other random variables. �

Claim 3.12. For every H ∈ {0, 1}3 it holds that

SD((Ext(-, H), /reduce(H)), (*< , /reduce(H))) ≤
SD((Ext(-, H), /′(H)), (*< , /

′(H))) .

Proof. The claim readily follows from the data processing inequality, observing that /′(H) =
(/reduce(H) , �) for some random variable �. �

We can now finish the proof. As Ext is non-malleable against non-colluding functions, we

know that

SD((Ext(-,.), /′(.), .), (*< , /
′(.), .)) ≤ � .

But

SD((Ext(-,.), /′(.), .), (*< , /
′(.), .)) = E

H∼*3

[SD((Ext(-, H), /′(H)), (*< , /
′(H)))] ,
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so combining the above with Claim 3.11 and Claim 3.12, it follows that

SD((Ext(-,.), /(.), .), (*< , /(.), .)) = E
H∼*3

[SD((Ext(-, H), /(H)), (*< , /(H)))]

= E
H∼*3

[SD((Ext(-, H), /reduce(H)), (*< , /reduce(H)))]

≤ E
H∼*3

[SD((Ext(-, H), /′(H)), (*< , /
′(H)))]

≤ � ,

as desired. �

The above lemma can be adapted to caseswhen the non-malleability is againstmore restricted

family of functions. In particular, we will need the following lemma.

Lemma 3.13. Let Ext : {0, 1}= × {0, 1}3 → {0, 1}< be a (:, �)-non-malleable extractor against
(ℱΔ ∩N)C ∩ XC for Δ ≥ 1, so that 3 ≥ log C + 3. Then, Ext is (:, �)-non-malleable against (ℱΔ ∩N)C .

Proof. Inspecting the proof of Lemma 3.10, we just need to make sure that �′
1
, . . . , �′C stay inside

the family ℱΔ. For every 8 ∈ [C], let C8 ⊆ {0, 1}3 be the set of seeds we re-wired. Namely,

C8 =

{
H ∈ {0, 1}3 : H ∈ B ∧ 8 ∈ �(H)

}
.

Recall that if H ∈ C8 then �
′
8
(H) = �8(H). We will modify the definition of �8 to guarantee that

�′
8
∈ ℱΔ, while still satisfying (�′

1
, . . . , �′C) ∈ XC ∩N C

.

Let G1(H) = {0, 1}3 \ (�(H) ∪ {H}) be the set of “safe” seeds. In Lemma 3.10 we simply set

�8(H) to be the 8-th element of G1(H). Now, we need to be just a bit more careful. Let

G2 =

{
I ∈ {0, 1}3 :

���−1

8 (I)
�� < 2

Δ
}
.

By an averaging argument, |G2 | ≥ 2
3−Δ

. Thus,

|G1(H) ∩G2 | ≥ 2
3 − C − 1 − 2

3−Δ ≥ C ,

and we can set �8(H) to be the 8-th element of G1(H) ∩G2. Both properties now hold. �

Combining Therorem 3.2 and Lemma 3.13, we get our main result.

Corollary 3.14. Let C ≥ 1 be an integer, and Δ ≥ 1. Let Ext : {0, 1}= × {0, 1}3 → {0, 1}< be a
(:, �)-seeded extractor with 3 ≥ 2 log C + log

1

� + 2 and � ≤ 10
−4. Assume that Ext is seed protecting

against ℱ C+1

max(Δ,log C)∩X
C+1. Then, Ext is non-malleable against (ℱΔ ∩N)C for min-entropy :+<C+log

1

�

and error guarantee 14�1/3.

THEORY OF COMPUTING, Volume 21 (8), 2025, pp. 1–38 22

http://dx.doi.org/10.4086/toc


SEED-PROTECTING EXTRACTORS

4 Seed-protecting extractors from non-malleable extractors

In this section, we show that non-malleability against permutations implies seed protection

for the class of permutations. We also prove a similar claim for a more restricted kind of

permutations – C-cliques, which we define below. For the sake of generality, we consider the

“smooth” variants of these classes.

Definition 4.1 (smooth permutations). Given � ∈ A3 and � ∈ [0, 1], we say that � ∈ Π� if there

exists a set � ⊆ {0, 1}3 with |� | ≥ (1 − �) · 23 such that �|� is injective.

To describe our next family of structured adversaries, we introduce the following notation.

We say that a function � ∈ A is �-close to an involution if for all but �-fraction of H ∈ {0, 1}3
it holds that �(�(H)) = H and �(H) ≠ H. That is, the directed graph induced by the function

� has, but for one component of density �, an involution structure (i. e., a perfect matching).

