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The second case we consider is that of polynomials computable by width-w ROABPs
in any order of the variables. The best previously known hitting set for this case had size
dO(logw)(nw)O(log logw), where d is the individual degree. We improve the hitting-set size to
(ndw)O(log logw).

1 Introduction

The polynomial identity testing (PIT) problem asks if a given multivariate polynomial is identically
zero. The input to the problem is given via an arithmetic model computing a polynomial, for example,
an arithmetic circuit, which is the arithmetic analogue of a Boolean circuit. The degree of the given
polynomial is assumed to be polynomially bounded in the circuit size. Typically, any such circuit can
compute a polynomial with exponentially many monomials (exponential in the circuit size). Thus,
one cannot hope to write down the polynomial in a sum-of-monomials form. However, given such an
input, it is possible to efficiently evaluate the polynomial at a point in the field. This property enables
a randomized polynomial identity test with one-sided error. It is known that evaluating a small-degree
nonzero polynomial over a random point gives a nonzero value with a good probability [13, 29, 33]. This
gives us a randomized PIT—just evaluate the input polynomial, given as an arithmetic circuit, at random
points.

Finding an efficient deterministic algorithm for PIT has been a major open question in complexity
theory. The question is also related to arithmetic circuit lower bounds [1, 18, 21]. The PIT problem has
been studied in two paradigms: (i) blackbox test, where one can only evaluate the polynomial at chosen
points and (ii) whitebox test, where one has access to the description of the input circuit. A blackbox
test for a family of polynomials is essentially the same as finding a hitting set—a set of points such that
any nonzero polynomial in that family evaluates to a nonzero value on at least one of the points in the
set. This work concerns finding hitting sets for a special model called read-once oblivious arithmetic
branching programs (ROABP).

An arithmetic branching program (ABP) is a specialized arithmetic circuit. It is the arithmetic
analogue of a Boolean branching program (also known as a binary decision diagram). It is a directed
layered graph, with edges going from a layer of vertices to the next layer. The first and the last layers have
one vertex each, called the source and the sink, respectively. Each edge of the graph has a label, which
is a “simple” polynomial, for example, a univariate polynomial. For any path p, its weight is defined
to be the product of labels on all the edges in p. The ABP computes a polynomial which is the sum of
weights of all the paths from the source to the sink. Apart from its size, another important parameter for
an ABP is its width. The width of an ABP is the maximum number of vertices in any of its layers. See
Definition 2.1 for a formal definition of ABP.

ABPs are a strong model for computing polynomials. It is known that for any size-s arithmetic
circuit of degree bounded by poly(s), one can find an ABP of size quasi-poly(s) computing the same
polynomial [32, 31, 7] (see [23] for a complete proof). Even when the width is restricted to a constant,
the ABP model is quite powerful. Ben-Or and Cleve [6] have shown that width-3 ABPs have the same
expressive power as polynomial-sized arithmetic formulas.

An ABP is a read-once oblivious ABP or ROABP if each variable occurs in at most one layer of the
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edges and every layer has exactly one variable.1 The read-once property severely restricts the power
of the ABP. There is an explicit family of polynomials that can be computed by simple depth-3 (ΣΠΣ)
circuits but requires exponential-size ROABPs [22] to compute it. The order of the variables in the
consecutive layers is said to be the variable order of the ROABP. The variable order affects the size
of the minimal ROABP computing a given polynomial. There are polynomials which have a small
ROABP in one variable order but require exponential size in another variable order. Nisan [25] gave an
exact characterization of the polynomials computed by width-w ROABPs in a certain variable order. In
particular, he gave exponential lower bounds for this model.2

The question of whitebox identity testing of ROABPs has been settled by Raz and Shpilka [28], who
gave a polynomial-time algorithm for this. However, though ROABPs are a relatively well-understood
model, we still do not have a polynomial-time blackbox algorithm. The blackbox PIT question is studied
with two variations: one where we know the variable order of the ROABP and the other where we do not
know it. For known-order ROABPs, Forbes and Shpilka [15] gave the first efficient blackbox test with
(ndw)O(logn) time complexity, where n is the number of variables, w is the width of the ROABP and d is
the individual-degree bound of each variable. For the unknown-order case, Forbes et al. [14] gave an
nO(d logw logn)-time blackbox test. Observe that the complexity of their algorithm is quasi-polynomial only
when d is small. Subsequently, Agrawal et al. [2] removed the exponential dependence on the individual
degree. They gave an (ndw)O(logn)-time blackbox test for the unknown-order case. Note that these results
remain quasi-polynomial even in the case of constant width. Studying ROABPs has also led to PIT results
for other computational models, for example, subexponential-size hitting sets for depth-3 multilinear
circuits [12] and subexponential-time whitebox test for read-k oblivious ABPs [4].

Another motivation to study ROABPs comes from their Boolean analogues, called read-once ordered
branching programs (ROBP).3 ROBPs have been studied extensively, with regard to the RL versus L
question (randomized log-space versus log-space). The problem of finding hitting sets for ROABP can be
viewed as an analogue of finding pseudorandom generators (PRG) for ROBP. A pseudorandom generator
for a Boolean function f is an algorithm which can generate a probability distribution (with a small
sample space) with the property that f cannot distinguish it from the uniform random distribution (see [5]
for details). Constructing an optimal PRG for ROBP, i. e., with O(logn) seed length or polynomial-size
sample space, would imply RL = L. Although the known pseudorandom generators for ROBPs and
hitting-set generators for ROABPs in similar settings have similar complexity, there is no known way to
translate the construction of one to another. The best known PRG is of seed length O(log2 n) (nO(logn)-size
sample space), when variable order is known [26, 20, 27]. On the other hand, in the unknown-order
case, the best known seed length is of size n1/2+o(1) [19]. Finding an O(logn)-seed PRG even for
constant-width known-order ROBPs has been a challenging open question. Though, some special cases
of this question have been solved—width-2 ROBPs [8], or nearly solved—permutation and regular
ROBPs [9, 10, 24, 11, 30].

