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Abstract. We prove almost optimal hardness for MAX k-CSPR. In MAX k-CSPR, we are
given a set of constraints, each of which depends on at most k variables. Each variable can
take any value from 1,2, . . . ,R. The goal is to find an assignment to variables that maximizes
the number of satisfied constraints.

We show that, for any k ≥ 2 and R≥ 16, it is NP-hard to approximate MAX k-CSPR to
within factor kO(k)(logR)k/2/Rk−1. In the regime where 3≤ k = o(logR/ log logR), this ratio
improves upon Chan’s O(k/Rk−2) factor NP-hardness of approximation of MAX k-CSPR

(J. ACM 2016). Moreover, when k = 2, our result matches the best known hardness result
of Khot, Kindler, Mossel and O’Donnell (SIAM J. Comp. 2007). We remark here that NP-
hardness of an approximation factor of 2O(k) log(kR)/Rk−1 is implicit in the (independent)
work of Khot and Saket (ICALP 2015), which is better than our ratio for all k ≥ 3.

In addition to the above hardness result, by extending an algorithm for MAX 2-CSPR

by Kindler, Kolla and Trevisan (SODA 2016), we provide an Ω(logR/Rk−1)-approximation
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algorithm for MAX k-CSPR. Thanks to Khot and Saket’s result, this algorithm is tight up to
a factor of O(k2) when k ≤ RO(1). In comparison, when 3≤ k is a constant, the previously
best known algorithm achieves an O(k/Rk−1)-approximation for the problem, which is a
factor of O(k logR) from the inapproximability ratio in contrast to our gap of O(k2).

1 Introduction

The Maximum Constraint Satisfaction Problem (MAX CSP) is an optimization problem where the inputs
are a set of variables, an alphabet, and a set of constraints. Each variable can be assigned any symbol
from the alphabet and each constraint depends only on the assignment to a subset of variables. The goal
is to find an assignment to the variables that maximizes the number of satisfied constraints.

Many natural optimization problems, such as MAX CUT, MAX k-CUT and MAX k-SAT, can be
formulated as MAX CSP. In addition, MAX CSP has been shown to help approximate other seemingly-
unrelated problems such as DENSEST k-SUBGRAPH [5]. Due to this, MAX CSP has long been studied by
the approximation algorithms community [28, 14, 6, 21, 20, 12]. Furthermore, its relation to PCPs ensures
that MAX CSP is also well-studied on the hardness-of-approximation side [26, 10, 27, 16, 1, 13, 11, 4].

The main focus of this paper is on MAX k-CSPR, a family of MAX CSPs where the alphabet is
of size R and each constraint depends on only k variables. On the hardness-of-approximation side,
most early work focused on Boolean MAX k-CSP. Samorodnitsky and Trevisan first showed that MAX

k-CSP2 is NP-hard to approximate to within a factor of 2O(
√

k)/2k [26]. Engebretsen and Holmerin later
improved the implicit constant factor in the exponent O(

√
k) but still obtained NP-hardness of a factor

of 2O(
√

k)/2k [11]. To break this barrier, Samorodnitsky and Trevisan proved a Unique-Games-hardness
(UG-hardness) [15] 1 result; they achieved UG-hardness of an approximation ratio of O(k/2k), which is
tight up to a constant for the Boolean case [27]. Chan later showed that NP-hardness of approximation at
this ratio can be achieved, settling the approximability of MAX k-CSP2 [4].

Unlike in the Boolean case, the approximability of MAX k-CSPR when R > 2 is still not resolved.
For this case, Engebretsen showed NP-hardness of approximation ratio RO(

√
k)/Rk [10]. UG-hardness of

approximation within a factor of O(kR/Rk−1) was proven by Austrin and Mossel [1] and, independently,
by Guruswami and Raghavendra [13]. For the case k = 2, results by Khot et al. [16] implicitly demonstrate
UG-hardness of approximation within O(logR/R). This was made explicit in [20]. In the light of the
recent resolution of the 2-to-1 Conjecture [8, 17], this inapproximability result is now an NP-hardness
result. Moreover, Austrin and Mossel proved UG-hardness of an approximation ratio of O(k/Rk−1)
for infinitely many values of k [1], but only under the condition k ≥ R. Recently, Chan was able to
upgrade these UG-hardness results to NP-hardness [4]. More specifically, Chan showed NP-hardness
of approximation within a factor of O(kR/Rk−1) for every k,R and approximation within a factor of
O(k/Rk−1) for every k ≥ R. Due to an approximation algorithm with matching approximation ratio by
Makarychev and Makarychev [21], Chan’s result established tight hardness of approximation for k ≥ R.

1For any r ∈ (0,1), we say that MAX k-CSPR is UG-hard to approximate to within an r factor if, for some 0 < γ < ζ < 1
and 0 < θ ≤ 1, there is a polynomial-time reduction from the problem of deciding whether a given unique game has value at
least ζ or at most γ to the problem of deciding whether a given MAX k-CSPR instance has value at least θ or at most θ · r. (For
the definition of Unique Games, please refer to Section 2.2.) We remark that such a UG-hardness result implies that, if the
Unique Games Conjecture holds, then MAX k-CSPR is NP-hard to approximate to within an r factor.
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On the other hand, when k < R, Chan’s result gives O(kR/Rk−1) hardness of approximation whereas
the best known approximation algorithm achieves only Ω(k/Rk−1) approximation ratio [21, 12]. In an
attempt to bridge this gap, we prove the following result.

Theorem 1.1 (Main Theorem). It is NP-hard to approximate MAX k-CSPR to within a
kO(k)(logR)k/2/Rk−1 factor, for any k ≥ 2 and R≥ 16.

Remark 1.2. We remark that the kO(k)(logR)k/2/Rk−1 factor in Theorem 1.1 can be greater than one
when R≤ kc for some constant c. In this regime, the hardness result is vacuous.

Range of k,R NP-Hardness UG-Hardness Approximation References

k = 2 O
(

logR
R

)
– Ω

(
logR

R

)
[16, 20]

3≤ k < Θ(logR) 2O(k) log(kR)
Rk−1 O

(
k2 log(kR)

Rk−1

)
Ω
( k

Rk−1

)
[19, 21, 12]

Θ(logR)≤ k < R O
( k

Rk−2

)
O
(

k2 log(kR)
Rk−1

)
Ω
( k

Rk−1

)
[4, 19, 21, 12]

R≤ k O
( k

Rk−1

)
– Ω

( k
Rk−1

)
[4, 21]

Any k ≥ 2,R≥ 16 kO(k)(logR)k/2

Rk−1 – Ω

(
logR
Rk−1

)
this paper

Figure 1: Comparison between our results and previous results. For each range of k,R, we list the previous
best hardness-of-approximation factors and the previous best approximation ratio. As mentioned earlier,
Khot and Saket’s result [19] subsumes our result for every value of k and R whereas our approximation
algorithm improves on the previously known algorithm when 3≤ k = o(logR).

When k = o(logR/ log logR), our result improves upon Chan’s result in terms of the ratio. As noted
in the Abstract, Khot and Saket [19] independently showed UG-hardness of approximation within a
factor of2 O(k2 log(kR)/Rk−1) for the problem for any k and R [19]. Furthermore, they can achieve3

NP-hardness of factor 2O(k) log(kR)/Rk−1. Both of these ratios are better than the ratio we achieve in
Theorem 1.1.

As mentioned earlier, there has also been a long line of work in approximation algorithms for
MAX k-CSPR. In the Boolean case, Trevisan first showed a polynomial-time approximation algorithm
with approximation ratio 2/2k [28]. Hast later improved the ratio to Ω(k/(2k logk)) [14]. Charikar,
Makarychev and Makarychev then came up with an Ω(k/2k)-approximation algorithm [6]. As stated
when discussing hardness of approximation of MAX k-CSP2, this approximation ratio is tight up to a
constant factor.