More generally, for C ≥ 1, we formalize what it means for an adversarial function to be �-close
to (C + 1)-cliques, or clusters. Fix functions �1 , . . . , �C ∈ A. For H ∈ {0, 1}3, we define the

neighborhood of H by Γ(H) = {H, �1(H), . . . , �C(H)} .We say that (�1 , . . . , �C) ∈ ℳC
� if there exists

� ⊆ {0, 1}3 with |� | ≥ (1 − �) · 23 such that for every H ∈ � it holds that Γ(Γ(H)) = Γ(H), and
|Γ(H)| = C + 1. So, intuitively, but for a density-� component, the vertices are partitioned to

cliques, or clusters, of size C + 1. In fact, we consider a more structured variant, which we now

formally define.

Definition 4.2 (C-cliques). Given �1 , . . . , �C ∈ A3 and ? ≥ C, we say (�1 , . . . , �C) ∈ ℳC[?] if
there exists a partition {0, 1}3 = �1 ] · · · ] �ℓ , each C ≤ |�8 | ≤ ?, such that the following holds.

For every 8 ∈ [ℓ ] let 28 = |�8 | and denote �8 =
{
H0 , . . . , H28−1

}
, and �1

(
H 9

)
= I 9 . Then,

1. �1 restricted to �8 is a permutation. That is,

{
H0 , . . . , H28−1

}
=

{
I0 , . . . , I28−1

}
.

2. For any integers 9 ∈ [28] and 2 ≤ A ≤ C, �A
(
H 9

)
= I 9+A−1 mod 28

.

Note, in particular, thatℳC[?] ⊂ ΠC
. For brevity, we denoteℳC[C] =ℳC

.

Definition 4.3 (smooth C-cliques). For positive integers ? ≥ C, and � ∈ [0, 1], we define the

setℳC
�[?] ⊆ AC

3
as follows. A tuple G = (�1 , . . . , �C) ∈ ℳC

�[?] if there exists � ⊆ {0, 1}3 with

|� | ≥ (1 − �) · 23 such that

(�1 |� , . . . , �C |�) ∈ ℳC[?]
where by the latter we mean formally that there exists a partition � = �1 ] · · · ] �ℓ , each
C ≤ |�8 | ≤ ?, such that the conditions of Definition 4.2 are met. For brevity, we denote

ℳC
�[C] =ℳC

�.

We begin with permutations, and recall that XC denotes the set of C-tuples of non-colluding
functions.

Lemma 4.4. Let Ext : {0, 1}=×{0, 1}3 → {0, 1}< be a (:, �)-non-malleable extractor against (Π ∩N)C
(i. e., permutations with no fixed points), and fix any � ≥ 0. Then, Ext is (:, �′)-seed protecting against
ΠC+1

� ∩ XC+1 for �′ = 2(C + 1)(� + �).
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Proof. Let �1 , . . . , �C+1 ∈ Π� be non-colluding. Let - be an (=, :)-source, and let . ∼ {0, 1}3 be
a uniform random variable, independent of -. For each 8 ∈ [C + 1], let �8 ⊆ {0, 1}3 be such that

�8 |�8 is injective. Writing � = �1 ∩ · · · ∩ �C+1, we have that |� | ≥ (1 − (C + 1)�) · 23. For each
8 ∈ [C + 1], denote by �̃8 ∈ Π the permutation that is obtained by keeping the function’s value on

� and completing it to a permutation on {0, 1}3 in such a way that �̃1 , . . . , �̃C+1 do not collude.

Observe that it is possible to do so as long as

���{0, 1}3 \ ���� ≥ C + 1, which certainly holds.4 In

what follows, we denote

/1(.) = (Ext(-, �1(.)), . . . ,Ext(-, �C+1(.))),
/̃1(.) = (Ext(-, �̃1(.)), . . . ,Ext(-, �̃C+1(.))) .

First, note that

SD((., /1(.)), (., /̃1(.))) ≤ Pr[. ∉ �] ≤ (C + 1)� . (4.1)

Next, as �̃−1

1
is a permutation, �̃−1

1
(.) distributes the same as . does. Thus,

SD((*3 , /̃1(.)), (., /̃1(.))) = SD((*3 , /̃1(�̃−1

1
(.))), (�̃−1

1
(.), /̃1(�̃−1

1
(.)))) . (4.2)

By the data-processing inequality, we can apply �̃1 on the prefix of both random variables

without increasing the statistical distance; Equation (4.2) becomes

SD((*3 , /̃1(.)), (., /̃1(.))) = SD((*3 , /̃1(�̃−1

1
(.))), (., /̃1(�̃−1

1
(.)))) . (4.3)

For 8 ∈ [C], define %8 = �̃8+1 ◦ �̃−1

1
. Then,

/̃1(�̃−1

1
(.)) =

(
Ext(-,.),Ext

(
-, �̃2(�̃−1

1
(.))