Our first result addresses the analogous question in the arithmetic setting. We give the first polynomial-
time blackbox test for constant-width known-order ROABPs. However, it works only for zero or large

1In a read-once ABP, each variable occurs only once on every source-sink path. An ROABP is a read-once ABP where every
occurrence of a variable is in the same layer.

2The work of [25] is actually on non-commutative ABPs but the same results apply to ROABP.
3ROBPs are also known as Ordered Binary Decision Diagrams (OBDDs).
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characteristic fields. Our idea is inspired by the pseudorandom generator for ROBPs by Impagliazzo,
Nisan and Wigderson [20]. While their result does not give better PRGs for the constant-width case, we
are able to achieve this in the arithmetic setting.

Theorem (Theorem 3.6). Let C be the class of n-variate, individual-degree-d polynomials in F[x]
computed by a width-w ROABP in the variable order (x1,x2, . . . ,xn). Then a hitting set of size dnO(logw)

can be constructed for C, when char(F) = 0 or char(F)> ndwlogn.

When w < n, the size of our hitting set is smaller than the previously known hitting sets. Furthermore,
even in the regime when w≥ n, the size of our hitting set matches the previously best known hitting sets.
We show that for a nonzero bivariate polynomial f (x1,x2) computed by a width-w ROABP, the univariate
polynomial f (tw, tw + tw−1) is nonzero. For this, we use the notion of rank of the partial derivative matrix
of a polynomial, defined by Nisan [25]. Our argument is that the rank of the partial derivative matrix of
any bivariate polynomial which becomes zero on (tw, tw + tw−1) is more than w, while for a polynomial
computed by a width-w ROABP, this rank is at most w. We use the map (x1,x2) 7→ (tw, tw + tw−1)
recursively in logn rounds to achieve the above mentioned hitting set. Our technique has a crucial
difference from the previous works on ROABPs [14, 15, 2]. The starting point in all the previous
techniques is a monomial map, i. e., each variable is mapped to a monomial. On the other hand, we
argue with a polynomial map directly (where each variable is mapped to a univariate polynomial). We
believe that our approach could lead to a polynomial-size hitting set for ROABPs and we now describe
a concrete construction that we conjecture works. The goal would be to obtain a univariate n-tuple
(p1(t), . . . , pn(t)), such that any polynomial which becomes zero on (p1(t), . . . , pn(t)) must have rank or
evaluation dimension higher than w. We conjecture that (tr,(t +1)r, . . . ,(t +n−1)r) is one such tuple,
where r is polynomially large (Conjecture 3.8).

We believe that these ideas from the arithmetic setting can help in constructing an optimal PRG for
constant-width ROBP.

Our second result is for the class of polynomials which are computable by ROABPs in any variable
order. To be precise, a polynomial f (x) is in this class if for every permutation of the variables, there
exists an ROABP of width-w that computes f (x) in that variable order. This class of polynomials has a
slightly better hitting set than the class of polynomials computed by ROABPs in a particular variable
order, but still no polynomial-size hitting set is known. The previously best known hitting set for them
has size dO(logw)(nw)O(log logw) [14]. We improve this to (ndw)O(log logw).

Theorem (Theorem 4.9). For n-variate, individual-degree-d polynomials computed by width-w ROABPs
in any order, a hitting set of size (ndw)O(log logw) can be constructed.

To obtain this result we follow the approach of Forbes et al. [14], which used the notion of rank
concentration or low-support concentration, a technique introduced by Agrawal et al. [3]. We achieve
rank concentration more efficiently using the basis isolation technique of Agrawal et al. [2]. The same
technique also yields a more efficient concentration in depth-3 set-multilinear circuits (see Section 2 for
the definition). However, it is not clear if it gives better hitting sets for them. The best known hitting set
for them has size nO(logn) [3].
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2 Preliminaries

2.1 Definitions and notation

We write [n] to denote the set {1,2, . . . ,n} and [[d]] to denote the set {0,1, . . . ,d}. The character x
will denote a list of variables, usually the list (x1,x2, . . . ,xn). For a field F, we denote the ring of
polynomials over F by F[x], and the field of rational functions over F by F(t). For a set x of n variables
and for an exponent a = (a1,a2, . . . ,an) ∈ {0,1,2, . . .}n, we denote the monomial ∏

n
i=1 xai

i by xa. The
support of a monomial xa, denoted by Supp(a), is the set of variables appearing in that monomial, i. e.,
{xi | i ∈ [n],ai > 0}. The support size of a monomial is the cardinality of its support, denoted by supp(a).
A monomial is said to be `-support if its support size is ` and (< `)-support if its support size is < `. For
a polynomial P(x), the coefficient of a monomial xa in P(x) is denoted by coefP(xa).

For a monomial xa, the sum ∑i ai is said to be its degree and ai is said to be its degree in variable xi

for each i. Similarly, for a polynomial P, its degree (or degree in xi) is the maximum degree (or maximum
degree in xi) of any monomial in P with a nonzero coefficient. We define the individual degree of P to be
maxi{degxi

(P)}, where degxi
denotes degree in xi.

To better understand polynomials computed by ROABPs, we often use polynomials over an algebra
A, i. e., polynomials whose coefficients come from A. Matrix algebra is the vector space of matrices
equipped with the matrix product. Fm×n represents the set of all m×n matrices over the field F. Note
that the algebra of w×w matrices, has dimension w2.

We often view a vector/matrix with polynomial entries, as a polynomial with vector/matrix coefficients.
For example,

D(x,y) =
(

1+ x y− xy
x+ y 1+ xy

)
=

(
1 0
0 1

)
1+
(

1 0
1 0

)
x+
(

0 1
1 0

)
y+
(

0 −1
0 1

)
xy .