For the non-Boolean case, Charikar, Makarychev, and Makarychev’s algorithm achieves a ratio
of Ω(k logR/Rk) for MAX k-CSPR. Makarychev, and Makarychev later improved the approximation

2It should be noted that, if the results as stated in [19] are invoked directly, then the hardness of approximation ratio one
can get is O(k3 logR/Rk−1), which is a factor of O(k) worse than what is stated here. This is because Khot and Saket prove
the more general statement that any integrality gap for the standard LP relaxation of MAX k-CSPR can be translated into a
UG-hardness of approximation result at the loss of a factor of O(k3 logR) in the ratio. However, it is not hard to see that, when
one is only interested in hardness of approximation (and not the LP), then a factor of k here can be removed. Please refer to
Appendix B for more details regarding this.

3In [19], only UG-hardness was stated, but NP-hardness (with a worse ratio) is now possible due to the resolution of the
2-to-1 Conjecture [17]. We briefly discuss this in Section 1.1 and Appendix B.

THEORY OF COMPUTING, Volume 18 (3), 2022, pp. 1–29 3

http://dx.doi.org/10.4086/toc


PASIN MANURANGSI, PREETUM NAKKIRAN, AND LUCA TREVISAN

ratio to Ω(k/Rk−1) when k = Ω(logR) [21]. Additionally, the algorithm was extended by Goldshlager
and Moshkovitz to achieve the same approximation ratio for any k,R [12]. On this front, we show the
following result.

Theorem 1.3. There exists a polynomial-time Ω(logR/Rk−1)-approximation algorithm for MAX k-CSPR.

In comparison to the previously known algorithms, our algorithm gives a better approximation ratio
when 3≤ k = o(logR). We remark that our algorithm is just a simple extension of Kindler, Kolla and
Trevisan’s polynomial-time Ω(logR/R)-approximation algorithm for Max 2-CSPR [20].

1.1 The role of the 2-to-1 Theorem

In the conference version of this paper [22], our hardness result (Theorem 1.1) was shown conditional on
the Unique Games Conjecture (UGC) or the d-to-1 Conjecture [15]. Recent work [9, 8, 2, 17] confirmed
the imperfect completeness version of the 2-to-1 conjecture, and this breakthrough upgrades our hardness
results to NP-hardness without any additional assumptions. We have incorporated this development into
the current version.

The situation is similar for the result of Khot and Saket [19]. In their case, the 2-to-1 Theorem implies
NP-hardness of a somewhat worse inapproximability ratio than stated in their paper, but still stronger
than our bound. We briefly discuss this in Appendix B.

We emphasize that Chan’s proofs of his NP-hardness results [4] do not depend on the d-to-1 Theorem.

1.2 Summary of techniques

Our reduction from Unique Games to MAX k-CSPR follows the reduction of [16] for MAX 2-CSPs.
We construct a k-query PCP using a Unique Games “outer verifier,” and then design a k-query Long
Code test as an “inner verifier.” For simplicity, let us think of k as a constant. We essentially construct a
k-query Dictator-vs.-Quasirandom test for functions f : [R]n→ [R], with completeness Ω(1/(logR)k/2)
and soundness O(1/Rk−1). This test satisfies the following completeness and soundness conditions.

• (Completeness) If f is a dictator function, i. e., f (x) = x j for some coordinate j ∈ [n], then the test
passes with a large probability.

• (Soundness) If f is a balanced function with small low-degree influences, then the test passes with
only a small probability.

Our test is structurally similar to the 2-query “noise stability” tests of [16]: first we pick a random
z ∈ [R]n, then we pick k weakly-correlated queries x(1), . . . ,x(k) by choosing each x(i) ∈ [R]n as a noisy
copy of z, i. e., each coordinate (x(i)) j is chosen as z j with some probability ρ or uniformly at random
otherwise. We accept iff f (x(1)) = f (x(2)) = · · ·= f (x(k)). The key technical step is our analysis of the
soundness of this test. We need to show that if f is a balanced function with small low-degree influences,
then the test passes with probability O(1/Rk−1). Intuitively, we would like to say that for high enough
noise, the values f (x(i)) are roughly independent and uniform, so the test passes with probability around
1/Rk−1. To formalize this intuition, we utilize the Invariance Principle and Hypercontractivity.
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More precisely, if we let f i(x) : [R]n→ {0,1} be the indicator function for f (x) = i, then the test
accepts iff f i(x(1)) = · · ·= f i(x(k)) = 1 for some i ∈ [R]. For each i ∈ [R], this probability can be written
as the expectation of the product: E[ f i(x(1)) f i(x(2)) . . . f i(x(k))]. Since x(i)’s are chosen as noisy copies
of z, this expression is related to the k-th norm of a noisy version of f i. Thus, our problem is reduced
to bounding the k-norm of a noisy function f̃ i : [R]n→ [0,1], which has bounded one-norm E[ f̃ i] = 1/R
since f is balanced. To arrive at this bound, we first apply the Invariance Principle, which essentially
states that a low-degree low-influence function on [R]n behaves on random input similarly to its “Boolean
analogue” over domain {±1}nR. Here “Boolean analogue” refers to the function over {±1}nR with
matching Fourier coefficients.

Roughly speaking, now that we have transfered to the Boolean domain, we are left to bound the
k-norm of a noisy function on {±1}nR based on its one-norm. This follows from Hypercontractivity in
the Boolean setting, which bounds a higher norm of any noisy function on Boolean domain in terms of a
lower norm.

The description above hides several technical complications. For example, when we pass from a
function [R]n→ [0,1] to its “Boolean analogue” {±1}nR→ R, the range of the resulting function is no
longer bounded to [0,1]. This, along with the necessary degree truncation, means we must be careful
when bounding norms. Further, Hypercontractivity only allows us to pass from k-norms to (1+ ε)-norms
for small ε , so we cannot use the known 1-norm directly. For details on how we handle these issues,
see Section 3. This allows us to prove soundness of our dictator test without passing through results on
Gaussian space, as was done to prove the “Majority is Stablest” conjecture [24] at the core of the [16]
2-query dictator test.

Combining the above test with a standard reduction from Unique Games [16] would immediately
give a UG-hardness result. However, we can get NP-hardness because it suffices for us to use Unique
Games with completeness 1/2 from [8, 17]. This concludes the overview of our proof of Theorem 1.1.

Lastly, for our approximation algorithm, we simply extend Kindler, Kolla and Trevisan’s algorithm
by first creating an instance of MAX 2-CSPR from MAX k-CSPR by projecting each constraint to all
possible subsets of two variables. We then use their algorithm to approximate the instance. Finally, we
set our assignment to be the same as that from the KKT algorithm with some probability. Otherwise,
we pick the assignment uniformly at random from [R]. As we shall show in Section 4, with the right
probability, this technique can extend not only the KKT algorithm but any algorithm for MAX k′-CSPR to
an algorithm for MAX k-CSPR where k > k′ with some loss in the advantage over the naive randomized
algorithm.

1.3 Organization of the paper

In Section 2, we define notation and list background knowledge that will be used throughout the paper.
Next, we prove our hardness of approximation result (Theorem 1.1) in Section 3. In Section 4, we show
how to extend Kindler et al.’s algorithm to MAX k-CSPR and prove Theorem 1.3. Finally, in Section 5,
we discuss interesting open questions and directions for future research.
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2 Preliminaries

In this section, we introduce notation and list prior results that will be used to prove our results.
Throughout the paper, we use log to denote the logarithm to base 2.

2.1 MAX k-CSPR

We start by giving a formal definition of MAX k-CSPR, which is the main focus of our paper.

Definition 2.1 (MAX k-CSPR). An instance (X,C) of (weighted) MAX k-CSPR consists of

• A set X of variables.

