A New Notion of Commutativity for the Algorithmic Lovász Local Lemma
by David G. Harris, Fotios Iliopoulos, and Vladimir Kolmogorov
Theory of Computing, Volume 21(5), pp. 1-34, 2025
Bibliography with links to cited articles
[1] Dimitris Achlioptas and Fotis Iliopoulos: Random walks that find perfect objects and the Lovász Local Lemma. J. ACM, 63(22):1–29, 2016. Preliminary version in FOCS’14. [doi:10.1145/2818352]
[2] Dimitris Achlioptas, Fotis Iliopoulos, and Vladimir Kolmogorov: A local lemma for focused stochastic algorithms. SIAM J. Comput., 48(5):1583–1602, 2019. [doi:10.1137/16M109332X]
[3] Dimitris Achlioptas, Fotis Iliopoulos, and Alistair Sinclair: Beyond the Lovász Local Lemma: Point to set correlations and their algorithmic applications. In Proc. 60th FOCS, pp. 725–744. IEEE Comp. Soc., 2019. [doi:10.1109/FOCS.2019.00049]
[4] Noga Alon, Joel Spencer, and Prasad Tetali: Covering with Latin transversals. Discr. Appl. Math., 57(1):1–10, 1995. [doi:10.1016/0166-218X(93)E0136-M]
[5] Rodrigo Bissacot, Roberto Fernández, Aldo Procacci, and Benedetto Scoppola: An improvement of the Lovász Local Lemma via cluster expansion. Combin. Probab. Comput., 20(5):709–719, 2011. [doi:10.1017/S0963548311000253]
[6] Karthekeyan Chandrasekaran, Navin Goyal, and Bernhard Haeupler: Deterministic algorithms for the Lovász Local Lemma. SIAM J. Comput., 42(6):2132–2155, 2013. Preliminary version in SODA’10. [doi:10.1137/100799642]
[7] Antares Chen, David G. Harris, and Aravind Srinivasan: Partial resampling to approximate covering integer programs. Random Struct. Algor., pp. 68–93, 2021. Preliminary version in SODA’16. [doi:10.1002/rsa.20964]
[8] Kai-Min Chung, Seth Pettie, and Hsin-Hao Su: Distributed algorithms for the Lovász Local Lemma and graph coloring. Distrib. Comput., 30(4):261–280, 2017. Preliminary version in PODC’14. [doi:10.1007/s00446-016-0287-6]
[9] Paul Erdős and László Lovász: Problems and results on 3-chromatic hypergraphs and some related questions. In András Hajnal, Richard Rado, and Vera T. Sós, editors, Infinite and finite sets: To Paul Erdős on his 60th birthday, volume II of Colloq. Math. Soc. János Bolyai, 10, pp. 609–627. János Bolyai Math. Soc. and North-Holland, 1975.
[10] Paul Erdős and Joel Spencer: Lopsided Lovász Local Lemma and Latin transversals. Discr. Appl. Math., 30(2–3):151–154, 1991. [doi:10.1016/0166-218X(91)90040-4]
[11] Bernhard Haeupler and David G. Harris: Parallel algorithms and concentration bounds for the Lovász Local Lemma via witness DAGs. ACM Trans. Algorithms, 13(4):53:1–25, 2017. Preliminary version in SODA’17. [doi:10.1145/3147211]
[12] Bernhard Haeupler, Barna Saha, and Aravind Srinivasan: New constructive aspects of the Lovász Local Lemma. J. ACM, 58(6):28:1–28, 2011. Preliminary version in FOCS’10. [doi:10.1145/2049697.2049702]
[13] David G. Harris: Lopsidependency in the Moser–Tardos framework: Beyond the lopsided Lovász Local Lemma. ACM Trans. Algorithms, 13(1):17:1–26, 2016. Preliminary version in SODA’15. [doi:10.1145/3015762]
[14] David G. Harris: New bounds for the Moser–Tardos distribution. Random Struct. Algor., 57(1):97–131, 2020. [doi:10.1002/rsa.20914]
[15] David G. Harris: Oblivious resampling oracles and parallel algorithms for the Lopsided Lovász Local Lemma. ACM Trans. Algorithms, 17(1):1:1–32, 2021. Preliminary version in SODA’19. [doi:10.1145/3392035]
[16] David G. Harris, Fotis Iliopoulos, and Vladimir Kolmogorov: A new notion of commutativity for the algorithmic Lovász Local Lemma. In Proc. 25th Internat. Conf. on Randomization and Computation (RANDOM’21), pp. 31:1–25. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2021. [doi:10.4230/LIPIcs.APPROX/RANDOM.2021.31]
[17] David G. Harris and Aravind Srinivasan: Algorithmic and enumerative aspects of the Moser–Tardos distribution. ACM Trans. Algorithms, 13(3):33:1–40, 2017. Preliminary version in SODA’16. [doi:10.1145/3039869]
[18] David G. Harris and Aravind Srinivasan: A constructive Lovász Local Lemma for permutations. Theory of Computing, 13(17):1–41, 2017. Preliminary version in SODA’14. [doi:10.4086/toc.2017.v013a017]
[19] David G. Harris and Aravind Srinivasan: The Moser–Tardos framework with partial resampling. J. ACM, 66(5):36:1–45, 2019. Preliminary version in FOCS’13. [doi:10.1145/3342222]
[20] Nicholas J. A. Harvey and Jan Vondrák: An algorithmic proof of the Lovász Local Lemma via resampling oracles. SIAM J. Comput., 49(2):394–428, 2020. Preliminary version in FOCS’15. [doi:10.1137/18M1167176]
[21] Fotis Iliopoulos: Commutative algorithms approximate the LLL-distribution. In Proc. 22nd Internat. Conf. on Randomization and Computation (RANDOM’18), pp. 44:1–20. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2018. [doi:10.4230/LIPIcs.APPROX-RANDOM.2018.44]
[22] Fotis Iliopoulos and Alistair Sinclair: Efficiently list-edge coloring multigraphs asymptotically optimally. Random Struct. Algor., 61(4):724–753, 2022. Preliminary version in SODA’20. [doi:10.1002/rsa.21074]
[23] Kashyap Babu Rao Kolipaka and Mario Szegedy: Moser and Tardos meet Lovász. In Proc. 43rd STOC, pp. 235–244. ACM Press, 2011. [doi:10.1145/1993636.1993669]
[24] Vladimir Kolmogorov: Commutativity in the algorithmic Lovász Local Lemma. SIAM J. Comput., 47(6):2029–2056, 2018. Preliminary version in FOCS’16. [doi:10.1137/16M1093306]
[25] László Lovász: Submodular functions and convexity. In Achim Bachem, Bernhard Korte, and Martin Grötschel, editors, Mathematical Programming: The State of the Art, pp. 235–257. Springer, 1983. [doi:10.1007/978-3-642-68874-4_10]
[26] Robin A. Moser and Gábor Tardos: A constructive proof of the general Lovász Local Lemma. J. ACM, 57(2):11:1–15, 2010. Preliminary version in STOC’09. [doi:10.1145/1667053.1667060]
[27] Wesley Pegden: An extension of the Moser–Tardos algorithmic local lemma. SIAM J. Discr. Math., 28(2):911–917, 2014. [doi:10.1137/110828290]