)
, . . . ,Ext

(
-, �̃C+1(�̃−1

1
(.))

))
= (Ext (-,.) ,Ext (-, %1(.)) , . . . ,Ext (-, %C(.))) .

Note that for every 8 ∈ [C], %8 is a permutation. Furthermore, observe that as (�̃1 , . . . , �̃C+1) ∈
XC+1

, %8 has no fixed points. Indeed, assuming towards a contradiction that %8 satisfies %8(H) = H
for some H ∈ {0, 1}3, we get that �̃−1

1
(H) = �̃−1

8+1
(H), which is impossible since �̃1(I) ≠ �̃8+1(I) for

any I ∈ {0, 1}3. By the non-malleability of Ext, we know that

SD((., /̃1(�̃−1

1
(.))), (.,*< , /2(.))) ≤ � ,

for /2(.) = (Ext(-, %1(.)), . . . ,Ext(-, %C(.))), and the same is true without conditioning on ..

Thus, by the triangle inequality, we get

SD((*3 , /̃1(�̃−1

1
(.))), (., /̃1(�̃−1

1
(.)))) ≤ SD((*3 , /̃1(�̃−1

1
(.))), (*3 , *< , /2(.)))+

SD((*3 , *< , /2(.)), (.,*< , /2(.)))+
SD((.,*< , /2(.)), (., /̃1(�̃−1

1
(.))))

≤ 2� + SD((*3 , *< , /2(.)), (.,*< , /2(.))) . (4.4)

4Otherwise, � < 2
−3

which implies � = 0 and we can simply take �̃8 = �8 for each 8 ∈ [C + 1].
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We continue in the same manner. Observing that %−1

1
(.) distributes the same as . does, and

using the data-processing inequality, we have

SD((*3+< , /2(.)), (.,*< , /2(.))) = SD((*3+< , /2(%−1

1
(.))), (.,*< , /2(%−1

1
(.)))) . (4.5)

For 8 ∈ [C − 1] define the permutation &8 = %8+1 ◦ %−1

1
. Similarly to the above argument,

/2(%−1

1
(.)) =

(
Ext(-,.),Ext(-, %2(%−1

1
(.))), . . . ,Ext(-, %C(%−1

1
(.)))

)
= (Ext(-,.),Ext(-, &1(.)), . . . ,Ext(-, &C−1(.))) .

This time, the fact that every &8 has no fixed points follows from the fact that �̃2(I) ≠ �̃8+2(I)
for any I ∈ {0, 1}3. Using the non-malleability, together with Equations (4.4), Equations (4.3),

and Equations (4.5), we get

SD((*3 , /̃1(.)), (., /̃1(.))) ≤ 2� + SD((*3 , *< , /2(.)), (*3 , *2< , /3(.)))+
SD((*3 , *2< , /3(.)), (.,*2< , /3(.)))+
SD((.,*2< , /3(.)), (.,*< , /2(.)))
≤ 4� + SD((*3 , *2< , /3(.)), (.,*2< , /3(.))) ,

for /3(.) = (Ext(-, &1(.)), . . . ,Ext(-, &C−1(.))). We continue this process inductively, and

eventually obtain

SD((*3 , /̃1(.)), (., /̃1(.))) ≤ 2(C + 1)� + SD((*3 , *(C+1)<), (.,*(C+1)<)) = 2(C + 1)� . (4.6)

Combining Equations (4.6) and Equation (4.1), we get

SD((*3 , /1(.)), (., /1(.))) ≤ SD((., /1(.)), (., /̃1(.)))+
SD((., /̃1(.)), (*3 , /̃1(.)))+
SD((*3 , /̃1(.)), (*3 , /1(.)))
≤ (C + 1)(2� + �) + SD(/̃1(.), /1(.)) .

To bound the last term of the above inequality, note that

SD(/̃1(.), /1(.)) ≤ SD((., /̃1(.)), (., /1(.))) ≤ (C + 1)� ,

where the last inequality follows by Equation (4.1). This concludes the proof. �

Next, we prove a similar lemma for C-cliques.