• A set C = {C1, . . . ,Cm} of constraints. Each constraint Ci is a triple (Wi,Si,Pi) of a positive
weight Wi > 0 such that ∑

m
i=1Wi = 1, a subset of variables Si ⊆ X of size k, and a constraint

Pi : [R]Si → {0,1} that maps each assignment to variables in Si to {0,1}. Here we use [R]Si to
denote the set of all functions from Si to [R], i. e., [R]Si = {ψ : Si→ [R]}.

For each assignment of variables ϕ : X→ [R], we define its value to be the total weights of the constraints
satisfied by this assignment, i. e., ∑

m
i=1WiPi(ϕ |Si). The goal is to find an assignment ϕ : X→ [R] with

maximum value. We sometimes call the optimum the value of (X,C).

Note that, while some definition of MAX k-CSPR refers to the unweighted version where W1 = · · ·=
Wm = 1/m, Crescenzi, Silvestri and Trevisan showed that the approximability of these two cases are
essentially the same [7].4 Hence, it is enough for us to consider just the weight version.

Throughout the analysis, we assume that R ≥ 16 and k ≥ 2. This is without loss of generality, as
otherwise our claimed inapproximability (Theorem 1.1) is trivial.

2.2 Unique Games

In this subsection, we give formal definitions for unique games, d-to-1 games and Khot’s conjectures
about them. First, we give a formal definition of unique games.

Definition 2.2 (Unique Game). A unique game (V,W,E,n,{πe}e∈E) consists of

• A bipartite graph G = (V,W,E) which is regular5 on the V side.

• Alphabet size n.

• For each edge e ∈ E, a permutation πe : [n]→ [n].

For an assignment ϕ : V ∪W → [n], an edge e = (v,w) is satisfied if πe(ϕ(v)) = ϕ(w). The goal is to
find an assignment that satisfies as many edges as possible. We define the value of an instance to be the
fraction of edges satisfied in the optimum solution.

4More specifically, they proved that, if the weighted version is NP-hard to approximate to within ratio r, then the unweighted
version is also NP-hard to approximate to within r−on(1) where on(1) represents a function such that on(1)→ 0 as n→ ∞.

5The regularity can be assumed without loss of generality; see, for instance, Lemma 3.4 in [18].
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The Unique Games Conjecture (UGC), proposed in Khot’s seminal paper [15], states that, for any
sufficiently small η ,γ > 0, it is NP-hard to distinguish a unique game where at least a 1−η fraction of
constraints can be satisfied from a unique game where at most a γ fraction of constraints can be satisfied.
While the UGC itself remains a major open question, recent breakthrough work [9, 8, 2, 17] has shown
NP-hardness of Unique Games when the completeness is arbitrarily close to 1/2, as stated formally below.

Theorem 2.3 ([8, 17]). For any γ > 0 and any ζ ∈ (γ,1/2), there exists a constant n such that it is
NP-hard to distinguish a unique game with alphabet size n of value at least ζ from one of value at most γ .

2.3 Fourier expansion

For any function g : [q]n→ R over a finite alphabet [q], we define the Fourier expansion of g as follows.
Consider the space of all functions [q]→ R, with the inner-product 〈u,v〉 := Ex∈[q][u(x)v(x)], where

the expectation is over a uniform x ∈ [q]. Pick an orthonormal basis l1, . . . , lq for this space li : Σ→ R,
such that l1 is the constant function 1. We can now write g in the tensor-product basis, as

g(x1,x2, . . . ,xn) = ∑
s∈[q]n

ĝ(s) ·
n

∏
i=1

ls(i)(xi).

Since we pick l1(x) = 1 for all x ∈ [q], we also have Ex∈[q][li(x)] = 〈li, l1〉= 0 for every i 6= 1.
Throughout, we use ĝ to refer to the Fourier coefficients of a function g.
For functions g : [q]n→ R, the p-norm is defined as

||g||p = E
x∈[q]n

[|g(x)|p]1/p.

In particular, the squared 2-norm is

||g||22 = E
x∈[q]n

[g(x)2] = ∑
s∈[q]n

ĝ(s)2.

2.3.1 Noise operators

For x∈ [q]n, let y
ρ← x denote that y is a ρ-correlated copy of x. That is, each coordinate yi is independently

chosen to be equal to xi with probability ρ , or chosen uniformly at random otherwise.
Define the noise operator Tρ acting on any function g : [q]n→ R as

(Tρg)(x) = E
y

ρ←x
[g(y)].

Notice that the noise operator Tρ acts on the Fourier coefficients on this basis as follows.

f (x) = Tρg(x) = ∑
s∈[q]n

ĝ(s) ·ρ |s| ·
n

∏
i=1

ls(i)(xi)

where |s| is defined as |{i | s(i) 6= 1}|.
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2.3.2 Degree truncation

For any function g : [q]n→ R, let g≤d denote the (≤ d)-degree part of g, i. e.,

g≤d(x) = ∑
s∈[q]n,|s|≤d

ĝ(s) ·
n

∏
i=1

ls(i)(xi),

and similarly let g>d : [q]n→ R denote the (> d)-degree part of g, i. e.,

g>d(x) = ∑
s∈[q]n,|s|>d

ĝ(s) ·
n

∏
i=1

ls(i)(xi).

Notice that degree-truncation commutes with the noise-operator, so writing Tρg≤d is unambiguous.
Also, notice that truncating does not increase 2-norm:

||g≤d ||22 = ∑
s∈[q]n,|s|≤d

ĝ(s)2 ≤ ∑
s∈[q]n

ĝ(s)2 = ||g||22.

We frequently use the fact that noisy functions have small high-degree contributions. That is, for any
function g : [q]n→ [0,1], we have

||Tρg>d ||22 = ∑
s∈[q]n,|s|>d

ρ
2|s|ĝ(s)2 ≤ ρ

2d
∑

s∈[q]n
ĝ(s)2 = ρ

2d ||g||22 ≤ ρ
2d .

2.3.3 Influences

For any function g : [q]n→ R, the influence of coordinate i ∈ [n] is defined as

Infi[g] = E
x∈[q]n

[Varxi∈[q][g(x) | {x j} j 6=i]].

This can be expressed in terms of the Fourier coefficients of g as follows:

Infi[g] = ∑
s∈[q]n: s(i)6=1

ĝ(s)2.

Further, the degree-d influences are defined as

Inf≤d
i [g] = Infi[g≤d ] = ∑

s∈[q]n:
|s|≤d, s(i)6=1

ĝ(s)2.

2.3.4 Binary functions

The previous discussion of Fourier analysis can be applied to Boolean functions, by specializing to
q = 2. However, in this case the Fourier expansion can be written in a more convenient form. Let
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G : {+1,−1}n → R be a Boolean function over n bits. We can choose orthonormal basis functions
l1(y) = 1 and l2(y) = y, so G can be written as

G(y) = ∑
S⊆[n]

Ĝ(S)∏
i∈S

yi

for some coefficients Ĝ(S).
Degree-truncation then results in

G≤d(y) = ∑
S⊆[n]:|S|≤d

Ĝ(S)∏
i∈S

yi,

and the noise-operator acts as follows:

TρG(y) = ∑
S⊆[n]

Ĝ(S)ρ |S|∏
i∈S

yi.

2.3.5 Boolean analogues

To analyze k-CSPR, we will want to translate between functions over [R]n to functions over {±1}nR. The
following notion of Boolean analogues will be useful.

For any function g : [R]n→ R with Fourier coefficients ĝ(s), define the Boolean analogue of g to be a
function {g} : {±1}n×R→ R such that

{g}(z) = ∑
s∈[R]n

ĝ(s) · ∏
i∈[n],s(i)6=1

zi,s(i).

Note that
||g||22 = ∑

s∈[R]n
ĝ(s)2 = ||{g}||22,

and that
{g≤d}= {g}≤d .

Moreover, the noise operator acts nicely on {g} as follows:

Tρ{g}= {Tρg}.

For simplicity, we use Tρ to refer to both Boolean and non-Boolean noise operators with correlation ρ .