Here, the coefD operator will return a matrix for any monomial, for example,

coefD(y) =
(

0 1
1 0

)
.

For a polynomial D(x) ∈A[x] over an algebra, its coefficient space is the space spanned by its coefficients.
For a matrix R, we denote its entry in the i-th row and j-th column by R(i, j).
As mentioned earlier, a deterministic blackbox PIT is equivalent to constructing a hitting set. A set of

points H ∈ Fn is called a hitting set for a class C of n-variate polynomials if for any nonzero polynomial
P in C, there exists a point in H where P evaluates to a nonzero value.

2.2 Arithmetic branching programs

Definition 2.1 (Arithmetic Branching Program (ABP)). An ABP is a layered directed acyclic graph with
q+1 layers of vertices {V0,V1, . . . ,Vq} and a source a and a sink b such that all the edges of the graph
only go from a to V0, Vi−1 to Vi for any i ∈ [q] and Vq to b. The edges have univariate polynomials as their
weights and as a convention, the edges going out of u and the edges going into t have constant weights,
i. e., weights from the field F. The ABP is said to compute the polynomial

f (x) = ∑
p∈paths(a,b)

∏
e∈p

W (e) ,
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where W (e) is the weight of the edge e.

The ABP has width-w if |Vi| ≤ w for all i ∈ [[q]]. Without loss of generality we can assume |Vi|= w
for each i ∈ [[q]].

It is well-known that the sum over all paths in a layered graph can be represented by an iterated
matrix multiplication. To see this, let the set of nodes in Vi be {vi, j | j ∈ [w]}. It is easy to see that the
polynomial computed by the ABP is the same as AT(∏

q
i=1 Di)B, where A,B ∈ Fw×1 and Di is a w×w

matrix for 1≤ i≤ q such that

A(`) =W (a,v0,`) for 1≤ `≤ w ,

Di(k, `) =W (vi−1,k,vi,`) for 1≤ `,k ≤ w and 1≤ i≤ q ,

B(k) =W (vq,k,b) for 1≤ k ≤ w .

2.2.1 Read-once oblivious ABP

An ABP is called a read-once oblivious ABP (ROABP) if the edge weights in different layers are univariate
polynomials in distinct variables. Formally, there is a permutation π on the set [q] such that the entries in
the ith matrix Di are univariate polynomials over the variable xπ(i), i. e., they come from the polynomial
ring F[xπ(i)]. Here, q is the same as n, the number of variables. The order (xπ(1),xπ(2), . . . ,xπ(n)) is said to
be the variable order of the ROABP.

Viewing Di(xπ(i)) ∈ Fw×w[xπ(i)] as a polynomial over the matrix algebra, we can write the polynomial
computed by an ROABP as

f (x) = ATD1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n))B .

An equivalent representation of a width-w ROABP can be

f (x) = D1(xπ(1))D2(xπ(2)) · · ·Dn(xπ(n)) ,

where D1 ∈ F1×w[xπ(1)], Di ∈ Fw×w[xπ(i)] for 2≤ i≤ n−1 and Dn ∈ Fw×1[xπ(n)].

2.2.2 Any-order ROABP

A polynomial f (x) is said to be computed by width-w ROABPs in any order, if for every permutation σ

of the variables, there exists a width-w ROABP in the variable order σ that computes the polynomial
f (x).

2.2.3 Set-multilinear circuits

A depth-3 set-multilinear circuit is a circuit of the form

f (x) =
k

∑
i=1

li,1(x1) li,2(x2) · · · li,q(xq) ,

where li, js are linear polynomials and x1,x2, . . . ,xq form of a partition of the set x of variables. It is known
that these circuits are subsumed by ROABPs [14]. However, the polynomials computed by these circuits
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may not be computable by ROABPs in any order. For example, the 2n-variate polynomial (x1 + y1)(x2 +
y2) · · ·(xn + yn) has a linear-size set-multilinear circuit. But, every ROABP in the variable sequence
(x1,x2, . . . ,xn,y1,y2, . . . ,yn) that computes it has width ≥ 2n (follows from Nisan’s characterization [25]).

Note that ROABPs can compute polynomials with individual-degree ≥ 1, but set-multilinear circuits
cannot. It is not known whether all multilinear polynomials computed by ROABPs in any order can also
be computed by polynomial-size set-multilinear circuits.

A set-multilinear circuit has a corresponding polynomial over a commutative algebra. For the
polynomial f (x) above, consider the polynomial over a k-dimensional algebra

D(x) = D1(x1)D2(x2) · · ·Dq(xq) ,

where D j = (l1, j, l2, j, . . . , lk, j) and the algebra product is coordinate-wise product. It is easy to see that
f = (1,1, . . . ,1) ·D. Note that the polynomials Dis are over a commutative algebra, that is, the order of
the Dis in the product does not matter. Hence, some of our techniques for any-order ROABPs also work
for set-multilinear circuits.

3 Hitting set for known-order ROABP

3.1 Bivariate ROABP

To construct a hitting set for ROABPs, we start with the bivariate case. Recall that a bivariate ROABP
is of the form ATD1(x1)D2(x2)B, where A,B ∈ Fw×1, D1 ∈ Fw×w[x1] and D2 ∈ Fw×w[x2]. It is easy to
see that a bivariate polynomial f (x1,x2) computed by a width-w ROABP can be written as f (x1,x2) =

∑
w
r=1 gr(x1)hr(x2). To construct a hitting set for this polynomial, we will use the notion of a partial

derivative matrix, defined by Nisan [25] in the context of lower bounds. Let the individual degree of the
polynomial f ∈ F[x1,x2] be bounded by d. The partial derivative matrix M f for f is a (d +1)× (d +1)
matrix with

M f (i, j) = coef f (xi
1x j

2) ∈ F ,

for all i, j ∈ [[d]]. It is known that the rank of the matrix M f equals the smallest possible width of any
ROABP computing f [25].