Lemma 4.5. Let Ext : {0, 1}= ×{0, 1}3 → {0, 1}< be a (:, �)-non-malleable extractor againstℳC ∩N C ,
and fix any � ≥ 0. Then, Ext is a (:, �′)-seed-protecting extractor against ℳC+1

� ∩ XC+1 for �′ =
2(C + 1)� + 2�.
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Proof. Given non-colluding G = (�1 , . . . , �C+1) ∈ ℳC+1

� , an (=, :)-source - and a uniform

. ∼ {0, 1}3 independent of -, the proof proceeds similarly to Lemma 4.4. Let � ⊆ {0, 1}3 be the
set defined in Definition 4.3 with respect to (�1 , . . . , �C+1) ∈ ℳC+1

� , and recall that |� | ≤ � · 23.
We define

G̃ =

(
�̃1 , . . . , �̃C+1

)
∈ ℳC+1

by setting �̃8 to agree with �8 on � for every 8. Completing �̃8 |� to functions on {0, 1}3 while

maintaining theℳC+1
property can be done by arbitrarily selecting C + 1 inputs that were not

assigned yet, iteratively, and assigning them to form a clique.5 Note that by the definition of

ℳC+1
, the functions in G̃ do not collude.

Define, inductively, the following set of functions. For 8 ∈ [C + 1], %(0)
8
= �̃8 . For every 9 ∈ [C]

and 8 ∈ [C + 1 − 9], we define

%
(9)
8
= %

(9−1)
8+1
◦

(
%
(9−1)
1

)−1

. (4.7)

Next, define, exactly as in Lemma 4.4,

/̃1(.) =
(
Ext

(
-, %

(0)
1
(.)

)
, . . . ,Ext

(
-, %

(0)
C+1
(.)

))
.

Moreover, for every 9 ∈ [C + 1], we define

/ 9+1(.) =
(
Ext

(
-, %

(9)
1
(.)

)
, . . . ,Ext

(
-, %

(9)
C−9+1
(.)

))
.

The crux of the proof is establishing the following inequality for every 9 ≥ 2.

SD((*3 , /̃1(.)), (., /̃1(.))) ≤ 2(9 − 1)�+
SD((*3 , *(9−1)< , / 9(.)), (.,*(9−1)< , / 9(.))) . (4.8)

Following the same reasoning as in Lemma 4.4, Equation (4.8) holds if the following conditions

are met:

1. For every 9 ≥ 0,

(
%
(9)
1

)−1

(.) distributes the same as . does.

2. For every 9 ≥ 1 and 8 ≤ C + 1 − 9, %(9)
8

has no fixed points.

3. For every 9 ≥ 0 it holds that (%(9)
1
, . . . , %

(9)
C−9+1
) ∈ ℳC−9+1[C + 1]. Note that a non-malleable

extractor againstℳC+1
is also non-malleable againstℳC′[C + 1] for any C′ ≤ C + 1.

5Formally, choose H
1
, . . . , HC+1

that were not assigned by �̃
1
yet, namely, with no preimage in �̃

1
|� . Assign

H
1
→ H

1
, . . . , HC+1

→ HC+1
in �̃

1
, H

1
→ H

2
, H

2
→ H

3
, . . . , HC+1

→ H
1
in �̃

2
, and so on. Note that when C + 1 does

not divide 2
3
, we can make some cliques larger. We do not address this issue formally and it does not affect the

statement.
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Item (1) readily holds, since each �̃8 is a permutation, and permutations are closed under

inversion and composition. To see that item (2) holds, fix some 9 ∈ [C] and 8 ∈ [C + 1 − 9] and
consider %

(9)
8
. Assume towards a contradiction that %

(9)
8
(H) = H for some H ∈ {0, 1}3. Thus,

%
(9−1)
8+1

((
%
(9−1)
1

)−1

(H)
)
= H ,

so (
%
(9−1)
1

)−1

(H) =
(
%
(9−1)
8+1

)−1

(H) ,

which means there exists I ∈ {0, 1}3 such that %
(9−1)
8+1
(I) = %(9−1)

1
(I). But due to item (3) which

we now prove,

(
%
(9−1)
1

, . . . , %
(9−1)
C−9+2

)
∈ ℳC−9+2

, so in particular they do not collude, so we have a

contradiction. Indeed, what is left is to prove item (3).

Claim 4.6. For every 9 ≥ 0 it holds that (%(9)
1
, . . . , %

(9)
C−9+1
) ∈ ℳC−9+1[C + 1].

Proof. Starting from (C + 1)-cliques in the 0-th level, in general, the 9-th level will also form

(C + 1)-cliques. We will prove this by induction on 9. For 9 = 0, it follows by our construction.

Assuming that it holds for some 9 ≥ 0, we inspect the (9 + 1)-th level.