2.4 Invariance Principle and Mollification Lemma

We start with the Invariance Principle in the form of Theorem 3.18 in [24]:

Theorem 2.4 (General Invariance Principle [24]). Let f : [R]n→ R be any function such that Var[ f ]≤ 1,
Infi[ f ] ≤ δ for all i ∈ [n], and deg( f ) ≤ d. Let F : {±1}nR → R be its Boolean analogue: F = { f}.
Consider any “test-function” ψ : R→ R that is C3, with bounded 3rd-derivative |ψ ′′′| ≤C everywhere.
Then, ∣∣∣∣∣ E

y∈{±1}nR
[ψ(F(y))]− E

x∈[R]n
[ψ( f (x))]

∣∣∣∣∣≤C10dRd/2
√

δ .
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Note that the above version follows directly from Theorem 3.18 and Hypothesis 3 of [24], and the
fact that uniform ±1 bits are (2,3,1/

√
2)-hypercontractive as described in [24].

As we shall see later, we will want to apply the Invariance Principle for some functions ψ that are not
in C3. However, these functions will be Lipschitz-continuous with some constant c ∈R (or “c-Lipschitz”),
meaning that

|ψ(x+∆)−ψ(x)| ≤ c|∆| for all x,∆ ∈ R.

Therefore, similarly to Lemma 3.21 in [24], we can “smooth” it to get a function ψ̃ that is C3, and has
arbitrarily small pointwise difference to ψ .

Lemma 2.5 (Mollification Lemma [24]). Let ψ : R→R be any c-Lipschitz function. Then for any ζ > 0,
there exists a function ψ̃ : R→ R such that

• ψ̃ ∈ C3,

• ||ψ̃−ψ||∞ ≤ ζ , and,

• ||ψ̃ ′′′||∞ ≤ C̃c3/ζ 2.

Here C̃ is a universal constant, not depending on ζ ,c.

For completeness, the full proof of the lemma can be found in Section A.1.
Now we state the following version of the Invariance Principle, which will be more convenient to

invoke. It can be proved simply by just combining Theorem 2.4 and Lemma 2.5. We give a full proof in
Section A.2.

Lemma 2.6 (Invariance Principle). Let ψ : R→ R be one of the following functions:

1. ψ1(t) := |t|,

2. ψk(t) :=


tk if t ∈ [0,1],
0 if t < 0,
1 if t ≥ 1.

Let f : [R]n → [0,1] be any function with all Inf≤d
i [ f ] ≤ δ . Let F : {±1}nR → R be its Boolean

analogue: F = { f}. Let f≤d : [R]n → R denote f truncated to degree d, and similarly for F≤d :
{±1}nR→ R.

Then, for parameters d = 10k logR and δ = 1/(R10+100k log(R)), we have∣∣∣∣∣ E
y∈{±1}nR

[ψ(F≤d(y))]− E
x∈[R]n

[ψ( f≤d(x))]

∣∣∣∣∣≤ O(1/Rk).
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2.5 Hypercontractivity Theorem

Another crucial ingredient in our proof is the Hypercontractivity Theorem (Bonami [3]), which says that,
on the {±1}n domain, the operator Tρ smooths any function so well that the higher norm can be bounded
by the lower norm of the original (unsmoothed) function. Here we use the version of the theorem as
stated in [25, Chap. 9].

Theorem 2.7 (Hypercontractivity Theorem (Bonami)). Let 1≤ p≤ q≤ ∞. For any ρ ≤
√

p−1
q−1 and for

any function h : {±1}n→ R, the following inequality holds:

||Tρh||q ≤ ||h||p.

In particular, for choice of parameter ρ = 1/
√
(k−1) logR, we have

||T2ρh||k ≤ ||h||1+ε . (2.1)

where ε = 4/ log(R).

3 Inapproximability of MAX k-CSPR

In this section, we prove Theorem 1.1. Our proof will be presented in Section 3.3. Before that, we first
prove an inequality that is the heart of our soundness analysis in Section 3.2.

3.1 Parameters

We use the following parameters throughout, which we list for convenience here:

• Correlation6: ρ = 1/
√

(k−1) logR

• Degree: d = 10k logR

• Low-degree influences: δ = 1/(R10+100k log(R))

3.2 Hypercontractivity for noisy low-influence functions

Here we show a version of hypercontractivity for noisy low-influence functions over large domains.
Although hypercontractivity does not hold in general for noisy functions over large domains, it turns
out to hold in our setting of high-noise and low-influences. The main technical idea is to use the
Invariance Principle to reduce functions over larger domains to Boolean functions, then apply Boolean
hypercontractivity.

6Note that for k = 2, this correlation yields a stability of ≈ 1/R for the plurality. That is, Prz,x,y[plur(x1, . . . ,xn) =
plur(y1, . . . ,yn)]≈ 1/R where each zi ∈ [R] is iid uniform, and xi,yi are ρ-correlated copies of zi.
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Lemma 3.1 (Main Lemma). Let g : [R]n→ [0,1] be any function with Ex∈[R]n [g(x)] = 1/R. Then, for our
choice of parameters ρ,d,δ : If Inf≤d

i [g]≤ δ for all i, then

E
x∈[R]n

[(Tρg(x))k]≤ 2O(k)/Rk.

Before presenting the full proof, we outline the high-level steps below. Let f = Tρg, and define
Boolean analogues G = {g}, and F = { f}. Let ψk : R→ R be defined as in Lemma 2.6. Then,

E
x∈[R]n

[ f (x)k]≈ E[ψk( f≤d(x))] (3.1)

≈ E
y∈{±1}nR

[ψk(F≤d(y))] (Lemma 2.6: Invariance Principle) (3.2)

≤ ||F≤d ||kk (Definition of ψk)

= ||TρG≤d ||kk (Definition of F)

= ||T2ρT1/2G≤d ||kk
≤ ||T1/2G≤d ||k1+ε (Hypercontractivity, for small ε) (3.3)

≈ 2O(k)||g||k1 (Invariance, etc.)

= 2O(k)/Rk. (Since E[|g|] = 1/R)

Proof of Lemma 3.1. To establish equation (3.1), first notice that

ψk( f (x)) = ψk( f≤d(x)+ f>d(x))≤ ψk( f≤d(x))+ k| f>d(x)|

where the last inequality is because the function ψk is k-Lipschitz.
Moreover, since g(x) ∈ [0,1], we have f (x) ∈ [0,1], so

f (x)k = ψk( f (x)).

Thus,

E[ f (x)k] = E[ψk( f (x))]

≤ E[ψk( f≤d(x))]+ kE[| f>d(x)|]
= E[ψk( f≤d(x))]+ k|| f>d ||1
≤ E[ψk( f≤d(x))]+ k|| f>d ||2.

And we can bound the 2-norm of f>d , since f is noisy, we have

|| f>d ||22 = ||Tρg>d ||22 ≤ ρ
2d ≤ O(1/R2k).

The last inequality comes from our choice of ρ and d.
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So equation (3.1) is established:

E[ f (x)k]≤ E[ψk( f≤d(x))]+O(k/Rk).

Equation (3.2) follows directly from our version of the Invariance Principle (Lemma 2.6), for the
function ψk:

E
x∈[R]n

[ψk( f≤d(x))]≤ E
y∈{±1}nR

[ψk(F≤d(y))]+O(1/Rk).

We can now rewrite Ey∈{±1}nR [ψk(F≤d(y))] as

E
y∈{±1}nR

[ψk(F≤d(y))]≤ E
y∈{±1}nR

[|F≤d(y)|k]

= ||F≤d ||kk
= ||TρG≤d ||kk
= ||T2ρT1/2G≤d ||kk.

Now, from the Hypercontractivity Theorem, equation (2.1), we have

||T2ρT1/2G≤d ||k ≤ ||T1/2G≤d ||1+ε

for ε = 4/ logR. This establishes equation (3.3):

||T2ρT1/2G≤d ||kk ≤ ||T1/2G≤d ||k1+ε = E[|T1/2G≤d(y)|1+ε ]k/(1+ε).