Lemma 3.1 (rank ≤ width). For any polynomial f (x1,x2) = ∑
w
r=1 gr(x1)hr(x2), we have rank(M f )≤ w.

Proof. Let us define fr = grhr, for all r ∈ [w]. Clearly, M f = ∑
w
r=1 M fr , as f = ∑

w
r=1 fr. We will show

that rank(M fr)≤ 1, for all r ∈ [w]. As fr = gr(x1)hr(x2), its coefficients can be written as a product of
coefficients from gr and hr, i. e.,

coef fr(x
i
1x j

2) = coefgr(x
i
1)coefhr(x

j
2) .

Now, it is easy to see that
M fr = urvTr ,

where ur,vr ∈ Fd+1 with ur = (coefgr(x
i
1))

d
i=0 and vr = (coefhr(x

i
2))

d
i=0.

Thus, rank(M fr)≤ 1 and rank(M f )≤ w.
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One can also show that if rank(M f ) = w then there exists a width-w ROABP computing f . We skip
this proof as we will not need it. Now, using the above lemma we give a hitting set for bivariate ROABPs.

Lemma 3.2. Suppose char(F) = 0, or char(F)> d. Let

f (x1,x2) =
w

∑
r=1

gr(x1)hr(x2)

be a nonzero bivariate polynomial over F of individual degree d. Then f (tw, tw + tw−1) 6= 0.

Proof. Let f̃ (t) be the polynomial after the substitution, i. e., f̃ (t) = f (tw, tw + tw−1). Any monomial
xi

1x j
2 will be mapped to the polynomial twi(tw + tw−1) j, under the mentioned substitution. The highest

power of t coming from this polynomial is tw(i+ j). We will cluster together all the monomials for which
this highest power is the same, i. e., i+ j is the same. The set of coefficients corresponding to any such
cluster of monomials will form a diagonal in the matrix M f . The set {M f (i, j) | i+ j = k} is defined to
be the k-th diagonal of M f , for all 0≤ k ≤ 2d. Let ` be the largest number such that the `-th diagonal has
at least one nonzero element, i. e.,

`= max{i+ j |M f (i, j) 6= 0} .

As rank(M f )≤ w (from Lemma 3.1), we claim that the `-th diagonal has at most w nonzero elements.
To see this, let {(i1, j1),(i2, j2), . . . ,(iw′ , jw′)} be the set of indices where the `-th diagonal of M f has
nonzero elements, i. e., the set {(i, j) |M f (i, j) 6= 0, i+ j = `}. Observe that w′ ≤ d +1. As M f (i, j) = 0
for any i+ j > `, it is easy to see that the rows {M f (i1),M f (i2), . . . ,M f (iw′)} are linearly independent.
Thus, w′ ≤ rank(M f )≤ w.

Now, we claim that there exists an r with w(`−1)< r ≤ w` such that coef f̃ (t
r) 6= 0. To see this, first

observe that the highest power of t to which any monomial xi
1x j

2 with i+ j < ` can contribute is tw(`−1).
Thus, for any w(`−1)< r ≤ w`, the term tr can come only from the monomials xi

1x j
2 with i+ j ≥ `. We

can ignore the monomials xi
1x j

2 with i+ j > ` as coef f (xi
1x j

2) = M f (i, j) = 0, when i+ j > `. Now, for
any i+ j = `, the monomial xi

1x j
2 maps to

tw(`− j)(tw + tw−1) j = tw`(1+ t−1) j =
j

∑
p=0

(
j
p

)
tw`−p .

Hence, for any 0≤ p < w,

coef f̃ (t
w`−p) =

w′

∑
b=1

M f (ib, jb)
(

jb
p

)
.

Here we assume that if p > jb, then
( jb

p

)
= 0. Writing the above equation in the matrix form, we get, coef f̃ (t

w`)
...

coef f̃ (t
w`−w+1)

=C

 M f (i1, j1)
...

M f (iw′ , jw′)

 ,
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where C is a w×w′ matrix with C(a,b) =
( jb

a−1

)
, for all a ∈ [w] and b ∈ [w′]. If all the columns of C

are linearly independent, then clearly, coef f̃ (t
r) 6= 0 for some w(`− 1) < r ≤ w`. We show the linear

independence of the columns in Claim 3.3. To show this linear independence we need to assume that the
numbers { jb}b are all distinct. Hence, we need the field characteristic to be zero or strictly greater than d,
as jb can be as high as d for some b ∈ [w′].

Claim 3.3. Let C′ be the w′×w′ submatrix of C with C′(a,b) =
( jb

a−1

)
, for all a ∈ [w′] and b ∈ [w′]. Then

C′ has full rank.

Proof. We will show that for any nonzero vector α := (α1,α2, . . . ,αw′) ∈ F1×w′ , αC′ 6= 0. Consider the
polynomial

h(y) = α1 +α2
y
1!

+α3
y(y−1)

2!
+ · · ·+αw′

y(y−1) · · ·(y−w′+2)
(w′−1)!

.

As h(y) is a nonzero polynomial of degree bounded by w′−1, it can have at most w′−1 roots. Thus,
there exists an b ∈ [w′] such that

h( jb) =
w′

∑
a=1

αa

(
jb

a−1

)
6= 0 .

This concludes the proof of Lemma 3.2.

