
THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23
www.theoryofcomputing.org

On Solving Reachability in Grid Digraphs

using a Pseudoseparator

Rahul Jain Raghunath Tewari

Received January 13, 2020; Revised May 25, 2022; Published August 28, 2023

Abstract. The reachability problem asks to decide if there exists a path from one

vertex to another in a digraph. In a grid digraph, the vertices are the points of

a two-dimensional square grid, and an edge can occur between a vertex and its

immediate horizontal and vertical neighbors only.

Asano and Doerr (CCCG’11) presented the first simultaneous time-space bound

for reachability in grid digraphs by solving the problem in polynomial time and

$(=1/2+&) space. In 2018, the space complexity was improved to $̃(=1/3) by Ashida

and Nakagawa (SoCG’18).

In this paper, we show that there exists a polynomial-time algorithm that uses

$(=1/4+&) space to solve the reachability problem in a grid digraph containing =

vertices. We define and construct a new separator-like device called pseudoseparator

to develop a divide-and-conquer algorithm. This algorithmworks in a space-efficient

manner to solve reachability.

A conference version of this paper appeared in the Proceedings of the 39th IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2019) [10].

ACM Classification: G.2.2

AMS Classification: 68Q25

Key words and phrases: digraph reachability, grid digraph, graph algorithm, sublinear space

algorithm

© 2023 Rahul Jain and Raghunath Tewari
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2023.v019.a002

http://dx.doi.org/10.4086/toc
https://orcid.org/0000-0002-8567-9475
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.19
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.19
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2023.v019.a002

RAHUL JAIN AND RAGHUNATH TEWARI

1 Introduction

Let B and C be vertices of a given directed graph (digraph). The problem of digraph reachability

is to decide if there is a path from B to C. This problem has many applications in the field

of algorithms and computational complexity theory. Many algorithms for network-related

problems use it as a subroutine. Digraph reachability is NL-complete and thus captures the

complexity of nondeterministic logarithmic space. Hence designing better algorithms for this

problem is of utmost importance to the theory of computing.

Standard traversal algorithms such as DFS and BFS give a linear-time algorithm for this prob-

lem, but they require linear space. Savitch’s divide-and-conquer algorithm solves reachability

in $(log
2 =) space. However, as a tradeoff, it requires =$(log =)

time [14]. Hence it is natural to

ask whether we can get the best of both worlds and design an algorithm for digraph reachability

that runs in polynomial time and uses polylogarithmic space. Wigderson asked a relaxed version

of this question in his survey, whether digraph reachability can be solved by a polynomial-time

algorithm that uses $(=1−&) space [16].
Barnes et al. showed that digraph reachability can be decided simultaneously in =/2Θ(

√
log =)

space and polynomial time [6]. Although this algorithm gives a sublinear space bound, it still

does not answer Wigderson’s question.

Undirected graphs can be considered as a specific type of digraphs, where adjacency is a

symmetric relation. Reachability in undirected graphs can be solved in logspace [13]. Also, for

certain classes of digraphs, where the underlying undirected graph is topologically restricted,

we know of polynomial time algorithms with space complexity better than linear. Imai et

al. presented a polynomial-time algorithm that solves reachability for planar digraphs using

$(=1/2+&) space for any & > 0 [9]. Later, Asano et al. presented a polynomial-time algorithm

whose space complexity was $̃(=1/2) for the same problem [4]. For digraphs of higher genus,

Chakraborty et al. presented a polynomial-time algorithm that uses $̃(=2/3,1/3) space. Their
algorithm additionally requires an embedding of the underlying undirected graph on a surface

of genus ,, as part of the input [7]. They also gave an $̃(=2/3)-space algorithm for �-minor-free

digraphs which requires a tree decomposition of the underlying undirected graph as part of

the input and $(=1/2+&)-space algorithms for 3,3-minor-free digraphs and for 5-minor-free

digraphs.

For layered planar digraphs Chakraborty and Tewari showed that for every & > 0, there is an

$(=&)-space algorithm [8]. Stolee and Vinodchandran presented a polynomial-time algorithm

that, for any & > 0 solves reachability in an acyclic digraph with $(=&) sources and embedded

on the surface of genus $(=&) using $(=&) space [15]. For unique-path digraphs Kannan et al.

presented an $(=&)-space, polynomial-time algorithm [11].

In this paper, grid digraphs are our concern. Grid digraphs are a subclass of planar digraphs.

In a grid digraph, the vertices are the points of an < ×< grid. The edges can only occur between

a vertex and its immediate vertical and horizontal neighbours. We know that reachability in

planar digraphs can be reduced to reachability in grid digraphs in logarithmic space [1]. The

reduction, however, causes at least a quadratic blow-up in the size of the digraph. In this paper,

we study the simultaneous time–space complexity of reachability in grid graphs.

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 2

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

Asano and Doerr presented a polynomial-time algorithm that uses $(=1/2+&) space for

solving reachability in grid digraphs [3]. Ashida and Nakagawa presented an algorithm with

improved space complexity of $̃(=1/3) [5]. The latter algorithm proceeds by first dividing

the input grid digraph into subgrids. It then uses a gadget to transform each subgrid into a

planar digraph, making the whole of the resultant digraph planar. Finally, it uses the planar

reachability algorithm of Imai et al. [9] as a subroutine to get the desired space bound.

In this paper, we present a $(=1/4+&) space and polynomial-time algorithm for grid digraph

reachability, thereby significantly improving the space bound of Ashida and Nakagawa.

Theorem 1.1 (Main Theorem). For every & > 0, there exists a polynomial-time algorithm that solves
reachability in an =-vertex grid digraph using $(=1/4+&) space.

The approach of Ashida and Nakagawa [5] is to reduce the size of the input =-vertex digraph

to a digraph of size $(=2/3). Their new graph preserves reachability between vertices and is

planar. They use the planar-reachability algorithm of Asano et al. [4]. Our approach is slightly

different. We convert the input digraph into an auxiliary digraph of size $(=1/2+/2) for arbitrarily
small . The auxiliary digraph is created by dividing the given grid digraph into subgrids and

replacing paths in each subgrid with a single edge between the boundary vertices. While our

auxiliary digraph preserves reachability, it is not planar; and hence we cannot use Asano et

al.’s algorithm directly. The auxiliary digraph comes with a drawing with the crossing property,
that is, if two edges, 4 and 5 , cross each other in this drawing, there necessarily exist two more

edges, one from the tail of 4 to the head of 5 and the other from the tail of 5 to the head of

4, in the digraph. This property allows us to use a device that we call pseudoseparator to solve

reachability in it. A pseudoseparator designates a set of vertices, a set of edges and a set of

components of the digraph, such that a path from one component to another necessarily either

takes a vertex of the pseudoseparator or crosses one of the edges of the pseudoseparator in the

drawing. We finally solve the problem by recursively solving each of these components and

using a traversal algorithm. Due to the crossing property, we are required to store only a small

number of vertices for performing the traversal, thereby saving space.

In Section 2, we state the definitions and notation that we use in this paper. In Section 3, we

define the auxiliary digraph and state various properties of it that we use later. In Section 4,

we discuss the concept of the pseudoseparator. We give its formal definition and show how to

compute the pseudoseparator efficiently. In Section 5, we give the algorithm to solve reachability

in an auxiliary digraph and prove its correctness. Finally in Section 6 we use the algorithm of

Section 5 to give an algorithm to decide reachability in grid digraphs and thus prove Theorem 1.1.

2 Preliminaries

Let [=] denote the set {0, 1, 2, . . . , =}. We denote the vertex set of a digraph � by +(�) and its

edge set by �(�). We assume that the vertices of a digraph are indexed by integers from 1 to

|+(�)|. For a subset * of +(�), we denote the sub-digraph of � induced by the vertices of *

as �[*] and we denote the sub-digraph of � induced by the vertices +(�) * as � * . For

a digraph �, we write cc(�) to denote the set of all connected components in the underlying

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 3

http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

undirected graph of �. By the underlying undirected graph, we mean the graph formed by

symmetrizing the adjacency relation. To do this, we consider each directed edge in the digraph

and create an undirected edge between the corresponding vertices. Henceforth, whenever we

talk about connected components, we will mean the connected components of the underlying

undirected graph. In a drawing of a graph in the plane we map each vertex to a point in the plane

and each edge to a simple arc whose endpoints coincide with the images of the end vertices of

the edge. Moreover, the image of a vertex does not belong to the interior of an arc corresponding

to any edge. We say that a graph is planar if there exists a drawing of that graph on a plane such

that no two arcs corresponding to the edges of the graph intersect except at the endpoints. Such

a drawing is called a planar embedding.
A planar digraph is a digraph whose underlying undirected graph is planar. Similarly, a

drawing of a digraph is defined as the drawing of its underlying undirected graph.