To show the remaining steps, we will apply the Invariance Principle once more. Notice that, since
ε ≤ 1, for all t ∈ R : |t|1+ε ≤ |t|+ t2. Hence, we can derive the following bound:

E[|T1/2G≤d(y)|1+ε ]≤ E[|T1/2G≤d(y)|]+E[(T1/2G≤d(y))2]

(Matching Fourier expansion) = E[|T1/2G≤d(y)|]+E[(T1/2g≤d(x))2]

(Lemma 2.6, Invariance Principle) ≤ E[|T1/2g≤d(x)|]+E[(T1/2g≤d(x))2]+O(1/Rk). (3.4)

Here we applied our Invariance Principle (Lemma 2.6) for the function ψ1 as defined in Lemma 2.6. We
will bound each of the expectations on the RHS, using the fact that g is balanced, and T1/2g is noisy.

First,

E[|T1/2g≤d(x)|] = E[|T1/2g(x)−T1/2g>d(x)|]
≤ E[|T1/2g(x)|]+E[|T1/2g>d(x)|] (Triangle Inequality)

= ||g||1 + ||T1/2g>d ||1
≤ ||g||1 + ||T1/2g>d ||2
≤ 1/R+(1/2)d

= O(1/R). (By our choice of d)
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Second,

E[(T1/2g≤d(x))2] = ∑
s∈[R]n,|s|≤d

(1/2)2|s|ĝ(s)2

≤ ∑
s∈[R]n

(1/2)2|s|ĝ(s)2

= E[(T1/2g(x))2]

≤ E[T1/2g(x)] (Since g ∈ [0,1])

= E[g(x)] = 1/R.

Finally, plugging these bounds into equation (3.4), we find:

||T1/2G≤d ||k1+ε = E[|T1/2G≤d(y)|1+ε ]k/(1+ε)

≤ (O(1/R))k/(1+ε)

= 2O(k)/Rk/(1+ε)

≤ 2O(k)/Rk(1−ε)

= 2O(k)/Rk. (Recall ε = 4/ logR)

This completes the proof of the main lemma.

3.3 Reducing Unique Games to MAX k-CSPR

Here we reduce Unique Games to MAX k-CSPR. We will construct a PCP verifier that reads k symbols
of the proof (with an alphabet of size R) with the following properties:

• (Completeness) If the unique game has value at least ζ , then the verifier accepts an honest proof
with probability at least c = ζ k/((logR)k/2kO(k)).

• (Soundness) If the unique game has value at most γ = 2O(k)δ 2/(8dRk), then the verifier accepts
any (potentially cheating) proof with probability at most s = 2O(k)/Rk−1.

Since each symbol in the proof can be viewed as a variable and each accepting constraint of the
verifier can be viewed as a constraint of MAX k-CSPR, from Theorem 2.3, this PCP implies NP-
hardness of approximating MAX k-CSPR of factor s/c = kO(k)(logR)k/2/Rk−1 and, hence, establishes
our Theorem 1.1.

3.3.1 The PCP

Given a unique game (V,W,E,n,{πe}e∈E), the proof is the truth-table of a function hw : [R]n→ [R] for
each vertex w ∈W . By folding, we can assume hw is balanced, i. e., hw takes on all elements of its range
with equal probability: Prx∈[R]n [hw(x) = i] = 1/R for all i ∈ [R]. 7

7More precisely, if the truth-table provided is of some function h̃w : [R]n → [R], we define the “folded” function hw as
hw(x1,x2,x3, . . .xn) := h̃w(0,x2− x1, . . . ,xn− x1)+ x1, where the ± is over mod R. Notice that the folded hw is balanced, and
also that folding does not affect dictator functions. Thus we define our PCP in terms of hw, but simulate queries to hw using the
actual proof h̃w.
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Notationally, for x ∈ [R]n, let (x◦π) denote permuting the coordinates of x as: (x◦π)i = xπ(i). Also,
for an edge e = (v,w), we write πe = πv,w, and define πw,v = π−1

v,w .
The verifier picks a uniformly random vertex v∈V , and k independent uniformly random neighbors of

v: w1,w2, . . . ,wk ∈W . Then pick z ∈ [R]n uniformly at random, and let x(1),x(2), . . . ,x(k) be independent
ρ-correlated noisy copies of z (each coordinate xi chosen as equal to zi w.p. ρ , or uniformly at random
otherwise). The verifier accepts if and only if

hw1(x
(1) ◦πw1,v) = hw2(x

(2) ◦πw2,v) = · · ·= hwk(x
(k) ◦πwk,v).

To achieve the desired hardness result, we pick ρ = 1/
√
(k−1) logR.

3.3.2 Completeness analysis

Let the degree of each vertex in V be ∆.
Suppose that the original unique game has an assignment of value at least ζ . Let us call this assignment

ϕ . The honest proof defines hw at each vertex w ∈W as the long code encoding of this assignment, i. e.,
hw(x) = xϕ(w). We can written the verifier acceptance condition as follows:

The verifier accepts⇔ hw1(x
(1) ◦πw1,v) = · · ·= hwk(x

(k) ◦πwk,v)

⇔ (x(1) ◦πw1,v)ϕ(w1) = · · ·= (x(k) ◦πwk,v)ϕ(wk)

⇔ (x(1))πw1 ,v(ϕ(w1)) = · · ·= (x(k))πwk ,v(ϕ(wk)).

Observe that, if the edges (v,w1), . . . ,(v,wk) are satisfied by ϕ , then πw1,v(ϕ(w1)) = · · · =
πwk,v(ϕ(wk)) = ϕ(v). Hence, if the aforementioned edges are satisfied and x(1), . . . ,x(k) are not per-
turbed at coordinate ϕ(v), then (x(1))πw1 ,v(ϕ(w1)) = · · ·= (x(k))πwk ,v(ϕ(wk)).

For each u ∈V , let su be the number of satisfied edges touching u. Since w1, . . . ,wk are chosen from
the neighbors of v independently from each other, the probability that the edges (v,w1),(v,w2), . . . ,(v,wk)
are satisfied can be bounded as follows:

Pr
v,w1,...,wk

[(v,w1), . . . ,(v,wk) are satisfied]

= ∑
u∈V

Pr
w1,...,wk

[(v,w1), . . . ,(v,wk) are satisfied | v = u]Pr[v = u]

= ∑
u∈V

(su/∆)k Pr[v = u]

= E
u∈V

[
(su/∆)k

]
≥ E

u∈V
[su/∆]k .

Notice that Eu∈V [su/∆] is exactly the value of ϕ , which is at least ζ . As a result,

Pr
v,w1,...,wk

[(v,w1), . . . ,(v,wk) are satisfied]≥ ζ
k.

Furthermore, it is obvious that the probability that x1, . . . ,xk are not perturbed at the coordinate ϕ(v)
is ρk. As a result, the PCP accepts with probability at least ζ kρk. When ρ = 1/

√
(k−1) logR and ζ is a

constant not depending on k and R, the completeness is 1/((logR)k/2kO(k)).
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3.3.3 Soundness analysis

Suppose that the unique game has value at most γ = 2O(k)δ 2/(4dRk). We will show that the soundness is
2O(k)/Rk−1.

Suppose for the sake of contradiction that the probability that the verifier accepts Pr[accept]> t =
2Ω(k)/Rk−1 where Ω(·) hides some large enough constant.

Let hi
w(x) : [R]n → {0,1} be the indicator function for hw(x) = i and let x

ρ← z denote that x is a
ρ-correlated copy of z. We have

Pr[accept] = Pr[hw1(x
(1) ◦πw1,v) = · · ·= hwk(x

(k) ◦πwk,v)]

= ∑
i∈[R]

Pr[i = hw1(x
(1) ◦πw1,v) = · · ·= hwk(x

(k) ◦πwk,v)]

= ∑
i∈[R]

E[hi
w1
(x(1) ◦πw1,v) · · ·hi

wk
(x(k) ◦πwk,v)]

= ∑
i∈[R]

E
[
E
w1
[hi

w1
(x(1) ◦πw1,v)] · · ·Ewk

[hi
wk
(x(k) ◦πwk,v)]

]
.