As mentioned above, the hitting-set proof works only when the field characteristic is zero or greater
than d. We given an example over a small characteristic field, which demonstrates that the problem is
not with the proof technique, but with the hitting set itself. Let the field characteristic be 2. Consider the
polynomial f (x1,x2) = x2

2 + x2
1 + x1. Clearly, f has a width-2 ROABP. For a width-2 ROABP, the map in

Lemma 3.2 would be (x1,x2) 7→ (t2, t2 + t). However, f (t2, t2 + t) = 0 (over F2). Hence, the hitting set
does not work.

Now, we move on to getting a hitting set for an n-variate ROABP.

3.2 n-variate ROABP

Observe that the map given in Lemma 3.2 works irrespective of the degree of the polynomial, as long
as the field characteristic is large enough. We plan to obtain a hitting set for general n-variate ROABP
by applying this map recursively. For this, we use the standard divide and conquer technique. First, we
make pairs of consecutive variables in the ROABP. For each pair (x2i−1,x2i), we apply the map from
Lemma 3.2, using a new variable ti. Thus, we go to n/2 variables from n variables. In Lemma 3.4, we
use a hybrid argument to show that after this substitution the polynomial remains nonzero. Moreover,
the new polynomial can be computed by a width-w ROABP. Thus, we can again use the same map on
pairs of new variables. By repeating the halving procedure logn times we get a univariate polynomial. In
each round the degree of the polynomial gets multiplied by w. Hence, after logn rounds, the degree of
the univariate polynomial is bounded by wlogn times the original degree. Without loss of generality, let us
assume that n is a power of 2.

Lemma 3.4 (Halving the number of variables). Suppose char(F) = 0, or char(F) > d. Let f (x) =
D1(x1)D2(x2) · · ·Dn(xn) be a nonzero polynomial of individual degree d and computed by a width-w

THEORY OF COMPUTING, Volume 13 (2), 2017, pp. 1–21 9

http://dx.doi.org/10.4086/toc


ROHIT GURJAR, ARPITA KORWAR, AND NITIN SAXENA

ROABP, where D1 ∈ F1×w[x1], Dn ∈ Fw×1[xn] and Di ∈ Fw×w[xi] for all 2 ≤ i ≤ n− 1. Let the map
φ : x→ F[t] be such that for any index 1≤ i≤ n/2,

φ(x2i−1) = tw
i ,

φ(x2i) = tw
i + tw−1

i .

Then f (φ(x)) 6= 0. Moreover, the polynomial f (φ(x))∈F[t1, t2, . . . , tn/2] is computed by a width-w ROABP
in the variable order (t1, t2, . . . , tn/2).

Proof. Let us apply the map in n/2 rounds, i. e., define a sequence of polynomials ( f = f0, f1, . . . , fn/2 =
f (φ(x))) such that the polynomial fi is obtained by replacing (x2i−1,x2i) with (φ(x2i−1),φ(x2i)) in fi−1
for each 1≤ i≤ n/2. We will show that for each 1≤ i≤ n/2, if fi−1 6= 0 then fi 6= 0. Clearly this proves
the first part of the lemma.

Note that fi−1 is a polynomial over variables {t1, . . . , ti−1,x2i−1, . . . ,xn}. As fi−1 6= 0, there exists a
constant tuple α ∈ Fn−i−1 such that after replacing the variables (t1, . . . , ti−1, x2i+1, . . . ,xn) with α , the
polynomial fi−1 remains nonzero. After this replacement we get a polynomial f̂i−1 in the variables
(x2i−1,x2i). As f is computed by the ROABP D1D2 · · ·Dn, the polynomial f̂i−1 can be written as
ATD2i−1(x2i−1)D2i(x2i)B for some A,B ∈ Fw×1. In other words, f̂i−1 has a bivariate ROABP of width-w.
Thus, f̂i−1(φ(x2i−1),φ(x2i)) is nonzero from Lemma 3.2. But, f̂i−1(φ(x2i−1),φ(x2i)) is nothing but the
polynomial obtained after replacing the variables (t1, . . . , ti−1,x2i+1, . . . ,xn) in fi with α . Thus, fi is
nonzero. This finishes the proof.

Now, we argue that f (φ(x)) has a width-w ROABP. Let D̃i := D2i−1(tw
i )D2i(tw

i + tw−1
i ) for all 1≤

i≤ n/2. Clearly, D̃1D̃2 · · · D̃n/2 is a width-w ROABP computing f (φ(x)) in variable order (t1, t2, . . . , tn/2),
as D̃1 ∈ F1×w[t1], D̃n/2 ∈ Fw×1[tn/2] and D̃i ∈ Fw×w[ti] for all 2≤ i≤ n/2−1.

By applying the map φ in Lemma 3.4, we reduced an n-variate ROABP to an (n/2)-variate ROABP,
while preserving the non-zeroness. The resulting ROABP has same width-w, but the individual degree
goes up to become 2dw, where d is the original individual degree. As our map φ is degree insensitive, we
can apply a similar map again on the variables {ti}n/2

i=1. That is, for 1≤ i≤ n/4, define φ(t2i−1) = sw
i and

φ(t2i) = sw
i + sw−1

i for variables {s1,s2, . . . ,sn/4}. Now, we get an (n/4)-variate ROABP of individual
degree 4dw2. It is easy to see that when the map φ is repeatedly applied in this way logn times, we get a
nonzero univariate polynomial of degree ndwlogn. Next lemma puts it formally. For ease of notation, we
use the variable numbering from 0 to n−1. Let p0(t) = tw and p1(t) = tw + tw−1.

Lemma 3.5. Suppose char(F) = 0, or char(F) ≥ ndwlogn. Let f ∈ F[x] be a nonzero polynomial of
individual degree d and computed by a width-w ROABP in variable order (x0,x1, . . . ,xn−1). Let the map
φ : {x0,x1, . . . ,xn−1}→ F[t] be such that for any index 0≤ i≤ n−1,

φ(xi) = pi1(pi2 · · ·(pilogn(t))) ,

where ilogn ilogn−1 · · · i1 is the binary representation of i.
Then f (φ(x)) is a nonzero univariate polynomial of degree ndwlogn.