We will represent a planar graph by describing the cyclic ordering of a graph’s edges around

each vertex. We note that the results in [2] and [13] combine to a deterministic logarithmic space
algorithm that decides whether a given graph is planar, and if it is, outputs a planar embedding.

Hence, when dealing with planar graphs, we will assume without loss of generality that we

have a planar embedding whenever required. An < × < grid digraph is a directed graph whose

set of vertices is [<] × [<] = {0, 1, . . . , <} × {0, 1, . . . , <} so that if ((81 , 91), (82 , 92)) is an edge

then |81 − 82 | + | 91 − 92 | = 1. In other words, we start with an undirected < ×< grid graph. Then,

we remove some of the edges and assign directions to the remaining edges while keeping all the

vertices. This process results in the formation of an < × < grid digraph, which has a total of

= = (< + 1)2 vertices. It follows from the definition that grid digraphs are planar.

We will work with < × < grid digraphs where < = $(=1/2). Hence, a space complexity of

$(<1/2+&)will translate into a space complexity of $(=1/4+&′) as required.

3 Auxiliary graph

Let � be an < × < grid digraph. We divide � into <2
subgrids such that each subgrid is a

<1− × <1−
grid. Formally, for 0 < < 1 and 1 ≤ 8 , 9 ≤ <

, the (8 , 9)-th subgrid of �, denoted
�[8 , 9], is the sub-digraph of � induced by the set of vertices, +(�[8 , 9]), where +(�[8 , 9]) is

{(8′, 9′) | (8 − 1) · <1− ≤ 8′ ≤ 8 · <1−
and (9 − 1) · <1− ≤ 9′ ≤ 9 · <1−} .

For ease of presentation, we will assume without loss of generality that variables like < and

 are such that the values like <
and <1−

are integers.

We define the auxiliary digraph Aux(�)[8 , 9] as follows. The vertex set of Aux(�)[8 , 9] is
the set of vertices on the boundary of �[8 , 9]. That means, +(Aux(�)[8 , 9]) is

{(8′, 9′) | (8′, 9′) ∈ +(�[8 , 9]) and
((8 − 1) · <1− = 8′ or 8 · <1− = 8′ or (9 − 1) · <1− = 9′ or 9 · <1− = 9′)} .

For two vertices D, E in Aux(�)[8 , 9], (D, E) is an edge in Aux(�)[8 , 9] if there is a path from D to

E in the subgrid �[8 , 9]. We draw Aux(�)[8 , 9] on an Euclidean plane by mapping vertex (G, H)

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 4

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

to the point with coordinates (G, H). The points corresponding to vertices of Aux(�)[8 , 9] thus
lie on a square. We use a straight line segment to represent the edge if D and E do not lie on a

single side of this square. and an arc inside the square to represent it otherwise.

Wedefine the -auxiliary digraph,Aux(�) as follows. The vertex set ofAux(�),+(Aux(�)) =
{(8 , 9) | 8 = : ·<1−

or 9 = ; ·<1− , such that 0 ≤ :, ; ≤ <}. The edges of Aux(�) are the edges
of Aux(�)[8 , 9] taken over all pairs (8 , 9). Note that Aux(�)might have parallel edges, since an

edge on a side of a block might be in the adjacent block as well. In such cases we preserve both

the edges, in their different blocks of Aux(�) in the drawing of Aux(�) on the plane. Figure 1

contains an example of a grid digraph partitioned into subgrids and its corresponding auxiliary

digraph. Since each block Aux(�)[8 , 9] contains 4<1−
vertices, the total number of vertices in

Aux(�) is at most 4<1+
.

Our algorithm for reachability first constructs Aux(�) by solving each of the <1− × <1−

grids recursively. It then uses a polynomial-time subroutine to decide reachability in Aux(�).
Note that we do not store the digraph Aux(�) explicitly since that would require too much

space. Rather we solve a subgrid recursively whenever the subroutine queries for an edge in

that subgrid of Aux(�).
Our strategy is to develop a polynomial-time algorithm which solves reachability in Aux(�)

using $̃(<̃1/2+�/2) space where <̃ is the number of vertices in Aux(�). As discussed earlier, <̃

is at most 4<1+
. Hence, the main algorithm requires $̃(<1/2+�/2+/2+�/2) space. For a fixed

constant & > 0, we can pick > 0 and � > 0 such that the space complexity becomes $(<1/2+&).

Figure 1: A grid digraph � divided into subgrids and its corresponding auxiliary digraph

Aux(�)

3.1 Properties of the auxiliary digraph

In the following definition, we give ordered labelling to the vertices of a block of the auxiliary

digraph. We define the labelling with respect to some vertex in the block.

Definition 3.1. Let � be a < × < grid digraph, ℓ = Aux(�)[8 , 9] be a block of Aux(�) and
E = (G, H) be a vertex in Aux(�)[8 , 9]. Let C = <1−

. We define a cyclic permutation 2ℓ on the

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 5

http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

vertex set of Aux(�)[8 , 9] as follows:

2;(E) =

(G + 1, H) if G < (8 + 1)C and H = 9C

(G, H + 1) if G = (8 + 1)C and H < (9 + 1)C
(G − 1, H) if G > 8C and H = (9 + 1)C
(G, H − 1) if G = 8C and H > 9C

For any non-negative integer A, we define 2A
ℓ
inductively as follows. For A = 0, 2A

;
(E) = E and

otherwise we have 2A+1

;
(E) = 2

;
(2A
;
(E)).

Note that the permutation 2ℓ can be seen as a counter-clockwise shift. Also note that for

a block ℓ and vertices E and F in it, we can write E as 2
?

;
(F) where ? is smallest non-negative

integer for which 2
?

;
(F) = E. Next we formalize what it means to say that two edges of the

auxiliary digraph cross each other.

Definition 3.2. Let � be a grid digraph and ℓ be a block of Aux(�). For two distinct edges 4

and 5 in the block, such that 4 = (E, 2?
;
(E)) and 5 = (2@

;
(E), 2A

;
(E)). We say that edges 4 and 5

cross each other if min(@, A) < ? < max(@, A).

Note the definition of cross given above is symmetric. That is, if edges 4 and 5 cross each

other then 5 and 4 must cross each other as well. For an edge 5 = (2@
;
(E), 2A

;
(E)), we define

←−
5 = (2A

;
(E), 2@

;
(E)) and call it the reverse of 5 . We also note that if 4 and 5 cross each other, then 4

and

←−
5 also cross each other.

In Lemma 3.3 we state an equivalent condition of the crossing of two edges. In Lemmas 3.5

and 3.6 we state some specific properties of the auxiliary digraph that we use later.

Lemma 3.3. Let � be a grid digraph and ℓ be a block of Aux(�). Let F be an arbitrary vertex in the
block ℓ and 4 = (2?

;
(F), 2@

;
(F)) and 5 = (2A

;
(F), 2B

;
(F)) be two distinct edges in ℓ . Then 4 and 5 cross

each other if and only if either of the following two conditions hold:

• min(?, @) < min(A, B) < max(?, @) < max(A, B)

• min(A, B) < min(?, @) < max(A, B) < max(?, @)

Proof. We prove that if min(?, @) < min(A, B) < max(?, @) < max(A, B) then 4 and 5 cross each

other. We let ? < A < @ < B. Other cases can be proved by reversing appropriate edges.

We thus have integers A1 = A − ?, @1 = @ − ? and B1 = B − ?. Clearly, A1 < @1 < B1. Let

E = 2
?

;
(F). Thus we have 4 = (E, 2@

;
(F)) = (E, 2@1

;
(2?
;
(F))) = (E, 2@1

;
(E)) and 5 = (2A

;
(F), 2B

;
(F)) =

(2A1
;
(2?
;
(F)), 2B1

;
(2?
;
(F))) = (2A1

;
(E), 2B1

;
(E)) The proof for the second condition is similar.