We characterize the cliques in the 9-th level as follows. We can partition the domain (and

codomain) to {0, 1}3 = �1 ] · · · ] �ℓ . By definition, a full characterization of %
(9)
1
, . . . , %

(9)
C−9+1

can

be given by a permutation )8 : �8 → �8 , for each 8 ∈ [ℓ ]. Indeed, for any H ∈ �8 for some 8 ∈ [ℓ ],
%
(9)
1
(H) = )8(H), and for A ≥ 2, %

(9)
A = )A

8
. Namely, )8 generates the permutations %

(9)
1
, . . . , %

(9)
C−9+1

restricted to �8 . We claim that this structure is preserved for the next level, with the same

clique structure. Indeed, for each 8 ∈ [ℓ ] observe that the permutation )8 is also a generator for

%
(9+1)
1

, . . . , %
(9+1)
C−9 restricted to �8 as, by Equation (4.7) applied with 8 = 1,

%
(9+1)
1

= %
(9)
2
◦

(
%
(9)
1

)−1

= )2

8 ◦ )
−1

8 = )8 .

Recalling that %
(9+1)
A = %

(9)
A+1
◦
(
%
(9)
1

)−1

, we see that indeed computing %
(9+1)
A (H) amounts to finding

the 8 for which H ∈ �8 and computing )A
8
(H). Thus, the (9 + 1)-th level belong toℳC−9[C + 1]. �

�

5 1-seed protecting and two-source extractors

In this section we prove Theorem 1.7. We prove each direction separately in Lemma 5.1 and

Lemma 5.3 below. Recall that ℱΔ is the set of functions � ∈ A3 for which �∞(�(*3)) ≥ 3 − Δ.

Lemma 5.1. Let Ext : {0, 1}= ×{0, 1}3 → {0, 1}< be a (:1 , �) 1-seed-protecting extractor against ℱ3−:2

for :2 ≤ 3 − 1. Then, Ext is a (:1 , :2 , 3�) two-source extractor.
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Proof. Assume towards a contradiction that Ext is not such a two-source extractor, and let -1,-2

with �∞(-1) ≥ :1 and �∞(-2) ≥ :2 be such that

SD
(
Ext(-1 , -2), *<

)
> 3� ,

and we assume without loss of generality that both -1 and -2 are flat.6 Let . be the uniform

distribution over {0, 1}3, independent of (-1 , -2). Recall that Ext is a (:1 , �) extractor, so

SD(Ext(-1 , .), *<) ≤ �.

Order the H-s according to SD(Ext(-1 , H), *<), and let �1 ⊆ {0, 1}3 be the 2
3−1

bottom ones (i. e.,

for which SD(Ext(-1 , H), *<) is smaller). As �1 can be indexed using 3 − 1 bits, there exists an

injection �0 : {0, 1}3−1 → {0, 1}3 that maps to �1 uniformly, and satisfies

SD(Ext(-1 , �0(.′)), *<) ≤ � , (5.1)

where .′ is the uniform distribution over {0, 1}3−1
, independent of all other variables.

Denote �2 = Supp(-2) and recall that |�2 | = 2
:2
. Again, since :2 ≤ 3 − 1, we can define an

injection �1 : {0, 1}3−1 → {0, 1}3 so that �1(*3−1) = *�2
, and then

SD(Ext(-1 , �1(.′)), *<) > 3� . (5.2)

Next, define � ∈ A3 such that

�(H) = �H1
(H[2:=]) .

Claim 5.2. It holds that � ∈ ℱ3−:2
.

Proof. Let / = �(*3). Clearly, Supp(/) ⊆ �1 ∪ �2. If I ∈ �1,

Pr

H∼*3

[�(H) = I] = 1

2

· Pr

H∼*3

[�0(H[2,=]) = I] +
1

2

· Pr

H∼*3

[�1(H[2,=]) = I]

=
1

2

· 1

|�1 |
+ 1

2

· 1I∈�2

|�2 |
≤ 2
−:2 .

The same bound applies for I ∈ �2 in a similar manner. �

Wewill now show that using�, an adversary can learn the first bit of the seed, in contradiction

to the fact that Ext is seed protecting. Define

'.1
, Ext(-1 , �.1

(.[2:3])) ,

and note that by Equation (5.1), Equation (5.2) and the triangle inequality, it holds that

SD('0 , '1) > 2�. Then,

SD((.,Ext(-1 , �(.))), (*3 ,Ext(-1 , �(.)))) ≥ SD((.1 ,Ext(-1 , �(.))), (*1 ,Ext(-1 , �(.))))
= SD((.1 , '.1

), (*1 , '.1
)) .