Where the last equality follows since the wi’s are independent, given v.
Now define gi

v : [R]n→ [0,1] as

gi
v(x) = E

w∼v
[hi

w(x◦πw,v)]

where w∼ v denotes neighbors w of v.
We can rewrite Pr[accept] as follows:

Pr[accept] = ∑
i∈[R]

E[gi
v(x

(1))gi
v(x

(2)) · · ·gi
v(x

(k))]

= ∑
i∈[R]

E

[
E

x
ρ←z
[gi

v(x)]
k

]
(Since x( j)’s are independent given z)

= ∑
i∈[R]

E
v,z
[(Tρgi

v(z))
k]

= E
v

[
∑

i∈[R]
E
z
[(Tρgi

v(z))
k]

]
. (3.5)

Next, notice that ∑i∈[R]Ez[(Tρgi
v(z))

k] is simply the probability the verifier accepts given it picks
vertex v, and thus this sum is bounded above by 1.

Therefore, since Pr[accept]> t, by equation (3.5), at least t/2 fraction of vertices v ∈V have

∑
i∈[R]

E
z
[(Tρgi

v(z))
k]≥ t/2.

For these “good” vertices, there must exist some i ∈ [R] for which

E
z
[(Tρgi

v(z))
k]≥ t/(2R).
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Then for “good” v and i as above,

E
z
[(Tρgi

v(z))
k]> 2Ω(k)/Rk.

By Lemma 3.1 (Main Lemma), this means gi
v has some coordinate j for which

Inf≤d
j [gi

v]> δ

for our choice of d,δ as defined in Section 3.1. Pick this j as the label of vertex v ∈V .

Now to pick the label of a vertex w ∈W , define the candidate labels as

Cand[w] = { j ∈ [n] : ∃ i ∈ [R] s.t. Inf≤d
j [hi

w]≥ δ/2}.

Notice that

∑
j∈[n]

Inf≤d
j [hi

w] = ∑
s∈[R]n: |s|≤d

|s|ĥi
w(s)

2 ≤ d ∑
s:|s|>0

ĥi
w(s)

2 = d Var[hi
w]≤ d.

So for each i ∈ [R], the projection hi
w can have at most 2d/δ coordinates with influence ≥ δ/2.

Therefore the number of candidate labels is bounded:

|Cand[w]| ≤ 2dR/δ .

Now we argue that picking a random label in Cand[w] for w ∈W is in expectation a good decoding.
We will show that if we assigned label j to a “good” v ∈V , then πv,w( j) ∈ Cand[w] for a constant fraction
of neighbors w∼ v. Note here that πv,w = π−1

w,v .

First, since gi
v(x) = Ew∼v[hi

w(x◦πw,v)], the Fourier transform of gi
v is related to the Fourier transform

of the long code labels hi
w as

ĝi
v(s) = E

w∼v
[ĥi

w(s◦πw,v)].

Hence, the influence Inf≤k
j [gi

v] of gi
v being large implies the expected influence In f≤d

π
−1
v,w( j)

[hi
w] of its

neighbor labels w∼ v is also large as formalized below.
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δ < Inf≤k
j [gi

v] = ∑
s∈[R]n
|s|≤k,s j 6=1

ĝi
v(s)

2

= ∑ E
w∼v

[ĥi
w(s◦πw,v)]

2

≤∑ E
w∼v

[ĥi
w(s◦πw,v)

2]

= E
w∼v

[ ∑
s∈[R]n
|s|≤k,s j 6=1

ĥi
w(s◦πw,v)

2]

= E
w∼v

[ ∑
s∈[R]n

|s|≤k,s
π
−1
w,v ( j)

6=1

ĥi
w(s)

2]

(Since πv,w = π
−1
w,v) = E

w∼v
[ ∑

s∈[R]n
|s|≤k,sπv,w( j) 6=1

ĥi
w(s)

2]

= E
w∼v

[In f≤d
πv,w( j)[h

i
w]]

Therefore, at least δ/2 fraction of neighbors w∼ v must have In f≤d
πv,w( j)[h

i
w]≥ δ/2, and so πv,w( j) ∈

Cand[w] for at least δ/2 fraction of neighbors of “good” vertices v.
Finally, recall that at least (t/2) fraction of vertices v ∈V are “good”. These vertices have at least

(δ/2) fraction of neighbors w ∈W with high-influence labels and the matching label w ∈W is picked
with probability at least δ/(2dR). Moreover, as stated earlier, we can assume that the graph is regular on
V side. Hence, the expected fraction of edges satisfied by this decoding is at least

(t/2)(δ/2)(δ/2dR) = tδ 2/(8dR) = 2Ω(k)
δ

2/(8dRk)> γ,

which contradicts our assumption that the unique game has value at most γ . Hence, we can conclude that
the soundness is at most 2O(k)/Rk−1 as desired.

4 Ω(logR/Rk−1)-approximation algorithm for MAX k-CSPR

Instead of just extending the KKT algorithm to work with MAX k-CSPs, we will show a more general
statement that any algorithm that approximates MAX CSPs with small arity can be extended to approxi-
mate MAX CSPs with larger arities. In particular, we show how to extend any f (R)/Rk′-approximation
algorithm for MAX k′-CSPR to an ( f (R)/2O(min{k′,k−k′}))/Rk-approximation algorithm for MAX k-CSPR

where k > k′.
Since the naive algorithm that assigns every variable randomly has an approximation ratio of 1/Rk,

we think of f (R) as the advantage of algorithm A over the randomized algorithm. From this perspective,
our extension lemma preserves the advantage up to a factor of 1/2O(min{k′,k−k′}).

The extension lemma and its proof are stated formally below.
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Lemma 4.1. Suppose that there exists a polynomial-time approximation algorithm A for MAX k′-CSPR

that outputs an assignment with expected value at least f (R)/Rk′ times the optimum. For any k > k′, we
can construct a polynomial-time approximation algorithm B for MAX k-CSPR that outputs an assignment
with expected value at least ( f (R)/2O(min{k′,k−k′}))/Rk times the optimum.

Proof. The main idea of the proof is simple. We turn an instance of MAX k-CSPR to an instance of MAX

k′-CSPR by constructing
( k

k′
)
Rk−k′ new constraints for each original constraint; each new constraint is a

projection of the original constraint to a subset of variables of size k′. We then use A to solve the newly
constructed instance. Finally, B simply assigns each variable with the assignment from A with a certain
probability and assigns it randomly otherwise.

For convenience, let α be k−k′
k . We define B on input (X,C) as follows:

1. Create an instance (X,C′) of MAX k′-CSPR with the same variables and, for each C = (W,S,P)∈ C
and for every subset S′ of S with |S′|= k′ and every τ ∈ [R]S−S′ , create a constraint CS′,τ =(W ′,S′,P′)
in C′ where W ′ = W

( k
k′)Rk−k′ and P′ : [R]S

′ →{0,1} is defined by

P′(ψ) = P(ψ ◦ τ).

Here ψ ◦ τ is defined as follows:

ψ ◦ τ(x) =

{
ψ(x) if x ∈ S′,
τ(x) otherwise.