Now, we prove that if 4 = (2?
;
(F), 2@

;
(F)) and 5 = (2A

;
(F), 2B

;
(F)) cross each other then either of

the given two condition holds. We assume that ? is the smallest integer among ?, @, A and B. Other

cases can be proved similarly. Now, let E = 2
?

;
(F). We thus have integers @1 = @ − ?, A1 = A − ?

and B1 = B − ? such that 4 = (E, 2@1

;
(E)) and 5 = (2A1

;
(E), 2B1

;
(E)). Since 4 and 5 cross each other,

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 6

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

we have min(A1 , B1) < @1 < max(A1 , B1). Thus min(A1 + ?, B1 + ?) < @1 + ? < max(A1 + ?, B1 + ?).
It follows that min(A, B) < @ < max(A, B). Since we assumed ? to be smallest integer among ?, @,

A and B; we have min(?, @) < min(A, B) < max(?, @) < max(A, B), thus proving the lemma. �

We see that we can draw an auxiliary digraph on a plane such that the arcs corresponding to

two of its edges intersect if and only if the corresponding edges cross each other. Henceforth,

we will work with such a drawing.

Definition 3.4. Let � be a grid digraph and ℓ be a block of Aux(�). For a vertex E and edges

5 , , such that 5 = (2@
;
(E), 2A

;
(E)) and , = (2B

;
(E), 2C

;
(E)), we say that 5 is closer to E than , if

min(@, A) < min(B, C).
We say 5 is closest to E if there exists no other edge 5 ′ which is closer to E than 5 .

Lemma 3.5. Let � be a grid digraph and 41 = (D1 , E1) and 42 = (D2 , E2) be two edges in Aux(�). If 41
and 42 cross each other, then Aux(�) also contains the edges (D1 , E2) and (D2 , E1).

Proof. Let 41 = (E, 2?; (E)) and 42 = (2
@

;
(E), 2A

;
(E)) be two edges that cross each other in Aux(�).

Let ℓ be the block of Aux(�) to which 41 and 42 belong. Consider the subgrid of � which is

solved to construct the block ℓ . Since the edge 41 exists in block ℓ , there exists a path % from E to

2
?

;
(E) in the underlying subgrid. This path % divides the subgrid into two parts such that the

vertices 2
@

;
(E) and 2A

;
(E) belong to different parts of the subgrid. Thus, a path between 2

@

;
(E) and

2A
;
(E) necessarly take a vertex of path %. Hence, there is a path from E to 2A

;
(E) and a path from

2
?

;
(E) to 2A

;
(E). Thus the lemma follows. �

Figure 2: Edge crossings in an auxiliary grid. On the left, there is one block of the auxiliary

digraph that contains edges that cross. The dotted edges are the ones whose existence is made

necessary by Lemma 3.5. On the right, a subgrid which results in the auxiliary block on the left.

Lemma 3.6. Let � be a grid digraph and 41 = (D1 , E1) and 42 = (D2 , E2) be two edges in Aux(�). If
41 and 42 cross a certain edge 5 = (G, H), and 41 is 2;>B4A to G than 42, then the edge (D1 , E2) is also in
Aux(�).

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 7

http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

x

y

u2

u1

f

v2

v1
e1

e2

Figure 3: Illustration of Lemma 3.6

Proof. Let 5 = (E, 2?
ℓ
(E)), 41 = (2@ℓ (E), 2

A
ℓ
(E)) and 42 = (2Bℓ (E), 2

C
ℓ
(E)). If 2

@

ℓ
(E) = 2B

ℓ
(E) then the

lemma trivially follows. Otherwise, we have two cases to consider:

Case 1 (41 crosses 42): In this case, we will have (2@
ℓ
(E), 2C

ℓ
(E)) in Aux(�) by Lemma 3.5.

Case 2 (41 does not cross 42): In this case, we have min(@, A) < min(B, C) < ? < max(B, C) <
max(@, A). Since 41 crosses 5 , we have the edge (2@

ℓ
(E), 2?

ℓ
(E)) in Aux(�) by Lemma 3.5.

This edge will cross 42. Hence (2@
ℓ
(E), 2C

ℓ
(E)) is in Aux(�). �

4 Pseudoseparators in a grid digraph

Imai et al. used a separator construction to solve the reachability problem in planar digraphs [9].

A separator is a set of vertices whose removal disconnects the graph into small components. The
class of grid digraphs is a subclass of planar digraphs. Grid graphs are known to have small

separators. However, for a grid digraph �, the underlying undirected graph of Aux(�)might

not have a small separator.

An essential property of a separator is that, for any two vertices, a path between the vertices

must contain a separator vertex if the vertices lie in two different components with respect to

the separator. This property can then be used to design a divide and conquer algorithm for

reachability where only separator vertices need to bemarked and stored for traversal. Lemma 3.6

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 8

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

allows us to use edges as well since, at most, one vertex on each side of an edge needs to be

stored for traversal (the visited-vertex closest to the tail of the edge). Hence, we can use a slightly

weaker structure in place of a separator. We construct a structure called pseudoseparator (see

Definition 4.1). It is essentially a set of vertices and edges that can be used to divide the digraph

into components, such that a path from one component to another either takes a vertex of the

pseudoseparator or crosses an edge of the pseudoseparator.

For a digraph� = (+1 , �1) given alongwith its drawing, and a sub-digraph � = (+2 , �2) of�,

define the digraph � �� = (+3 , �3) as +3 = +1 \+2 and �3 = �1 \ {4 ∈ �1 | ∃ 5 ∈ �2 , 4 crosses 5 }.
We note that the digraph � wewill be working with throughout the article will be a sub-digraph

of an auxiliary digraph. Hence it will always come with a drawing.

Definition 4.1. Let � be a grid digraph and � be an induced sub-digraph of Aux(�) with

ℎ vertices. Let 5 : ℕ → ℕ be a function. A sub-digraph � of � is said to be an 5 (ℎ)-
pseudoseparator of Aux(�) if the size of every connected component in cc(� � �) is at most

5 (ℎ). The size of � is the number of vertices plus the number of edges of �.

For an inducedsub-digraph � of Aux(�), an 5 (ℎ)-pseudoseparator is a sub-digraph � of �

that has the property that, if we remove the vertices as well as all the edges that cross one of

the edges of the pseudoseparator, the digraph gets disconnected into small pieces. Moreover

for every edge 4 in �, if there exists distinct sets *1 and *2 in cc(� � �) such that one of the

endpoints of 4 is in*1 and the other is in*2, then there exists an edge 5 in � such that 4 crosses

5 . Hence any path in � that connects two vertices in different components of � � � must either

contain a vertex of � or must contain an edge that crosses an edge of �. We divide the digraph

using this pseudoseparator and give an algorithm that recursively solves each sub-digraph and

then combines their solution efficiently.

4.1 Constructing a pseudoseparator

Before working out the details below, we briefly comment on how to construct a pseudoseparator

of an inducedsub-digraph � of Aux(�). Ideally, we would have liked to have a set of cycles

of � such that the surfaces obtained by cutting along these cycles have a bounded number of

vertices on it.However, such cycles might not exist. We instead pick a maximal subset of edges

from � so that no two edges cross (see Definition 4.2 and Lemma 4.3). Then we triangulate the

resulting graph. We show that this triangulated graph has the required cycles and can be found

using Imai et al.’s separator algorithm. Call the triangulated graph �̂ and the separator vertices

as (. Since the cycles might have triangulated edges, we will add at most a constant number of

vertices and edges from � to shield these triangulated edges. The vertex set of pseudoseparator

of � will thus contain all the vertices of (and at most four additional vertices for each edge

of �̂[(] that is not in �. The edge set of pseudoseparator of � will contain all the edges of �

which are also in �̂[(] and at most four additional edges for each edge of �̂[(] that is not in �.

Definition 4.2. Let � be a grid digraph and � be an induced sub-digraph of Aux(�). We define

planar(�) as a sub-digraph of �. The vertex set of planar(�) is same as that of �. For an edge

4 ∈ �, let ℓ be the block to which 4 belongs and let F be the lowest indexed vertex in that block.