Note that the map φ crucially uses the knowledge of the variable order. In the last round when we
are going from two variables to one, the individual degree is ndwlogn−1 and Lemma 3.2 requires char(F)
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to be higher than the individual degree. Thus, having char(F) ≥ ndwlogn suffices. Hence, we get the
following theorem.

Theorem 3.6. Let C be the class of n-variate, individual-degree-d polynomials computed by width-w
ROABPs. Then a hitting set for C of size O(ndwlogn) can be constructed, when the variable order is
known and the field characteristic is zero or at least ndwlogn.

Proof. Let f (x) be a polynomial in class C. From Lemma 3.5, f (φ(x)) ∈ F[t] is a nonzero univariate
polynomial of degree ndwlogn. Thus, if we substitute 1+ndwlogn field values for the variable t, one of
them will keep f (φ(x)) nonzero.

From this, we immediately get the following result for constant-width ROABPs. Note that when w is
constant, the lower bound on the characteristic also becomes poly(n).

Corollary 3.7. For the class of n-variate, individual-degree-d polynomials computed by constant width
ROABPs (known variable order), a poly(n,d)-size hitting set can be constructed, when the field charac-
teristic is zero (or larger than poly(n,d)).

As mentioned earlier, our approach can potentially lead to a polynomial-size hitting set for ROABPs.
We make the following conjecture for which we hope to get a proof on the lines of Lemma 3.2.

Conjecture 3.8. Suppose char(F) = 0. Let f (x) ∈ F[x] be an n-variate, degree-d polynomial computed
by a width-w ROABP. Then f (tr,(t +1)r, . . . ,(t +n−1)r) 6= 0 for some r bounded by poly(n,w,d).

4 Any-order ROABP

In this section, we give better hitting sets for the class of polynomials computed by ROABPs in any order.
Recall that a polynomial f (x) ∈ F[x] is said to be computed by width-w ROABPs in any order if for any
permutation σ : [n]→ [n], f (x) can be written as

ATD1(xσ(1))D2(xσ(2)) · · ·Dn(xσ(n))B

for some Di ∈ Fw×w[xσ(i)] for 1≤ i≤ n and A,B ∈ Fw×1.
We will also consider ROABPs which compute a polynomial over the matrix algebra, that is, polyno-

mials whose coefficients are matrices. D(x) ∈ Fw×w[x] is said to be computed by a width-w ROABP if
D(x) = D1D2 · · ·Dn for some polynomials Di ∈ Fw×w[xσ(i)] for 1≤ i≤ n.

Forbes et al. [14] gave a hitting set of size dO(logw)(nw)O(log logw) for n-variate, individual-degree-d
polynomials computed by width-w ROABPs in any order. Note that when d is small, this hitting-set size
is much better than that for ROABPs (with a particular variable order), i. e., (ndw)O(logn) [2]. However
when d is Ω(n), the size is comparable to the latter case. We improve the hitting-set size for polynomials
computed by ROABPs in any order to (ndw)O(log logw). This is significantly better than the case of
polynomials computed by ROABPs in a particular variable order.
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4.1 Rank-concentration

Forbes et al. [14] constructed the hitting set using the notion of rank-concentration defined by Agrawal et
al. [3]. Recall that D(x) is a polynomial over an algebra if its coefficients come from the algebra.

Definition 4.1 ([3]). A polynomial D(x) over an algebra is said to be `-concentrated if its coefficients of
(< `)-support monomials span all its coefficients. That is, for all a ∈ {0,1,2, . . .}n

coefD(xa) ∈ span{coefD(xb) | b ∈ {0,1,2, . . .}n , supp(b)< `} . (4.1)

Note that for a nonzero polynomial over a field, `-concentration simply means that one of its
monomials of support < ` has a nonzero coefficient. As we will see later, it is easy to construct hitting
sets for a polynomial which has low-support concentration. However, not every polynomial has a low-
support concentration, for example, consider the following polynomial over a field: f (x) = x1x2 . . .xn.
Agrawal et al. [3] observed that concentration can be achieved by a shift of variables, e. g., f (x+1) =
(x1+1)(x2+1) · · ·(xn+1) has 1-concentration. For a polynomial f (x), shift by a tuple s = (s1,s2, . . . ,sn)
would mean f (x+ s) = f (x1 + s1,x2 + s2, . . . ,xn + sn).

To achieve concentration, it is often useful to consider shifts which are polynomials. In particular,
we will be considering shifts by bivariate polynomials, i. e., s(t1, t2) ∈ F[t1, t2]n. As ultimately we are
interested in hitting sets, the variables t1 and t2 can later be replaced by field values. The size of the hitting
set, in this case, will be multiplied by δ 2, where δ is the maximum degree of any si(t1, t2). Thus, for a
bivariate shift s(t1, t2), its degree will be viewed as the complexity measure. Note that for a polynomial
D(x) ∈ Fw×w[x], the coefficient of a monomial xa in D(x+ s(t1, t2)) will be from F[t1, t2]w×w. So, when
we talk of low-support concentration in D(x+ s(t1, t2)), the span in (4.1) is taken over the field F(t1, t2).

Forbes et al. [14] construct the hitting set for polynomials computed by ROABPs in any order in two
steps. Let f (x) be an n-variate individual-degree-d polynomial computed by width-w ROABPs in any
order. Their first step is to construct a tuple s(t1, t2) of bivariate polynomials of degree poly(n)dO(logw)

such that f (x+ s) has O(logw)-concentration. We improve this step by constructing a new tuple s(t1, t2)
of degree (ndw)O(log logw), which has the same property.

