A New Notion of Commutativity for the Algorithmic Lovász Local Lemma

by David G. Harris, Fotios Iliopoulos, and Vladimir Kolmogorov

Theory of Computing, Volume 21(5), pp. 1-34, 2025

Bibliography with links to cited articles

[1]   Dimitris Achlioptas and Fotis Iliopoulos: Random walks that find perfect objects and the Lovász Local Lemma. J. ACM, 63(22):1–29, 2016. Preliminary version in FOCS’14. [doi:10.1145/2818352]

[2]   Dimitris Achlioptas, Fotis Iliopoulos, and Vladimir Kolmogorov: A local lemma for focused stochastic algorithms. SIAM J. Comput., 48(5):1583–1602, 2019. [doi:10.1137/16M109332X]

[3]   Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair: Beyond the Lovász Local Lemma: Point to set correlations and their algorithmic applications. In Proc. 60th FOCS, pp. 725–744. IEEE Comp. Soc., 2019. [doi:10.1109/FOCS.2019.00049]

[4]   Noga Alon, Joel Spencer, and Prasad Tetali: Covering with Latin transversals. Discr. Appl. Math., 57(1):1–10, 1995. [doi:10.1016/0166-218X(93)E0136-M]

[5]   Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and Benedetto Scoppola: An improvement of the Lovász Local Lemma via cluster expansion. Combin. Probab. Comput., 20(5):709–719, 2011. [doi:10.1017/S0963548311000253]

[6]   Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler: Deterministic algorithms for the Lovász Local Lemma. SIAM J. Comput., 42(6):2132–2155, 2013. Preliminary version in SODA’10. [doi:10.1137/100799642]

[7]   Antares Chen, David G. Harris, and Aravind Srinivasan: Partial resampling to approximate covering integer programs. Random Struct. Algor., pp. 68–93, 2021. Preliminary version in SODA’16. [doi:10.1002/rsa.20964]

[8]   Kai-Min Chung, Seth Pettie, and Hsin-Hao Su: Distributed algorithms for the Lovász Local Lemma and graph coloring. Distrib. Comput., 30(4):261–280, 2017. Preliminary version in PODC’14. [doi:10.1007/s00446-016-0287-6]

[9]   Paul Erdős and László Lovász: Problems and results on 3-chromatic hypergraphs and some related questions. In András Hajnal, Richard Rado, and Vera T. Sós, editors, Infinite and finite sets: To Paul Erdős on his 60th birthday, volume II of Colloq. Math. Soc. János Bolyai, 10, pp. 609–627. János Bolyai Math. Soc. and North-Holland, 1975.

[10]   Paul Erdős and Joel Spencer: Lopsided Lovász Local Lemma and Latin transversals. Discr. Appl. Math., 30(2–3):151–154, 1991. [doi:10.1016/0166-218X(91)90040-4]

[11]   Bernhard Haeupler and David G. Harris: Parallel algorithms and concentration bounds for the Lovász Local Lemma via witness DAGs. ACM Trans. Algorithms, 13(4):53:1–25, 2017. Preliminary version in SODA’17. [doi:10.1145/3147211]

[12]   Bernhard Haeupler, Barna Saha, and Aravind Srinivasan: New constructive aspects of the Lovász Local Lemma. J. ACM, 58(6):28:1–28, 2011. Preliminary version in FOCS’10. [doi:10.1145/2049697.2049702]

[13]   David G. Harris: Lopsidependency in the Moser–Tardos framework: Beyond the lopsided Lovász Local Lemma. ACM Trans. Algorithms, 13(1):17:1–26, 2016. Preliminary version in SODA’15. [doi:10.1145/3015762]

[14]   David G. Harris: New bounds for the Moser–Tardos distribution. Random Struct. Algor., 57(1):97–131, 2020. [doi:10.1002/rsa.20914]

[15]   David G. Harris: Oblivious resampling oracles and parallel algorithms for the Lopsided Lovász Local Lemma. ACM Trans. Algorithms, 17(1):1:1–32, 2021. Preliminary version in SODA’19. [doi:10.1145/3392035]

[16]   David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov: A new notion of commutativity for the algorithmic Lovász Local Lemma. In Proc. 25th Internat. Conf. on Randomization and Computation (RANDOM’21), pp. 31:1–25. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2021. [doi:10.4230/LIPIcs.APPROX/RANDOM.2021.31]

[17]   David G. Harris and Aravind Srinivasan: Algorithmic and enumerative aspects of the Moser–Tardos distribution. ACM Trans. Algorithms, 13(3):33:1–40, 2017. Preliminary version in SODA’16. [doi:10.1145/3039869]

[18]   David G. Harris and Aravind Srinivasan: A constructive Lovász Local Lemma for permutations. Theory of Computing, 13(17):1–41, 2017. Preliminary version in SODA’14. [doi:10.4086/toc.2017.v013a017]

[19]   David G. Harris and Aravind Srinivasan: The Moser–Tardos framework with partial resampling. J. ACM, 66(5):36:1–45, 2019. Preliminary version in FOCS’13. [doi:10.1145/3342222]

[20]   Nicholas J. A. Harvey and Jan Vondrák: An algorithmic proof of the Lovász Local Lemma via resampling oracles. SIAM J. Comput., 49(2):394–428, 2020. Preliminary version in FOCS’15. [doi:10.1137/18M1167176]

[21]   Fotis Iliopoulos: Commutative algorithms approximate the LLL-distribution. In Proc. 22nd Internat. Conf. on Randomization and Computation (RANDOM’18), pp. 44:1–20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. [doi:10.4230/LIPIcs.APPROX-RANDOM.2018.44]

[22]   Fotis Iliopoulos and Alistair Sinclair: Efficiently list-edge coloring multigraphs asymptotically optimally. Random Struct. Algor., 61(4):724–753, 2022. Preliminary version in SODA’20. [doi:10.1002/rsa.21074]

[23]   Kashyap Babu Rao Kolipaka and Mario Szegedy: Moser and Tardos meet Lovász. In Proc. 43rd STOC, pp. 235–244. ACM Press, 2011. [doi:10.1145/1993636.1993669]

[24]   Vladimir Kolmogorov: Commutativity in the algorithmic Lovász Local Lemma. SIAM J. Comput., 47(6):2029–2056, 2018. Preliminary version in FOCS’16. [doi:10.1137/16M1093306]

[25]   László Lovász: Submodular functions and convexity. In Achim Bachem, Bernhard Korte, and Martin Grötschel, editors, Mathematical Programming: The State of the Art, pp. 235–257. Springer, 1983. [doi:10.1007/978-3-642-68874-4_10]

[26]   Robin A. Moser and Gábor Tardos: A constructive proof of the general Lovász Local Lemma. J. ACM, 57(2):11:1–15, 2010. Preliminary version in STOC’09. [doi:10.1145/1667053.1667060]

[27]   Wesley Pegden: An extension of the Moser–Tardos algorithmic local lemma. SIAM J. Discr. Math., 28(2):911–917, 2014. [doi:10.1137/110828290]