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 9

http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

Then 4 = (2 8
ℓ
(F), 2 9

ℓ
(F)) is in planar(�) if there exists no other edge 5 = (2G

ℓ
(F), 2H

ℓ
(F)) in � such

that min(G, H) < min(8 , 9) < max(G, H) < max(8 , 9).

In Lemma 4.3 we show that the digraph planar(�) is indeed planar. We also prove that the

subset of edges that we have picked from � is a maximal subset such that no two edges cross.

Lemma 4.3. Let � be a grid digraph and � be an induced sub-digraph of Aux(�). No two edges of
planar(�) cross each other. Moreover, for any edge 4 in � that is not in planar(�), there exists another
edge in planar(�) that crosses 4.

Proof. Let ℓ be a block of Aux(�) and F be the smallest index vertex of ℓ . Let 4 = (2?
ℓ
(F), 2@

ℓ
(F))

and 5 = (2A
ℓ
(F), 2B

ℓ
(F)) be two edges of � that cross. We have, by Lemma 3.3, that either

min(?, @) < min(A, B) < max(?, @) < max(A, B) or min(A, B) < min(?, @) < max(A, B) < max(?, @).
Hence, by our construction of planar(�), atmost one of 4 and 5 belongs to it. Thus no two edges

of planar(�) cross.
For the second part, we will prove by contradiction. Let us assume that there exists

edges in � which is not in planar(�) and also not crossed by an edge in planar(�). We

pick edge 4 = (2?
ℓ
(F), 2@

ℓ
(F)) from them such that min(?, @) of that edge is minimum. Since

this edge is not in planar(�), we have by definition, an edge 5 = (2A
ℓ
(F), 2B

ℓ
(F)) such that

min(A, B) < min(?, @) < max(A, B) < max(?, @). We pick the edge 5 for which min(A, B) is
minimum. Now, since this edge 5 is not in planar(�), we have another edge , = (2 8

ℓ
(F), 2 9

ℓ
(F)) in

planar(�) such that min(8 , 9) < min(A, B) < max(8 , 9) < max(A, B). We pick , such that min(8 , 9)
is minimum and break ties by picking one whose max(8 , 9) is maximum. Now, we have the

following cases:

Case 1 (8 < A < 9 < B): Note that � is an induced sub-digraph of Aux(�). Thus, in this case, the

edge (2 8
ℓ
(F), 2B

ℓ
(F))will be in � due to Lemma 3.5. Since 8 < ? < B < @, and 8 < min(A, B),

this will contradict the way in which edge 5 was chosen.

Case 2 (8 < B < 9 < A): In this case, the edge (2A
ℓ
(F), 2 9

ℓ
(F)) will be in � due to Lemma 3.5. This

edge will cross 4 and hence not be in planar(�). Thus, we have an edge ,′ = (2 8′
ℓ
(F), 2 9

′

ℓ
(F))

in planar(�) such that min(8′, 9′) < 9 < max(8′, 9′) < A. We will thus have two subcases.

Case 2a (8 < min(8′, 9′)): Here, we will have 8 < min(8′, 9′) < 9 < max(8′, 9′). Hence this

edge will cross , giving a contradiction to the first part of this Lemma.

Case 2b (min(8′, 9′) ≤ 8): Here, this edge should have been chosen instead of , contradict-

ing our choice of ,.

The analysis of two remaining cases where 9 < B < 8 < A and 9 < A < 8 < B are similar to Cases 1

and 2 respectively. �

Definition 4.4. Let � be a grid digraph and � be an induced sub-digraph of Aux(�). The

graph �̂ is formed by first running Algorithm 1 on � and then triangulating the underlying

undirected graph of the result

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 10

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

Input: An induced sub-digraph � of Aux(�)
1 Output all the vertices of �;

2 Output all the edges of planar(�);
3 foreach block ℓ in � do
4 foreach vertex E of � in ℓ do
5 ? ← the smallest positive integer such that 2

?

ℓ
(E) ∈ +(�);

6 if (E, 2?
ℓ
(E)) ∉ �(planar(�)) then

7 Output the edge (E, 2?
ℓ
(E));

8 end
9 end

10 end
Algorithm 1: Completing the boundary of planar(�)

Note that Algorithm 1 completes the boundary of each block. Thus, for any block, the

vertices in its boundary form a simple cycle. Since the interiors of these cycles are disjoint, there

is no edge that is drawn through more than one block in �̂. Thus, each edge of �̂ lies either

entirely inside one of the blocks, or lies completely outside the whole < × < grid.

Now, for each of those edges added to �̂ as part of triangulation that is inside one of the

blocks, we define a set of at most four shield edges.

Definition 4.5. Let � be a grid digraph and � be an induced sub-digraph of Aux(�). Let

4 = (E, F) be an edge in �̂ such that 4 is inside one of the blocks and 4 is not in planar(�). Let ?
and @ be integers such that F = 2

?

ℓ
(E) and E = 2@

ℓ
(F).

• Let ?1 be the largest integer such that ?1 < ? and an edge 41 with endpoints E and 2
?1

ℓ
(E)

exists in planar(�). 41 is undefined if no such integer exists.

• Let ?2 be the smallest integer such that ?2 > ? and an edge 42 with endpoints E and 2
?2

ℓ
(E)

exists in planar(�). 42 is undefined if no such integer exists.

• Let @1 be the largest integer such that @1 < @ and an edge 43 with endpoints 2
@1

ℓ
(F) and F

exists in planar(�). 43 is undefined if no such integer exists.

• Let @2 be the smallest integer such that @2 > @ and an edge 44 with endpoints 2
@2

ℓ
(F) and

F exists in planar(�). 44 is undefined if no such integer exists.

For 8 = 1, 2, 3, 4, the edges 48 which are defined above are called shield edges of 4.

We will be using the following Lemma, which was proven by Imai et al., to help us in the

construction of pseudoseparator.

Lemma 4.6. [9] For every � > 0, there exists a polynomial-time and $̃(ℎ1/2+�/2)-space algorithm that
takes a ℎ-vertex planar graph % as input and outputs a set of vertices (, such that |(| is $(ℎ1/2+�/2) and
removal of (disconnects the graph into components of size $(ℎ1−�).

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 11

http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

Algorithm 2 describes how to construct a sub-digraph of � which we call psep(�). In

Lemma 4.8 we show that psep(�) is a pseudoseparator of �.

Input: Aninduced sub-digraph � of Aux(�) and a positive number �
Output: The digraph psep(H)

1 Construct �̂ from �;

2 Find a set (of vertices in �̂ which divides it into components of size $(=1−�) by
applying Lemma 4.6 ;

3 Output all the vertices of (;

4 Output those edges of � which are also (in its undirected form) in �̂[(];
5 foreach edge 4 = (E, F) of �̂ do
6 if 4 is inside a block of �̂ and 4 ∉ �(planar(�)) and both endpoints of 4 are in (then
7 Output all the shield edges of 4 along with their end vertices.

8 end
9 end

Algorithm 2: Construction of psep(H)

Lemma 4.7. Let � be a grid digraph , and � be aninduced sub-digraph of Aux(�). For every � > 0,
there exists a polynomial-time and $̃(ℎ1/2+�/2)-space algorithm that takes � as input and outputs
psep(H).

Proof. To prove this lemma, we analyse the space and time complexity of Algorithm 2. We will

first see that �̂ is constructed from � in logspace. To see it, we first note that we can decide if an

edge 4 of � belong to planar(�) in logspace by checking if 4 satisfies the condition required by

Definition 4.2. Next, the boundary of planar(�) is completed in logspace by using Algorithm 1.

Finally we triangulate the resultant graph in logspace: For every face 5 in the resultant graph, we

connect each vertex of 5 to the lowest-indexed vertex of 5 . The space complexity of construction

of psep(H) is thus dominated by the space required by step 2 of Algorithm 2. By Lemma 4.6, we

know that this step requires $(ℎ1/2+�/2) space. Hence, the space required by Algorithm 2 is

$(ℎ1/2+�/2). Each step of Algorithm 2 is performed in polynomial time, hence the total time

complexity is bounded by a polynomial. �

Lemma 4.8. Let � be a grid digraph , and � be aninduced sub-digraph of Aux(�). The digraph
psep(�) is a ℎ1−�-pseudoseparator of �.

To prove Lemma 4.8, we first show a property of triangulated graphs that we use in our

construction of pseudoseparator. We know that a simple cycle in a planar embedding of a

planar graph divides the plane into two parts. We call these two parts the two sides of the cycle.