6A :-source is flat if it is uniformly distributed over a set of size 2
:
. It is well-known that one can assume -

1
and

-
2
are flat, since any :-source is a convex combination of flat :-sources [9].
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Finally, observe that

SD((.1 , '.1
), (*1 , '.1

) = 1

2

∑
A

����Pr[.1 = 1 ∧ '1 = A] −
1

2

Pr['.1
= A]

����
+ 1

2

∑
A

����Pr[.1 = 0 ∧ '0 = A] −
1

2

Pr['.1
= A]

����
=

1

4

∑
A

|Pr['0 = A] − Pr['1 = A]|

=
1

2

· SD('0 , '1)

> � ,

which is a contradiction to that Ext is 1-seed protecting per our hypothesis.

�

The other direction also holds.

Lemma 5.3. Let Ext : {0, 1}= × {0, 1}3 → {0, 1}< be a (:1 , :2 , �) two-source extractor which is strong
in the second source. Then, Ext is a (:1 , 2�) 1-seed protecting against ℱ3−:2

.

Proof. Assume towards a contradiction that Ext is not 1-seed protecting, so there exists an

(=, :1)-source -1 and � ∈ ℱ3−:2
such that

SD((Ext(-1 , �(.)), .), (Ext(-1 , �(.)), .′)) > 2� ,

where .,.′ ∼ {0, 1}3 are uniform and independent random variables, also independent of -1.

By the triangle inequality, it follows that at least one of the following holds:

1. SD((Ext((-1 , �(.)), .′), (*< , .)) > �,

2. SD((Ext(-1 , �(.)), .), (*< , .)) > �.

First assume the first inequality holds. As .′ is independent of -1 and .,

SD((Ext((-1 , �(.)), .′), (*< , .)) = SD(Ext(-1 , �(.)) × .′, *< × .)
= SD(Ext(-1 , �(.)) × .′, *< × .′)
= SD(Ext(-1 , �(.)), *<) .

As � ∈ ℱ3−:2
, �∞(�(.)) ≥ :2 and by the fact that Ext is a two-source extractor, it follows that

SD(Ext(-1 , �(.)), *<) ≤ �, contradicting item (1).

Next, assume that the second inequality holds. We have that

SD((Ext(-1 , �(.)), �(.)), (*< , �(.))) = E
I∼�(.)

[SD(Ext(-1 , I), *<)]

= E
H∼.
[SD(Ext(-1 , �(H)), *<)]

= SD((Ext(-1 , �(.)), .), (*< , .)) > � .
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But since Ext is a strong (:1 , :2 , �) two-source extractor,

SD((Ext(-1 , �(.)), �(.)), (*< , �(.))) ≤ � ,

in contradiction. �

5.1 Lower bounds for 1-seed-protecting extractors

In light of the above result, lower bounds for (unbalanced) two-source extractors imply lower

bounds for 1-seed-protecting extractors. We use the following standard lower bound.7

Theorem 5.4. Let Ext : {0, 1}= × {0, 1}3 → {0, 1}< be a (:1 , :2 , �) two-source extractor which is
strong in the second source. Then, < ≤ :1 − 2 log(1/�) + $(1), :2 ≥ log(= − :1) + 2 log(1/�) − $(1)
and :1 ≥ log(3 − :2) + 2 log(1/�) − $(1).

We can thus conclude:

Corollary 5.5. Let Ext : {0, 1}= × {0, 1}3 → {0, 1}< be a (:, �) 1-seed protecting against ℱΔ for
some Δ > 0. Then, < ≤ : − 2 log(1/�) + $(1), 3 ≥ log(= − :) + Δ + 2 log(1/�) − $(1) and
: ≥ logΔ + 2 log(1/�) − $(1).

The fact that no 1-seed-protecting extractors against ℱΔ exist for Δ approaching 3 can be

established in a more straightforward way. Indeed, in Claim 1.6 we showed why Δ = 3 − 1 is

unattainable.

6 Non-explicit C-seed-protecting extractors

In this section we prove the existence of a seed-protecting extractor against non-colluding,

entropy-preserving, adversaries via a probabilistic argument.

Theorem 6.1. Let =, :, <, 3, C ∈ ℕ, Δ ≥ 0 and � > 0 be such that

: ≥ C< + 2Δ + 2 log

1

�
+ $(log 3 + log C) .

Then, there exists a (:, �)-seed-protecting extractor Ext : {0, 1}= × {0, 1}3 → {0, 1}< against ℱ C
Δ
∩ XC

with
3 = log(= − :) + 2Δ + 2 log

1

�
+ $(log 3 + log C) .

Remark 6.2. Theorem 6.1 tells us we cannot take Δ to be larger than 3/2, meaning we are at the

weak seeds regime. In contrast, for C = 1, we know from the equivalence to two-source extractors

(see Lemma 5.3) that we can take Δ to be much larger, roughly 3 − log =. An interesting open

problem is whether there is a real barrier going from C = 1 to larger C-s or whether it is a mere

artifact of our proof.