2. Run A on input (X,C′). Denote the output of A by ϕA.

3. For each x ∈ X, with probability α , pick ϕB(x) randomly from [R]. Otherwise, let ϕB(x) be ϕA(x).

4. Output ϕB.

We now show that ϕB has expected value at least ( f (R)/2O(min{k′,k−k′}))/Rk times the optimum.
First, observe that the optimum of (X,C′) is at least 1/Rk−k′ times that of (X,C). To see that this is

true, consider any assignment ϕ : X→ [R] and any constraint C = (W,S,P). Its weighted contribution in
(X,C) is WP(ϕ|S). On the other hand, W

( k
k′)Rk−k′ P(ϕ|S) appears

( k
k′
)

times in (X,C′), once for each subset

S′ ⊆ S of size k′. Hence, the value of ϕ with respect to (X,C′) is at least 1/Rk−k′ times its value with
respect to (X,C).

Recall that the algorithm A gives an assignment of expected value at least f (R)/Rk′ times the optimum
of (X,C′). Hence, the expected value of ϕA is at least f (R)/Rk times the optimum of (X,C).

Next, we will compute the expected value of ϕB (with respect to (X,C)). We start by computing the
expected value of ϕB with respect to a fixed constraint C = (W,S,P) ∈ C, i. e., EϕB [WP(ϕB|S)]. For each
S′ ⊆ S of size k′, we define DS′ as the event where, in Step 3, ϕB(x) is assigned to be ϕA(x) for all x ∈ S′

and ϕB(x) is assigned randomly for all x ∈ S−S′.
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Since DS′ is disjoint for all S′ ⊆ S of size k′, we have the following inequality.

E
ϕB
[WP(ϕB|S)]≥ ∑

S′⊆S
|S′ |=k′

Pr[DS′ ]E
ϕB
[WP(ϕB|S) | DS′ ]

= α
k−k′(1−α)k′

∑
S′⊆S
|S′ |=k′

W E
ϕB
[P(ϕB|S) | DS′ ],

where the equality follows from Pr[DS′ ] = αk−k′(1−α)k′ .
Moreover, since every vertex in S−S′ is randomly assigned when DS′ occurs, E[P(ϕB|S) |DS′ ] can be

view as the average value of P((ϕA|S′)◦ τ) over all τ ∈ [R]S−S′ . Hence, we can derive the following:

E
ϕB
[P(ϕB|S) | DS′ ] =

1
Rk−k′ E

ϕA

 ∑
τ∈[R]S−S′

P((ϕA|S′)◦ τ)

 .
As a result, we have

E
ϕB
[WP(ϕB|S)]≥

αk−k′(1−α)k′

Rk−k′

E
ϕA

 ∑
S′⊆S
|S′ |=k′

∑
τ∈[R]S−S′

WP((ϕA|S′)◦ τ)


 . (4.1)

By summing equation (4.1) over all constraints C ∈ C, we arrive at the following inequality.

E
ϕB

[
∑

C=(W,S,P)∈C
WP(ϕB|S)

]

≥ αk−k′(1−α)k′

Rk−k′ E
ϕA

 ∑
C=(W,S,P)∈C

 ∑
S′⊆S
|S′ |=k′

∑
τ∈[R]S−S′

WP((ϕA|S′)◦ τ)




=

(
k
k′

)
α

k−k′(1−α)k′ E
ϕA

 ∑
C=(W,S,P)∈C

 ∑
S′⊆S
|S′ |=k′

∑
τ∈[R]S−S′

W( k
k′
)
Rk−k′

P((ϕA|S′)◦ τ)




=

(
k
k′

)
α

k−k′(1−α)k′ E
ϕA

[
∑

C′=(W ′,S′,P′)∈C
W ′P′(ϕA|S′)

]

The first expression is the expected value of ϕB whereas the last is
( k

k′
)
αk−k′(1−α)k′ times the

expected value of ϕA. Since the expected value of ϕA is at least f (R)/Rk times the optimum of (X,C),
the expected value of ϕB is at least (

( k
k′
)
αk−k′(1−α)k′)( f (R)/Rk) times the optimum of (X,C).

Finally, we substitute α = k−k′
k in to get(

k
k′

)
α

k−k′(1−α)k′ =

(
k
k′

)(
k− k′

k

)k−k′(k′

k

)k′

.
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Let l = min{k′,k− k′}. We then have

(
k
k′

)(
k− k′

k

)k−k′(k′

k

)k′

=

(
k
l

)(
k− l

k

)k−l( l
k

)l

≥
(

k
l

)l(k− l
k

)k−l( l
k

)l

≥
(

k− l
k

)k

=
(
(1− l/k)0.5k/l

)2l

≥ 1/22l,

where the last inequality follows from Bernoulli’s inequality and from l ≤ 0.5k.
Hence, ϕB has expected value at least ( f (R)/2O(l))/Rk times the optimum of (X,C), which completes

the proof of this lemma.

Finally, Theorem 1.3 is an immediate consequence of applying Lemma 4.1 to the algorithm from [20]
with k′ = 2 and f (R) = Ω(R logR).

5 Conclusion and open question

In this article we provide a hardness result and an approximation algorithm for MAX k-CSPR. The
former is subsumed by independent work of Khot and Saket [19] whereas the latter remains the best
known algorithm in the regime 3 ≤ k < o(logR). Even with our results, current inapproximability
results do not match the best known approximation ratio achievable in polynomial time when 3≤ k < R.
Hence, it is intriguing to ask what the right ratio that MAX k-CSPR becomes NP-hard to approximate is.
Since Khot and Saket’s hardness factor O(k2 log(kR)/Rk−1) [19] does not match Chan’s hardness factor
O(k/Rk−2) [4] when k = R, it is plausible that there is a k between 3 and R−1 such that a drastic change
in the hardness factor, and the proof technique, occurs.

A Proofs of preliminary results

For completeness, we prove some of the preliminary results, whose formal proofs were not found in the
literature by the authors.

A.1 Mollification Lemma

Below is the proof of the Mollification Lemma. We remark that, while its main idea is explained in [25],
the full proof is not shown there. Hence, we provide the proof here for completeness.
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Proof. (of Lemma 2.5) Let p : R→ R be a C4 function supported only on [−1,+1], such that p(y) forms
a probability distribution. (For example, an appropriately normalized version of e−1/(1+y2) for |y| ≤ 1).
Define pλ (y) to be rescaled to have support [−λ ,+λ ] for some λ > 0:

pλ (y) := (1/λ )p(y/λ ).

Let Yλ be a random variable with distribution pλ (y), supported on [−λ ,+λ ]. We will set λ = ζ/c.
Now, define

ψ̃ := E
Yλ

[ψ(x+Yλ )].

This is pointwise close to ψ , since ψ is c-Lipschitz:

|ψ̃(x)−ψ(x)|= |E
Yλ

[ψ(x+Yλ )−ψ(x)]| ≤ E
Yλ

[|ψ(x+Yλ )−ψ(x)|]≤ E
Yλ

[c|Yλ |]≤ cλ = ζ .

Further, ψ̃ is C3, because ψ̃(x) can be written as a convolution:

ψ̃(x) = (ψ ∗ pλ )(x) =⇒ ψ̃
′′′ = (ψ ∗ pλ )

′′′ = (ψ ∗ p′′′
λ
).

To see that ψ̃ ′′′ is bounded, for a fixed x ∈ R, define the constant z := ψ(x). Then,

|ψ̃ ′′′(x)|= |(ψ ∗ p′′′
λ
)(x)|

= |(ψ ∗ p′′′
λ
− z′ ∗ p′′

λ
)(x)| (z is constant, so z′ = 0)

= |(ψ ∗ p′′′
λ
− z∗ p′′′

λ
)(x)|

= |((ψ− z)∗ p′′′
λ
)(x)|

=

∣∣∣∣∫ +∞

−∞

p′′′
λ
(y)(ψ(x− y)− z)dy

∣∣∣∣
=

∣∣∣∣∫ +∞

−∞

p′′′
λ
(y)(ψ(x− y)−ψ(x))dy

∣∣∣∣
≤
∫ +λ

−λ

|p′′′
λ
(y)||ψ(x− y)−ψ(x)|dy

≤ ||p′′′
λ
||∞
∫ +λ

−λ

|cy|dy (c-Lipschitz)

= ||p′′′
λ
||∞cλ

2.