Lemma 4.9. Let � be a triangulated planar graph, and (be a subset of its vertices. For each pair of
vertices D, E belonging to different components of � \ (, a cycle in �[(] exists, such that D and E belong
to different sides of this cycle.

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 12

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

Proof. To prove the Lemma, we first need some terminology. We call a set of faces a region of
edge-connected faces if they induce a connected subgraph in the dual graph. We can orient the

edges of an undirected planar simple cycle to make it a directed cycle. This can help us identify

the two sides of the cycle as interior (left-side) and exterior (right-side).
Let � be a component of � \ (and (′ be the set of vertices of (adjacent to at least one of the

vertices of � in �. Let � be the set of triangle faces of � to which at least one vertex of � belongs.

Let �̃ be the dual graph of � and �̃[�] be the subgraph induced by � on this dual graph.

We first observe that since we have started with a triangulated graph, the vertices of any face

5 of � will either belong to � or (′.
Let 51 and 52 be two arbitrary faces of �. Wewill first show that � is a region of edge-connected

faces by showing that there exists a path between 51 and 52 in �̃[�]. Let E1 be a vertex of �

which belongs to 51. Similarly, let E2 be a vertex of � which belongs to 52. Let the length of

shortest path between E1 and E2 in � \ (be :. We prove our claim by induction on :. If : = 0,

then E1 = E2. We know that the set of faces that share a vertex induce a connected subgraph

in the dual graph, hence our claim holds for : = 0. Now, we assume that our claim holds for

path length : = ℓ − 1. To prove that our claim holds for : = ℓ , let (E3 , E2) be the last edge in the

shortest path from E1 to E2. Let 53 be a face with both E3 and E2 in its boundary. Since the length

of shortest path from E1 to E3 is ℓ − 1, by induction hypothesis, there exists a path between 51
and 53 in �̃[�]. Since 53 and 52 share the vertex E2, there is a path between 53 and 52 in �̃[�].
Combining these two paths, we get a path between 51 and 52 in �̃[�]which proves our claim.

Miller proved that the boundary of a region of edge-connected faces is a set of edge-disjoint

simple cycles which can be oriented such that they have disjoint exteriors [12]. We claim that all

the vertices of any boundary cycle of � are contained in (′. We prove this claim by contradiction.

Let us assume that E is a vertex in a boundary cycle of � that is not in (′. In this case, E belongs

to �. Consider an edge (E, F) of the boundary cycle. Let 50 and 51 be the two faces that shares

the edge (E, F). Let E0 and E1 be the third vertex of 50 and 51 respectively. Since E0 , E1 and F

are all connected to E, they are in either (′ or �. Thus both 50 and 51 are in �. However, this

contradicts that (E, F) is at boundary of �.

Thus, we have proved that the vertices of a connected component of � \ (are contained

inside a set of edge-disjoint simple cycles with disjoint exteriors. The vertices of all such cycles

are contained in (. Hence the lemma follows. �

Proof of Lemma 4.8. Let � = psep(�). Let (be the set of vertices obtained from �̂ by using

Lemma 4.6. We claim that if any two vertices D and E belong to different connected components

of �̂ \ (, then it belongs to different components of cc(� � �). We prove this by contradiction.

Let us assume that it is not true. Then there is an edge 4 in � and two distinct sets*1 and*2 of

cc(�̂ \ () such that one of the end point of 4 is in*1, the other is in*2 and 4 does not cross any

of the edges of psep(�). Without loss of generality, let 4 = (E, 2?
ℓ
(E)), for some block ℓ , where

E ∈ *1 and 2
?

ℓ
(E) is not in*1 (we pick the edge 4 such that ? is minimum for any choice of E).

Due to Lemma 4.9, it follows that there exists an edge 5 in �̂[(] such that 5 = ((2@
ℓ
(E)), 2A

ℓ
(E))

and that 4 crosses 5 . This edge 5 is a triangulation edge, for otherwise it is also in psep(H)

giving us a contradiction. We orient the triangulation edge so that @ < ? < A. Now, since 4 is

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 13

http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

not in planar(�), by Lemma 4.3 there exists at least one edge that crosses it and is in planar(�).
Let , = (2B

ℓ
(E), 2C

ℓ
(E)) be one such edge such that C − B is maximum1 We thus have the following

cases:

Case 1 (B < @ < ? < A < C): In this case, since , crosses 4, by Lemma 3.5, we have that the edge

4′ = (2B
ℓ
(E), 2?

ℓ
(E)) is also in �. 4′ also crosses 5 . Since ? − B < ?, existence of 4′ contradicts

our choice of 4.

Case 2 (@ < C < ? < B < A): In this case, since , crosses 4, by Lemma 3.5, we have that the edge

4′ = (E, 2C
ℓ
(E)) is also in �. 4′ also crosses 5 . Since C < ?, existence of 4′ contradicts our

choice of 4.

Case 3 (C < @ < ? < A < B): In this case, the edge 4′ = (2B
ℓ
(E), 2?

ℓ
(E))will also be in�. 4′will cross

5 and hence will not be in planar(�). By Lemma 4.3, there exists an edge ,′ = (2B′
ℓ
(E), 2C′

ℓ
(E))

in planar(�) that crosses 4′. Since both ,′ and , are in planar(�), these edges do not cross

each other.

Using the fact that ,′ crosses 4′ and ,′ does not cross ,, we get the following:

C ≤ min(B′, C′) < ? < max(B′, C′) < B

Consequently, C′ − B′ > C − B and ,′ crosses 4. This contradicts our choice of ,.

Case 4 (@ < B < ? < C < A): In this case, since , crosses 4, by Lemma 3.5, we have that the edge

4′ = (E, 2C
ℓ
(E)) is in �. 4′ also crosses 5 and hence 4′ was not in planar(�). Thus there will

exist an edge in planar(�) which crosses 4′ by Lemma 4.3. Let ,′ = (2B′
ℓ
(E), 2C′

ℓ
(E)) be the

edge in planar(�) that crosses 4′ such that C′ − B′ is maximum. We have the following

subcases:

Case 4a (B′ < @ < C < A < C′): In this case, since ,′ crosses 4, by Lemma 3.5, we have that

the edge 4′′ = (2B′
ℓ
(E), 2?

ℓ
(E)) is also in �. 4′′ also crosses 5 . Since ? − B′ < ?, existence

of 4′′ contradicts our choice of 4.

Case 4b (@ < C′ < C < B′ < A): In this case, we see that since , and ,′ are both in planar(�),
they do not cross each other. Therefore. C′ ≤ B and consequently C′ < ?. Thus, ,′

crosses 4 and by Lemma 3.5, the edge 4′′ = (E, 2C′
ℓ
(E)) is also in �. 4′′ also crosses 5 .

Since C′ < ?, existence of 4′′ contradicts our choice of 4.

Case 4c (C′ < @ < C < A < B′): In this case, the edge 4′′ = (2B′
ℓ
(E), 2C

ℓ
(E)) will also be in �.

4′′ will cross 5 and hence will not be in planar(�). By Lemma 4.3, there exists an

edge ,′′ = (2B′′
ℓ
(E), 2C′′

ℓ
(E)) in planar(�) that crosses 4′′. Since ,′′, ,′ and , are all in

planar(�), these edges do not cross each other.

Using the fact that ,′′ crosses 4′′, ,′′ does not cross ,′ and ,′′ does not cross ,; we get

the following:

1We note that we do not consider the absolute value of the C − B, rather we consider the actual value. C − B can
hence be negative for an edge.

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 14

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

D

F

E

(a) The B-C path takes a vertex of the separator

D′ E′
D E

4

(b) The B-C path crosses an edge of the separator

Figure 4

C′ ≤ min(B′′, C′′) < B < C < max(B′′, C′′) < B′

Consequently, C′′ − B′′ > C′ − B′ and ,′′ crosses 4′. This contradicts our choice of ,′.

Case 4d (@ < B′ < C < C′ < A): In this case, we see that since , and ,′ are both in planar(�),
they do not cross each other. Therefore B′ ≤ B and consequently B′ < ?. Thus, ,′

crosses 4 and C′ − B′ > C − B. This contradicts our choice of ,.