7The lower bound for < = 1 and any nontrivial � follows from bounds on strong dispersers and their connection

to Ramsey graphs [27, 3]. The entropy loss and the 2 log(1/�) factor in 3 and : follows from lower bounds on strong

seeded extractors [27].
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Proof. Choose Ext : {0, 1}= × {0, 1}3 → {0, 1}< uniformly at random. Fix an (=, :) source -,
and we assume without loss of generality that it is flat. Also, fix non-colluding functions

�1 , . . . , �C ∈ ℱΔ. Let . ∼ {0, 1}3 be uniform and independent of -. Write # = 2
=
,  = 2

:
,

� = 2
3
, and

/(G, H) = (Ext(G, �1(H)), . . . ,Ext(G, �C(H))) ,
observing that for every fixed G and H, / is a random variable whose randomness comes from

Ext. We want to bound the probability that

SD((., /(-,.)), (*3 , /(-,.))) > � .

Fix ) : {0, 1}3+<C → {0, 1} and for each H ∈ [�], denote by )H : {0, 1}<C → {0, 1} the corre-

sponding restriction of ). Then, we want to bound the probability over Ext that

E
F∼[�]

[
E
-
[)F(/(-, F))]

]
− E
F∼[�]

[
E
-,.
[)F(/(-,.))]

]
> � .

Write the expression on the left hand side as

E
G∼-,F∼[�]

[
)F(/(G, F)) − E

.
[)F(/(G, .))]

]
,

and define

&(G, F) = )F(/(G, F)) − E
.
[)F(/(G, .))] .

First, we argue,

Claim 6.3. For any G ∈ {0, 1}= and F ∈ [�] it holds that E[&(G, F)] = 0.

Proof. By our assumption on �1 , . . . , �C , the values �1(F), . . . , �C(F) are distinct, so /(G, F)
is uniform over {0, 1}<C , and thus E[)F(/(G, F))] = �()F). The claim now follows from the

linearity of expectation. �

Write

&(G, F) = ()F(/(G, F)) − �()F)) −
(
E
.
[)F(/(G, .))] − �()F)

)
, &1(G, F) −&2(G, F) ,

each &8(G, F) being a random variable with expectation zero. We handle each term separately.

Handling &1. Define the random variable

Q1 = E
G∼-,F∼[�]

[&1(G, F)] .

Unfortunately, the random variables &1(G, F), for G ∈ - and F ∈ [�], are not independent. In
particular, it may be the case that &1(G, F1) and &1(G, F2) query the same input to Ext. The next
observation will help us overcome this issue.
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Claim 6.4. Assume there exists a subset + ⊆ [�] such that {�8(F)}8∈[C],F∈+ are all distinct, and
enumerate {&1(G, F)}G∈-,F∈+ = &1 , . . . , &B= |+ | arbitrarily. Then, for every 8 ∈ [B],

E[&8 | &1 , . . . , &8−1] = 0 .

Proof. Fix 8 ∈ [B]. First note that for G0 ≠ G1 , &0 = &1(G0 , F0) and &1 = &1(G1 , F1) are
independent. Assume that &8 = &1(G, F) and let {81 , . . . , 8ℓ } ⊆ [8 − 1] be the indices that

correspond to the same G, i. e., each &8 9 = &1(G, F 9) for some F 9 ≠ F. Thus,

E[&8 | &1 , . . . , &8−1] = E[&8 | &81 , . . . , &8ℓ ] .

Next, fix all values of Ext queried by the &8 9 -s. Keeping the notation &8 9 = &1(G, F 9), this
means we fix every Ext(G, �A(F 9)) for 9 ∈ [ℓ ] and A ∈ [C]. These fixings do not affect &8 , by our

assumption on + . Thus, under these fixings, E[&8] = 0, as desired. �

We now argue that we can partition [�] to a bounded number of such +-s.

Lemma 6.5. There exists a partition [�] = +1 ∪ · · · ∪+! for ! = $(3C22
Δ) such that for every 8 ∈ [!],{

� 9(F)
}
9∈[C],F∈+8 are all distinct.

Proof. Let �′ = (, = [�], * = [�], �0) be the bipartite graph in which each F ∈, is connected

to �1(F), . . . , �C(F). Thus, � is left-regular with degree C and its right-degree is bounded by

C · 2Δ. Let � = (+ = [�], �) be the two-step walk graph of �′. Namely, (G, H) ∈ � if and only if

there exists a path G ∼ I ∼ H in �′, where G, H ∈, and I ∈ * . Note that the maximal degree in

� is at most C2 · 2Δ. We will repeatedly use the following standard claim, which can be shown

by a simple greedy algorithm.