Define the universal constant C̃ := ||p′′′||∞. We have

p′′′
λ
(y) = (1/λ

4)p′′′(y/λ ) =⇒ ||p′′′
λ
||∞ ≤ (1/λ

4)C̃.

With our choice of λ = ζ/c, this yields |ψ̃ ′′′(x)| ≤ C̃c3/ζ 2, which completes the proof of Lemma 2.5.
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A.2 Proof of Lemma 2.6

Below we show the proof of Lemma 2.6.

Proof of Lemma 2.6. First, we “mollify” the function ψ to construct a C3 function ψ̃ , by applying
Lemma 2.5 for ζ = 1/Rk. Notice that both choices of ψ are k-Lipschitz. Therefore the Mollification
Lemma guarantees that |ψ̃ ′′′(x)| ≤ C̃k3R2k for some universal constant C̃.

Since ψ̃ is pointwise close to ψ , with deviation at most 1/Rk, we have∣∣∣∣∣ E
y∈{±1}nR

[ψ(F≤d(y))]− E
x∈[R]n

[ψ( f≤d(x))]

∣∣∣∣∣≤
∣∣∣∣∣ E
y∈{±1}nR

[ψ̃(F≤d(y))]− E
x∈[R]n

[ψ̃( f≤d(x))]

∣∣∣∣∣+O(1/Rk).

Applying the General Invariance Principle (Theorem 2.4) with the function ψ̃ , we have∣∣∣∣∣ E
y∈{±1}nR

[ψ̃(F≤d(y))]− E
x∈[R]n

[ψ̃( f≤d(x))]

∣∣∣∣∣≤ C̃k3R2k10dRd/2
√

δ .

By our choice of parameters d,δ , this is O(1/Rk).

B Khot–Saket dictatorship test

Khot and Saket [19] showed that any integrality gap instance for an LP relaxation of MAX k-CSPR with
completeness c and soundness s can be used to construct a k-query dictatorship test with completeness
Ω

(
c

k3 logR

)
and soundness O(s). Using a standard reduction (see, e. g., Section 3.3.1), this in turn implies

UG-hardness of an approximation ratio of O( sk3 logR
c ) for MAX k-CSPR. It is not hard to see that such an

integrality gap with c= 1 and s=O(1/Rk−1) for MAX k-CSPR exists. Plugging this into Khot and Saket’s
result directly yields UG-hardness of an approximation ratio of O(k3 logR/Rk−1) for MAX k-CSPR, as
well as a k-query dictatorship test with completeness Ω

(
1

k3 logR

)
and soundness O(1/Rk−1). We remark

that their result also immediately implies NP-hardness of an approximation ratio of O(2O(k) logR/Rk−1)
for MAX k-CSPR thanks to the new 2-to-1 Theorem; similarly to Section 3.3.2, the extra factor 2O(k)

comes from the fact that the completeness from Theorem 2.3 is arbitrarily close to 1/2 instead of 1.
Below, we sketch the proof of the aforementioned dictatorship test. In fact, analyzing this test directly

(instead of through LP integrality gap as in [19]) improves the completeness slightly, to Ω

(
1

k2 log(kR)

)
.

This also leads to a slightly improved UG-hardness-of-approximation factor O(k2 log(kR)/Rk−1).
Notation. For any function f : [R]n→ [R], and any i ∈ [R], let f i : [R]n→ {0,1} denote the indicator
function f i(x) := 1[ f (x) = i].

Theorem B.1. For any k,R ≥ 2, there exist constants d,δ (depending only on k,R) for a k-query
nonadaptive Dictator-vs.-Quasirandom test with the following guarantees:

• (Completeness) If f is a dictator, then the test passes with probability at least

ρ = Ω

(
1

k2 log(kR)

)
.
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• (Soundness) If f has Inf≤d
j [ f i]≤ δ for all coordinates j ∈ [n] and all projections i ∈ [R], then the

test passes with probability at most
O(1/Rk−1).

Before sketching the proof of the theorem, we note that it also implies NP-hardness of factor 2O(k) log(kR)
Rk−1

and UG-hardness of factor O(k2 log(kR)/Rk−1) for MAX k-CSPR :

Corollary B.2. It is NP-hard to approximate MAX k-CSPR to within a 2O(k) log(kR)
Rk−1 factor, for any k,R≥ 2.

Corollary B.3. It is UG-hard to approximate MAX k-CSPR to within a O(k2 log(kR)/Rk−1) factor, for
any k,R≥ 2.

Corollary B.2 and Corollary B.3 follow from applying a standard reduction (similar to Section 3.3.1)
from Unique Games using the dictator test from Theorem B.1. Similarly to Section 3.3.2, the extra factor
2O(k) in Corollary B.2 comes from the fact that the completeness from Theorem 2.3 is arbitrarily close to
1/2 instead of 1. This results in a completeness of ρ/2O(k) for MAX k-CSPR after the reduction.

Proof Sketch of Theorem B.1. We may assume that f is balanced (E[ f i] = 1/R∀i).
The test is defined as follows. We will generate k queries x(1), . . .x(k) ∈ [R]n. The first coordinates

x(1)1 , . . . ,x(k)1 are picked by:

1. Pick z ∈ [R].

2. With probability ρ , set all queries to be equal to z at this coordinate:

x(1)1 = · · ·= x(k)1 = z.

3. Otherwise, set all x(1)1 , . . . ,x(k)1 ∈ [R] independently at random.

All coordinates j ∈ [n] are picked similarly (independently of other coordinates).
The verifier accepts iff

f (x(1)) = f (x(2)) = · · ·= f (x(k)).

Remark B.4. The difference between this dictatorship test and the test of Theorem B.1 is that here, with
probability ρ we set all the queries equal to z, instead of setting each query equal to z with probability
ρ independently. This means the queries are correlated even given z, so our previous technique of
hypercontractivity does not work directly. But it is possible to use a more powerful version of invariance
that can deal with this directly.

The completeness analysis is obvious.
Soundness Analysis

Pr[accept] = Pr[ f (x(1)) = f (x(2)) = · · ·= f (x(k))]

= ∑
i∈[R]

Pr[ f (x(1)) = f (x(2)) = · · ·= f (x(k)) = i]

= ∑
i∈[R]

E[ f i(x(1)) f i(x(2)) . . . f i(x(k))]. (B.1)
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We now invoke Proposition 6.4 of [23] to bound this expectation in terms of a related quantity in
Gaussian space. In particular, since each coordinate of our queries form a “ρ-correlated space”, it follows
from Proposition 6.4 that there exists constants 8 δ ,d (independent of n) such that if

Inf≤d
j ( f i)≤ δ

for all coordinates j, then

E

[
k

∏
`=1

f i(x(`))

]
≤ Γρ(1/R, . . . ,1/R)+1/Rk.

Where the function Γρ(1/R) is roughly the probability that k ρ-correlated Gaussians all simultane-
ously satisfy an event that has marginal probability 1/R for a single Gaussian (see the formal definition in
Definition 1.12 of [23]).

Now we conclude by the quantitative bounds on Γ given by Lemma 2 in [19]. In Lemma 2, set
ε = 1/k, and µi = 1/R. Then for

ρ =
1

Ck2 log(kR)

for some sufficiently large universal constant C, Lemma 2 gives

Γρ(1/R, . . . ,1/R)≤ (1+ ε)k−1
k

∏
i=1

µi ≤ 4/Rk.

Thus, continuing from equation (B.1):

Pr[accept] = ∑
i∈[R]

E[ f i(x(1)) f i(x(2)) . . . f i(x(k))]

≤ ∑
i∈[R]

5/Rk

= O(1/Rk−1).

This completes the soundness analysis.
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8In the notation of Proposition 6.4, we set ε = 1/Rk, and have α = 1/Rk, δ = τ (given in Prop 6.4), d = k log(1/δ )/ log(R).
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