In other cases, if , is picked such that one of its vertices is common with 5 , then 4 will cross a

Bℎ84 ;3 edge of 5 , giving a contradiction. If , is picked such that , cross 5 , then it contradicts the

fact that both of them are in �̂, which is a planar digraph . �

Summarizing Lemmas 4.7 and 4.8 we have Theorem 4.10.

Theorem 4.10. Let � be a grid digraph and � be aninduced subgraph of Aux(�) with ℎ vertices. For
any constant � > 0, there exists an $̃(ℎ1/2+�/2)-space and polynomial-time algorithm that takes � as
input and outputs an ℎ1−�-pseudoseparator of size $(ℎ1/2+�/2).

5 Algorithm to solve reachability in the auxiliary digraph

In this section, we discuss the grid digraph reachability algorithm. Let � be a grid digraph

having =̃ vertices. By induction, we assume that we have access to an induced subgraph � of

Aux(�), containing ℎ vertices. Below we describe a recursive procedure AuxReach(�, G, H) that
outputs true if there is a path from G to H in � and outputs false otherwise.

5.1 Description of the algorithm AuxReach

First we construct a ℎ1−�
-pseudoseparator � of �, using Theorem 4.10. We also ensure that G

and H are part of � (if not then we add them). Let �1 , �2 , . . . , �ℓ be the connected components of

� � �.
Wemaintain an array called visited of size |� | tomark vertices or edges of thepseudoseparator

�. Each cell of visited corresponds to a distinct vertex or edge of �. For a vertex E in �, we set

visited[E] := 1 if there is a path from G to E in �, else it is set to 0. For an edge 4 = (D, E) in �, we

set visited[4] := D′ if (i) there is an edge 5 = (D′, E′) that crosses 4, (ii) there is a path from G to D′

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 15

http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

in � and (iii) 5 is the closest such edge to D. Else visited[4] is set to NULL. Initially, for all vertex
E ∈ �, visited[E] := 0 and for all edges 4 ∈ �, visited[4] := NULL. We say that a vertex E is marked
if either visited[E] = 1 or visited[4] = E for some edge 4.

First set visited[G] := 1. We then perform an outer loop with ℎ iterations and in each iteration

update certain entries of the array visited as follows. For every vertex E ∈ �, the algorithm sets

visited[E] := 1 if there is a path from a marked vertex to E such that the internal vertices of that

path all belong to only one component �8 . Similarly, for each edge 4 = (D, E) of �, the algorithm
sets visited[4] := D′ if (i) there exists an edge 5 = (D′, E′) which crosses 4, (ii) there is a path

from a marked vertex to D′ such that the internal vertices of that path all belong to only one

component �8 and, (iii) 5 is the closest such edge to D. Finally we output true if visited[H] = 1 else

output false. We use the procedure AuxReach recursively to check if there is a path between two

vertices in a single connected component of � ��. A formal description of AuxReach is given in

Algorithm 3.

5.2 Proof of correctness of AuxReach

Let % be a path from G to H in �. Suppose % passes through the components ��1
, ��2

, . . . , ��! in

this order. The length of this sequence is at most |� |. As the path leaves the component ��9 and

goes into ��9+1
, it can do in the following two ways only:

1. The path exits ��9 through a vertex F of pseudoseparator as shown in Figure 4a. In this

case, Algorithm 3 marks the vertex F.

2. The path exits ��9 through an edge (D, E)whose other endpoint is in ��9+1
. By Lemma 3.6,

this edge will cross an edge 4 = (G′, H′) of the pseudoseparator. In this case, Algorithm 3

marks the vertex D′, such that there is an edge (D′, E′) that crosses 4 as well and (D′, E′) is
closer than (D, E) to G′ and there is a path in ��9 from a marked vertex to D′. By Lemma 3.6,

the edge (D′, E) is in � as well.

Thus after the 9-th iteration, AuxReach traverses the fragment of the path in the component

��9 and either marks its endpoint or a vertex which is closer to the edge 4 of � which the path

crosses. Finally, H is marked after ! iterations if and only if there is a path from G to H in �.

We give a formal proof of correctness in Lemma 5.1. For a path % = (D1 , D2 , . . . DC), we define

tail(%) := D1 and head(%) := DC .

Lemma 5.1. Let � be a grid digraph and � be aninduced subgraph of Aux(�). Then for any two
vertices G, H in �, there is a path from G to H in � if and only if AuxReach(�, G, H) returns true.

Proof. Firstly observe that, if a vertex is marked, then there is a path from some other marked

vertex to that vertex in �. Hence if there is no path from G to H then H is never marked by

AuxReach and hence AuxReach returns false.
Now let % be a path from G to H in �. We divide the path into subpaths %1 , %2 , . . . , %ℓ , such

that for each 8, all vertices of %8 belong to*∪+(�) for some connected component* in cc(���)
and either (i) head(%8) = tail(%8+1), or (ii) 48 = (head(%8), tail(%8+1)) is an edge that crosses some

edge 58 ∈ �. By Definition 4.1, we have that if condition (i) is true then head(%8) is a vertex in �,

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 16

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

Input: An induced subgraph � of Aux(�) and two vertices G and H in � (let � be an

< × < grid digraph and ℎ = |+(�)|)
Output: true if there is a path from G to H in � and false otherwise

1 if ℎ ≤ <1/8 then Use DFS to solve the problem; /* < is a global variable where
� is an < × < grid digraph */

2 else
3 Compute a ℎ1−�

-pseudoseparator � of � using Theorem 4.10;

4 � ← � ∪ {G, H};
5 foreach edge 4 in � do visited[4] ← NULL;
6 foreach vertex E in � do visited[E] ← 0;

7 visited[G] ← 1;

8 for 8 = 1 to |� | do
9 foreach edge 4 = (D, E) ∈ � do
10 closestedge← NULL;
11 foreach marked vertex F do
12 foreach* ∈ cc(� � �) do
13 foreach edge 5 = (D′, E′) such that 5 crosses 4 do
14 if AuxReach(�[* ∪ {F, D′}], F, D′) = true then
15 if closestedge = NULL or 5 is closer to 4 than closestedge then
16 visited[4] ← D′;
17 closestedge← 5 ;

18 end
19 end
20 end
21 end
22 end
23 end
24 foreach vertex E ∈ � do
25 if ∃F∃* such that F is a marked vertex and* ∈ cc(� � �) and

AuxReach(�[* ∪ {F, E}], F, E) = true)) then
26 visited[E] ← 1;

27 end
28 end
29 end
30 if visited[H] = 1 then return true;
31 else return false;
32 end

Algorithm 3: AuxReach(�, B, C)

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 17

http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

and if condition (ii) is true then head(%8) and tail(%8+1) belong to two different components of

cc(� � �) and 48 is the edge between them.

We claim that after 8-th iteration of loop in Line 8 of Algorithm 3, either of the following two

statements hold:

1. head(%8) is a vertex in � and visited[head(%8)] = 1.

2. There exists an edge 58 = (D8 , E8) of � such that the edge 48 = (head(%8), tail(%8+1)) crosses
58 and there is an edge ,8 = (D′8 , E

′
8
)which crosses 58 as well, such that ,8 is closer to D8 than

48 and visited[58] = D′8 .

We prove the claim by induction. The base case holds since G is marked at the beginning. We

assume that the claim is true after the (8 − 1)-th iteration. We have that %8 belongs to* ∪+(�)
for some connected component* in cc(� � �).

Case 1 (head(%8−1) = tail(%8) = F(say)): By induction hypothesis F was marked after the (8 − 1)-
th iteration. If head(%8) is a vertex in � then it will be marked after the 8-th iteration in

Line 26. On the other hand if 48 = (head(%8), tail(%8+1)) is an edge that crosses some edge

58 = (D8 , E8) ∈ � then in the 8-th iteration in Line 16, the algorithm marks a vertex D′
8
such

that, ,8 = (D′8 , E
′
8
) is the closest edge to D8 that crosses 58 and there is a path from F to D′

8
.