Claim 6.6. Let � be an undirected graph over = vertices with maximal degree �. Then, the size of the
largest independent set in � is at least =/(� + 1).

The crucial observation is that an independent set in � corresponds to a valid partition. To

see this, take any F1 , F2 ∈ + such that (F1 , F2) ∉ �. By definition, there are no A1 , A2 ∈ [C] such
that �A1(F1) = �A2(F2). In light of this observation, we can greedily define +1 , . . . , +! in the

following manner.

1. Set �0 ← �, 8 ← 0 and � = C22
Δ
.

2. As long as �8 has more than 2� vertices,

• Let +8+1 be the largest independent set in �8 .

• Remove +8+1 and all its adjacent edges and denote the resulting graph by �8+1. Set

8 ← 8 + 1.

3. The graph �8 has 1 ≤ 2� vertices. Put each of these vertices in a separate set.

4. The resulting partition is +1 , . . . , +8 , . . . , +!=8+1 .
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Claim 6.6 guarantees that at each iteration, +8+1 contains at least 1 − 1/(� + 1) fraction of the

remaining vertices. Let 9 be the smallest integer for which(
1 − 1

� + 1

) 9
· 23 ≤ 2� .

One can verify that 9 = $(�3), so overall ! ≤ 9 + 2� = $
(
3C22

Δ
)
, as desired. �

In light of the above lemma and Claim 6.4, we can define, for each 8 ∈ [!],

S8 =
∑

G∈-,F∈+8
&1(G, F) ,

so Q1 =
1

 �

∑
8∈[!] S8 . Note that every sequence in S8 is a martingale, and also, that |&1(G, F)| ≤ 1

with probability 1. Thus, using Azuma’s inequality,

Pr

[
|Q1 | >

�
2

]
= Pr


������∑8∈[!]S8

������ > �
2

 �

 ≤
∑
8∈[!]

Pr

[
|S8 | >

�
2!
 �

]
≤

∑
8∈[!]

2 exp

(
−

( �
2! �

)
2

2 |+8 |

)
≤ 2! · e−

 �

8!2
�2

. (6.1)

Handling &2. Similarly, we define Q2 = EG∼-,F∼[�][&2(G, F)], but we write it as

Q2 = E
G∼-,H∼.

[
E

F∼[�]
[)F(/(G, H))] − �())

]
,

i. e., we switched the order of F and H. Now, define

&′
2
(G, H) = E

F∼[�]
[)F(/(G, H))] − �()) ,

so Q2 = EG∼-,H∼[�][&′
2
(G, H)]. We follow the same reasoning as before: For arbitrary H1 ≠ H2,

&′
2
(G, H1) may depend on &′

2
(G, H2), but with the same partitioning we can overcome the

dependencies. Also, for any G ∈ {0, 1}= and H ∈ [�] it holds that

E
[

E
F∼[�]

[)F(/(G, H))]
]
= �()) ,

so overall,

Pr

[
|Q2 | >

�
2

]
≤ 2! · e−

 �

8!2
�2

(6.2)

as well.
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Putting it all together. Combining Equation (6.1) and Equation (6.2), we get

Pr

[
E

G∼-,F∼[�]
[&(G, F)] > �

]
≤ 4! · e−

 �

8!2
�2

≤ 2
−21

 �

32C42
2Δ

�2+log 3+2 log C+22

for some universal constants 21 , 22 > 0. To complete our analysis, we require Ext to work for any

-, �1 , . . . , �C and ). By the union bound, the probability for a random Ext to fail, denote it by ?,

is at given by

? ≤
(
#

 

)
�C�

2
�"C

2
−21

 �

32C42
2Δ

�2+log 3+2 log C+22

≤ 2
 log(#4 )+C�3+�"C−21

 �

32C42
2Δ

�2+log 3+2 log C+22

≤ 2
 (=−:+2)+C�3+�"C+log 3+2 log C+22−21

 �

32C42
2Δ

�2

.

To prove that ? < 1 (in fact, we will show that ? � 1) it is sufficient to argue that:

1.  (= − : + 2) ≤ 21

4

 �
32C42

2Δ �
2
, and,

2. �(C3 +"C) + log 3 + 2 log C + 22 ≤ 21

4

 �
32C42

2Δ �
2
, or, �(4C3 +"C) ≤ 21

4

 �
32C42

2Δ �
2
.

Item (1) is true whenever

� ≥ 4

21

· (= − : + 2)32C42
2Δ

�2

.

Item (2) it true whenever

 ≥ 4

21

· (4C3 +"
C)32C42

2Δ

�2

.

The bounds on 3 and : follow from the above two inequalities. �
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