We follow the second step of Forbes et al. [14] as it is. It is easy to see that f (x+ s) can also
be computed by width-w ROABPs in any order (over the field F(t1, t2)). They show that if a given
polynomial, computed by ROABPs in any order, is `-concentrated then there is a hitting set for it
of size (ndw)O(log`). This implies a hitting set H of size (ndw)O(log logw) for f (x+ s). Clearly, the
set {h+ s | h ∈ H} is a hitting set for f (x). One can obtain a hitting set in Fn by replacing t1 and
t2 with sufficiently many field values. By Schwartz-Zippel-DeMillo-Lipton Lemma, it will suffice
to take more than degt1,t2( f (h+ s)) = deg( f ) · deg(s) values. Thus, the final hitting-set size becomes
deg(s) · (ndw)O(log logw). With our improved bound on deg(s), we get a hitting set of the desired size.

Now, we elaborate the first step of Forbes et al. [14], i. e., the construction of the shift s(t1, t2). To
achieve concentration they use the idea of Agrawal, Saha and Saxena [3], i. e., achieving concentration in
small sub-ROABPs implies concentration in the given ROABP. For the sake of completeness, we rewrite
the lemma using the terminology of this paper. We first clarify a notation which will be used often: for an
n-tuple s and a polynomial D(x) which only depends variables (xi1 ,xi2 , . . . ,xi`), the expression D(x+ s)
will denote D(xi1 + si1 ,xi2 + si2 , . . . ,xi` + si`).
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Lemma 4.2 ([3, 14]). Let ` < n be any number. Let s be the n-tuple such that for any distinct i1, i2, . . . , i` ∈
[n] and individual-degree-d polynomial

D(x) = D1(xi1)D2(xi2) · · ·D`(xi`)

over the matrix algebra Fw×w, D(x+ s) is `-concentrated. Then for any individual-degree-d polynomial
f (x) ∈ F[x] computed by width-w ROABPs in any order, f (x+ s) is `-concentrated.

Proof. Let f ′(x) = f (x+s). Consider any monomial xa with support≥ `. We will show that its coefficient
in f ′(x) is in the span of smaller support coefficients in f ′(x). Let S = {xi1 ,xi2 , . . . ,xi`} be a set of `
variables contained in the support of monomial xa. Let S = {xi`+1 , . . . ,xin} be the rest of the variables. Let
us write xa = xbxc with Supp(b) = S and Supp(c)⊆ S. Since, f (x) is computed by ROABPs in any order,
it has an ROABP in the variable order (xi1 , . . . ,xi` ,xi`+1 , . . . ,xin). That is,

f (x) = ATD1(xi1) · · ·D`(xi`)D`+1(xi`+1) . . .Dn(xin)B

for some D j ∈ Fw×w[xi j ] for 1≤ j ≤ n and A,B ∈ Fw×1. Let

D(x) := D1(xi1) · · ·D`(xi`) and E(x) := D`+1(xi`+1) . . .Dn(xin) .

Let D′(x) = D(x+ s) and E ′(x) = E(x+ s). Clearly f ′(x) = ATD′(x)E ′(x)B. By the lemma hypothesis,
D′(x) is `-concentrated. That is,

coefD′(xb) ∈ span{coefD′(xb′) | Supp(b′)⊆ S, supp(b′)< `} . (4.2)

Note that we have Supp(b′)⊆ S because each monomial in D′(x) comes from set S. It is easy to see that
for any monomial xb′ with Supp(b′)⊆ S

coef f ′(xb′xc) = AT coefD′(xb′)coefE ′(xc)B .

Thus, by left multiplying AT and right multiplying coefD′(xc)B in (4.2), we get

coef f ′(xa) ∈ span{coef f ′(xb′xc) | Supp(b′)⊆ S, supp(b′)< `} .

Note that supp(b′)+ supp(c)< supp(b)+ supp(c) = supp(a). So, we can write

coef f ′(xa) ∈ span{coef f ′(xa′) | supp(a′)< supp(a)} .

In other words, for any monomial xa with supp(a)≥ `, coef f ′(xa) is in the span of coefficients of support
smaller than supp(a). This would mean that, in fact, all coefficients of f ′(x) are in the span of coefficients
with support < `.

Now, for some `≤ n, the goal is to construct an n-tuple s such that for any distinct i1, i2, . . . , i` ∈ n, shift-
ing by s ensures `-concentration in any `-variate ROABP of the form D(x) = D1(xi1)D2(xi2) · · ·D`(xi`).
Note that Lemma 4.2 holds for any value of `≤ n. However, one cannot choose ` to be arbitrary small.
The reason is that for an `-variate polynomial over a k-dimensional algebra, one can hope to achieve
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`-concentration only when `≥ log(k+1). To see this, consider the polynomial D(x) = ∏
`
i=1(1+ vixi)

over the algebra of k× k diagonal matrices, with k = 2`. Here, 1 stands for the matrix diag(1,1, . . . ,1).
Define v1 = diag(α1,α2, . . . ,αk) for some distinct αis. And define vi = v2i−1

1 for 2≤ i≤ `. It is not hard to
see that the 2` coefficients of the polynomial D are {1,v1,v2

1, . . . ,v
2`−1
1 }, which are linearly independent.

Note that since shifting is an invertible operation, the 2` coefficients of D(x+ s) will also be linearly
independent for any s. But, there are only 2`−1 monomials with support < `. Hence, the coefficients of
(< `)-support monomials cannot span all the coefficients in D(x+ s), for any shift s.

Note that the dimension of the algebra Fw×w is bounded by w2. To reiterate the goal, given n and
w, we fix `= dlog(w2 +1)e and we want to achieve `-concentration in all polynomials computed by an
ROABP of the form D1D2 · · ·D` where D j ∈ Fw×w[xi j ] for 1≤ j ≤ `, for some distinct i1, i2, . . . , i` ∈ [n].
As now we are dealing with polynomials in a small number of variables, it should be easier to achieve the
concentration.