Case 2 (48−1 = (head(%8−1), tail(%8)) crosses some edge 58−1 = (D8−1 , E8−1) ∈ �): By induction hy-

pothesis, there is an edge ,8−1 = (D′8−1
, E′

8−1
) which crosses 58−1 as well, such that ,8−1 is

closer to D8−1 than 48−1 and visited[58−1] = D′8−1
. By Lemma 3.6 there is an edge in� between

D′
8−1

and tail(%8) as well. Now if head(%8) is a vertex in � then it will be marked after the

8-th iteration in Line 26 by querying the digraph �[* ∪ {D′
8−1
, head(%8)}]. On the other

hand if 48 = (head(%8), tail(%8+1)) is an edge that crosses some edge 58 = (D8 , E8) ∈ � then in

the 8-th iteration in Line 16, AuxReach queries the digraph �[* ∪ {D′
8−1
, D′

8
}] and marks a

vertex D′
8
such that, ,8 = (D′8 , E

′
8
) is the closest edge to D8 that crosses 58 and there is a path

from D′
8−1

to D′
8
. �

Our subroutine solves reachability in a subgraph � (having size ℎ) of Aux(�). We do

not explicitly store a component of cc(� � �), since it might be too large. Instead, we identify

a component with the lowest indexed vertex in it and use Reingold’s algorithm on � � �
to determine if a vertex is in that component. We require $̃(ℎ1/2+�/2) space to compute

a ℎ1−�
-pseudoseparator by Theorem 4.10. We can potentially mark all the vertices of the

pseudoseparator and for each edge of the pseudoseparator we mark at most one additional

vertex. Since the size of the pseudoseparator is at most $(ℎ1/2+�/2), we require $̃(ℎ1/2+�/2)
space. The algorithm recurses on a digraph with ℎ1−�

vertices. Since we stop the recursion

when ℎ ≤ <1/8
(Line 1 of Algorithm 3), the depth of the recursion is at most d−3/log(1 − �)e,

which is a constant.

Since the digraph � is given implicitly in our algorithm, an additional polynomial overhead

is involved in obtaining its vertices and edges. However, the total time complexity remains a

polynomial in the number of vertices since the recursion depth is constant.

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 18

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

Lemma 5.2. Let � be an < × < grid digraph and � beaninduced subgraph of Aux(�) with ℎ vertices.
For every � > 0, AuxReach runs in $̃(ℎ1/2+�/2) space and polynomial time.

Proof. Since the size of a component * in cc(� � �)might be too large, we will not explicitly

store it. Instead we identify a component by the lowest index vertex in it and use Reingold’s

algorithm on � � � to determine if a vertex is in* . Let ((<, ℎ) and)(<, ℎ) denote the space
and time complexity functions respectively of AuxReach, where � is an < ×< grid digraph and

ℎ is the number of vertices in the digraph �. As noted earlier the depth of the recursion is at

most 3 := d−3/log(1 − �)e.
Consider ((<, ℎ) for any ℎ > <1/8

. By Theorem 4.10, we require $̃(ℎ1/2+�/2) space to execute

Line 3. We can potentially mark all the vertices of � and for each edge 4 of � we store at

most one additional vertex in visited[4]. Since the size of � is at most $(ℎ1/2+�/2), we require

$̃(ℎ1/2+�/2) space to store �. By induction, a call to AuxReach in line 16 and 26 requires ((<, ℎ1−�)
space which can be subsequently reused. Hence the space complexity satisfies the following

recurrence. Then,

((<, ℎ) =
{
((<, ℎ1−�) + $̃(ℎ1/2+�/2) ℎ > <1/8

$̃(ℎ) otherwise.

Solving we get ((<, ℎ) = $̃(ℎ1/2+�/2 + <1/4).
Next we measure the time complexity of AuxReach. Consider the case when ℎ > <1/8

. The

total number of steps in AuxReach is some polynomial in ℎ, say ?. Moreover AuxReach makes @

calls to AuxReach, where @ is some other polynomial in ℎ. Hence @(ℎ) ≤ ?(ℎ). Then,

)(<, ℎ) =
{
@ ·)(ℎ1−�) + ? ℎ > <1/8

$(ℎ) otherwise.

Solving the above recurrence we get)(<, ℎ) = $(? · @3 + <1/4) = $(?23 + <1/4). �

6 Solving grid digraph

Let � be an < × < grid digraph . As mentioned in the introduction, our objective is to run the

algorithm 3 on the digraph Aux(�). Consider two vertices G and H of Aux(�). Note that, by

definition, H is reachable from G in Aux(�) if and only if H is reachable from G in �. Hence it is

sufficient to work with the digraph Aux(�). However, we do not have explicit access to the

edges of Aux(�). Note that we can obtain the edges of Aux(�) by solving the corresponding

subgrid of � to which that edge belongs. If the subgrid is small enough, then we use a standard

linear space-traversal algorithm. Otherwise, we use our algorithm recursively on the subgrid.

Algorithm 4 outlines this method.

Consider an <̂ × <̂ grid digraph �̂. Let ((<̂) be the space complexity and)(<̂) be the time

complexity of executing GridReach on �̂. Note that the size of Aux(�̂) is at most <̂1+
. For

<̂ > <1/8
, the space required to solve the grid digraph

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 19

http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

Input: A grid digraph �̂ and two vertices B̂, Ĉ of �̂ and a positive integer <

Output: true if there is a path from B to C in � and false otherwise

if �̂ is smaller than <1/8 × <1/8 grid then
Use Depth-First Search to solve the problem;

end
else

Use ImplicitAuxReach(Aux(�), B̂ , Ĉ) to solve the problem;

/* ImplicitAuxReach executes the same way as AuxReach except for the
case when it queries an edge (D, E) in a block � of Aux(�). In this
case, the query is answered by calling GridReach(�, D, E, <) where � is
the subgrid in which edge (D, E) might belong. */

end
Algorithm 4: GridReach(�̂, B̂ , Ĉ , <)

is ((<̂) = ((<̂1−) + $̃((<̂1+)1/2+�/2). This is because, a query whether (D, E) ∈ �̂invokes a
recursion which requires ((<̂1−) space and the main computation of ImplicitAuxReach can be

done using $̃((<̂1+)1/2+�/2) space. Hence we get the following recurrence for space complexity.

((<̂) =
{
((<̂1−) + $̃((<̂1+)1/2+�/2) <̂ > <1/8

$̃(<̂1/4) otherwise

Similar to the analysis of AuxReach, for appropriate polynomials ? and @, the time complexity

satisfies the following recurrence:

)(<̂) =
{
@(<̂) ·)(<̂1−) + ?(<̂) <̂ > <1/8

$(<̂) otherwise.

Solving we get ((<) = $̃(<1/2+�/2+/2+�/2) and)(<) = poly(<). For any constant & > 0, we can

chose and � such that ((<) = $(<1/2+&).

7 Conclusion

Our result improves upon the known time–space bounds on the grid digraph . Asano et al. [4]

used a clever idea of exploiting the grid structure of the input digraph to reduce its size. Their

exploitation destroyed the grid structure of the input digraph , but they did not go far enough

to destroy its planar structure as well. Our exploitation goes a step further. We get a non-planar

auxiliary digraph that is smaller as a result and has just enough structure to solve reachability

in a space-efficient manner. It remains to be seen if the structure could be further exploited to

get a smaller auxiliary-like digraph in which reachability can be solved.

It is known that reachability in planar digraph s can be reduced to reachability in grid

digraph s in logarithmic space [1]. However, such a reduction results in at least a quadratic

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 20

http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

blow-up in the size of the digraph . In principle, it would seem that an improvement to the state

of the art for the planar digraph can be obtained by improving the result for grid digraph s.

However, we feel that this would be a difficult direction to go. Note that we solve an ℎ-vertex

auxiliary digraph in $(ℎ1/2+�/2) space as a subroutine for our griddigraph algorithm. A planar

digraph with its embedding can be thought of as an auxiliary digraph , and hence our algorithm

contains within itself a solution to the planar digraph as well. For this reason, we feel that

directly solving a planar digraph would be easier than going down the grid digraph routine.

A significantly different approach would be required to directly design an algorithm for grid

digraph , one which does not use a solution for the class of planar digraph s, or its superclass, as

a subroutine.

References

[1] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambud-

dha Roy: Planar and grid graph reachability problems. Theory Computing Sys., 45(4):675–723,
2009. [doi:10.1007/s00224-009-9172-z] 2, 20

[2] Eric Allender and Meena Mahajan: The complexity of planarity testing. Inform. Comput.,
189(1):117–134, 2004. Preliminary version in STACS’00. [doi:10.1016/j.ic.2003.09.002] 4

[3] Tetsuo Asano and Benjamin Doerr: Memory-constrained algorithms for shortest path

problem. In Proc. 23rd Canad. Conf. Comput. Geom. (CCCG’11), pp. 1–4, 2011. cccg.ca. 3

[4] Tetsuo Asano, David Kirkpatrick, Kotaro Nakagawa, and Osamu Watanabe: $̃(
√
=)-space

and polynomial-time algorithm for planar directed graph reachability. In Proc. Internat.
Symp.Math. Foundations of Comp. Sci. (MFCS’14), pp. 45–56. Springer, 2014. [doi:10.1007/978-
3-662-44465-8_5, ECCC:TR14-071] 2, 3, 20

[5] Ryo Ashida and Kotaro Nakagawa: $̃(=1/3)-space algorithm for the grid graph reachability

problem. In Proc. 34th Internat. Symp. Comput. Geom. (SoCG’18), pp. 5:1–13. Schloss Dagstuhl–

Leibniz-Zentrum fuer Informatik, 2018. [doi:10.4230/LIPIcs.SoCG.2018.5, arXiv:1803.07097]

3

[6] Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and Baruch Schieber: A sublinear space,

polynomial time algorithm for directed s-t connectivity. SIAM J. Comput., 27(5):1273–1282,
1998. Preliminary version in SCT’92. [doi:10.1137/S0097539793283151] 2

[7] Diptarka Chakraborty, Aduri Pavan, Raghunath Tewari, N. V. Vinodchandran, and

Lin F. Yang: New time-space upperbounds for directed reachability in high-genus

and �-minor-free graphs. In Proc. 34th Found. Softw. Techn. Theoret. Comp. Sci. Conf.
(FSTTCS’14), pp. 585–595. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014.

[doi:10.4230/LIPIcs.FSTTCS.2014.585, ECCC:TR14-035] 2

[8] Diptarka Chakraborty and Raghunath Tewari: An $(=&) space and polynomial time

algorithm for reachability in directed layered planar graphs. ACM Trans. Comput. Theory,

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 21

http://dx.doi.org/10.1007/s00224-009-9172-z
https://doi.org/10.1007/3-540-46541-3_7
http://dx.doi.org/10.1016/j.ic.2003.09.002
http://www.cccg.ca/proceedings/2011/papers/paper15.pdf
http://dx.doi.org/10.1007/978-3-662-44465-8_5
http://dx.doi.org/10.1007/978-3-662-44465-8_5
https://eccc.weizmann.ac.il/report/2014/071
http://dx.doi.org/10.4230/LIPIcs.SoCG.2018.5
http://arxiv.org/abs/1803.07097
https://doi.org/10.1109/SCT.1992.215378
http://dx.doi.org/10.1137/S0097539793283151
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.585
https://eccc.weizmann.ac.il/report/2014/035
http://dx.doi.org/10.4086/toc

RAHUL JAIN AND RAGHUNATH TEWARI

9(4):19:1–11, 2017. Preliminaryversion in ISAAC’15. [doi:10.1145/3154857, arXiv:1501.05828,

ECCC:TR15-016] 2

[9] Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, N. V. Vinodchandran, and Osamu Watanabe:

An $(= 1

2
+&)-space and polynomial-time algorithm for directed planar reachability. In

Proc. 28th IEEE Conf. on Comput. Complexity (CCC’13), pp. 277–286. IEEE Comp. Soc., 2013.

[doi:10.1109/CCC.2013.35] 2, 3, 8, 11

[10] Rahul Jain and Raghunath Tewari: An $(=1/4+&) space and polynomial algorithm

for grid graph reachability. In Proc. 39th Found. Softw. Techn. Theoret. Comp. Sci. Conf.
(FSTTCS’19), pp. 19:1–14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

[doi:10.4230/LIPIcs.FSTTCS.2019.19] 1

[11] Sampath Kannan, Sanjeev Khanna, and Sudeepa Roy: STCON in directed

unique-path graphs. In Proc. 28th Found. Softw. Techn. Theoret. Comp. Sci. Conf.
(FSTTCS’08), pp. 256–267. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2008.

[doi:10.4230/LIPIcs.FSTTCS.2008.1758] 2

[12] Gary L. Miller: Finding small simple cycle separators for 2-connected planar graphs. J.
Comput. System Sci., 32(3):265–279, 1986. Preliminary version in STOC’84. [doi:10.1016/0022-

0000(86)90030-9] 13

[13] Omer Reingold: Undirected connectivity in log-space. J. ACM, 55(4):17:1–24, 2008. Prelimi-

nary version in STOC’05. [doi:10.1145/1391289.1391291] 2, 4

[14] Walter J. Savitch: Relationships between nondeterministic and deterministic tape com-

plexities. J. Comput. System Sci., 4(2):177–192, 1970. [doi:10.1016/S0022-0000(70)80006-X]
2

[15] Derrick Stolee and N. V. Vinodchandran: Space-efficient algorithms for reachability in

surface-embedded graphs. In Proc. 27th IEEE Conf. on Comput. Complexity (CCC’12), pp.
326–333. IEEE Comp. Soc., 2012. [doi:10.1109/CCC.2012.15, ECCC:TR10-154] 2

[16] Avi Wigderson: The complexity of graph connectivity. In Proc. Internat. Symp. Math.
Foundations of Comp. Sci. (MFCS’92), pp. 112–132. Springer, 1992. [doi:10.1007/3-540-55808-
X_10] 2

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 22

https://doi.org/10.1007/978-3-662-48971-0_52
http://dx.doi.org/10.1145/3154857
http://arxiv.org/abs/1501.05828
https://eccc.weizmann.ac.il/report/2015/016
http://dx.doi.org/10.1109/CCC.2013.35
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2019.19
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2008.1758
https://doi.org/10.1145/800057.808703
http://dx.doi.org/10.1016/0022-0000(86)90030-9
http://dx.doi.org/10.1016/0022-0000(86)90030-9
https://doi.org/10.1145/1060590.1060647
http://dx.doi.org/10.1145/1391289.1391291
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1109/CCC.2012.15
https://eccc.weizmann.ac.il/report/2010/154
http://dx.doi.org/10.1007/3-540-55808-X_10
http://dx.doi.org/10.1007/3-540-55808-X_10
http://dx.doi.org/10.4086/toc

ON SOLVING REACHABILITY IN GRID DIGRAPHS USING A PSEUDOSEPARATOR

AUTHORS

Rahul Jain

Research associate

Department of Theoretical Computer Science

Fernuniversität in Hagen

Germany

rahul jain fernuni-hagen de

https://www.fernuni-hagen.de/ti/en/team/rahul.jain

Raghunath Tewari

Associate professor

Department of Computer Science and Engineering

Indian Institute of Technology Kanpur

rtewari cse iit ac in

https://www.cse.iitk.ac.in/users/rtewari

ABOUT THE AUTHORS

Rahul Jain is a postdoctoral research associate at Fernuniversität in Hagen, Germany.

He obtained his doctorate at the Indian Institute of Technology Kanpur, India in

2020 under Dr. Raghunath Tewari.

Raghunath Tewari is an Associate Professor in the Computer Science and Engi-

neering Department at the Indian Institute of Technology Kanpur. He obtained

his undergraduate degree in mathematics and computer science from Chennai

Mathematical Institute in 2005. Thereafter he did hisMasters in 2007 and Ph.D. in

2011 in computational complexity theory at the University of Nebraska – Lincoln

under Dr. N. V. Vinodchandran. He is interested in computational complexity

theory, algorithms and graph theory.

THEORY OF COMPUTING, Volume 19 (2), 2023, pp. 1–23 23

https://orcid.org/0000-0002-8567-9475
https://www.fernuni-hagen.de/ti/en/team/rahul.jain
https://www.cse.iitk.ac.in/users/rtewari
https://www.cse.iitk.ac.in/users/rtewari/
http://cse.unl.edu/~vinod/
http://dx.doi.org/10.4086/toc

	Introduction
	Preliminaries
	Auxiliary graph
	Properties of the auxiliary digraph

	Pseudoseparators in a grid digraph
	Constructing a pseudoseparator

	Algorithm to solve reachability in the auxiliary digraph
	Description of the algorithm AuxReach
	Proof of correctness of AuxReach

	Solving grid digraph
	Conclusion
	References