Towards this goal, Forbes et al. [14] give a bit more general result. For any ` ≥ log(w2 +1), they
construct a tuple s∈F[t1, t2]n of degree poly(n)dO(`) which has the following property: for any polynomial
D(x) ∈ Fw×w[x] which uses at most ` of the n variables and has individual-degree bound d, D(x+ s) has
`-concentration. Here, Forbes et al. [14] do not need that D(x) is computed by an ROABP.

We, on the other hand, use the property that D(x) is computed by a width-w, `-variate ROABP and
reduce the degree of s(t1, t2) to (ndw)O(log`). Our construction of s(t1, t2) comes from the basis isolating
weight assignment for ROABPs from Agrawal et al. [2]. We use the fact that for any polynomial over a
k-dimensional algebra, shift by a basis isolating map achieves log(k+1)-concentration [17].

4.2 Basis isolation

Let us first recall the definition of a basis isolating weight assignment. Let M denote the set of all
monomials over the variable set x with individual-degree ≤ d. Any function w: x → {0,1,2, . . .}
can be naturally extended to the set of all monomials as follows: w(∏n

i=1 xγi
i ) = ∑

n
i=1 γiw(xi), for any

(γi)
n
i=1 ∈ {0,1,2, . . .}

n. Note that if the variable xi is replaced with tw(xi) for each i, then any monomial m
just becomes tw(m). Let Ak denote a k-dimensional algebra.

Definition 4.3 ([2]). A weight function w: x→{0,1,2, . . .} is called a basis isolating weight assignment
for a polynomial D(x) ∈Ak[x], if there exists a set of monomials S⊆M (|S| ≤ k) whose coefficients form
a basis for the coefficient space of D(x), such that

– for any m,m′ ∈ S, w(m) 6= w(m′) and

– for any monomial m ∈M \S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ S, w(m′)< w(m)} .

Gurjar et al. [17, Lemma 5.2] have shown that shifting by a basis isolating weight assignment achieves
concentration. We write their lemma here without a proof. For a weight function w: x→{0,1,2, . . .},
let tw denote the tuple (tw(x1), tw(x2), . . . , tw(xn)).
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Lemma 4.4 (Isolation to concentration). Let D(x) be a polynomial over a k-dimensional algebra. Let w
be a basis isolating weight assignment for D(x). Then D(x+ tw) is `-concentrated (over F(t)), where
`= dlog(k+1)e.

We now recall the construction complexity of a basis isolating weight assignment for ROABP from [2].
Here, we present a slightly modified version of their Lemma 8 (without proof), which easily follows from
it.

Lemma 4.5. For any numbers `, n, k and d, we can construct a family W of (knd)O(log`) integer weight
assignments on variables {x1,x2, . . . ,xn} with weights bounded by (knd)O(log`) which has the following
property: Let D(x) be an individual-degree-d polynomial over Ak of the form D1(xi1)D2(xi2) · · ·D`(xi`)
for some distinct i1, i2, . . . , i` ∈ [n]. Then one of the weight assignments in W is basis isolating for D(x).

Let W be the family constructed in Lemma 4.5 with k = w2 and `= dlog(w2 +1)e. From Lemma 4.5
and Lemma 4.4, for any D(x) = D1(xi1)D2(xi2) · · ·D`(xi`) ∈ Fw×w[x] there exists a weight assignment
w ∈W such that D(x+ tw) is `-concentrated (over F(t)). However, we want a single tuple s which works
for every D(x). To get a single tuple, we combine the tuples in {tw}w∈W using the standard technique of
Lagrange interpolation (also used in [14, 17]). Let {αw}w∈W be distinct constants. Define

s(t1, t2) = ∑
w∈W

tw
1 ∏

w′∈W
w′ 6=w

t2−αw′

αw−αw′
.

Note that s(t1,αw) = tw
1 . The following claim shows that if D(x+ tw

1 ) is `-concentrated for some w ∈W,
then D(x+ s(t1, t2)) is also `-concentrated.

Claim 4.6. For a polynomial D(x) over an algebra and a constant αw, if D′(x) = D(x+ s(t1,αw)) has
`-concentration (over F(t1)) then so does D′′(x) = D(x+ s(t1, t2)) (over F(t1, t2)).

Proof. It is easy to see that for any tuple s, coefficients of D(x+ s) are linear combinations of coefficients
of D and vice versa (over an appropriate field). And since shifting is an invertible, it preserves the rank of
all coefficients. That is,

rankF{coefD(xa)}xa∈M = rankF(t1){coefD′(xa)}xa∈M = rankF(t1,t2){coefD′′(xa)}xa∈M .

Let this rank be k. Let us represent each coefficient of D as a vector in Fk. Then coefficients of D′

and D′′ come from F[t1]k and F[t1, t2]k, respectively. Let M` = {xa ∈ M | supp(a) < `}. Since D′ has
`-concentration,

rankF(t1) {coefD′(xa) | xa ∈M`}= k .

Hence, one can form an full rank matrix L(t1) ∈ F[t1]k×k which is given by

L(t1) =
(
coefD′(xa1) coefD′(xa2) . . . coefD′(xak)

)
for some xa1 ,xa2 , . . . ,xak ∈M`. Define L′(t1, t2) ∈ F[t1, t2]k×k to be the matrix

L′(t1, t2) =
(
coefD′′(xa1) coefD′′(xa2) . . . coefD′′(xak)

)
.
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From the definition of D′ and D′′, it is clear that L′(t1,αw) = L(t1). Since det(L) 6= 0, we get that
det(L′) 6= 0. Thus,

rankF(t1,t2) {coefD′′(xa) | xa ∈M`} ≥ k .

However, k is the rank of all coefficients of D′′. Hence, D′′ has `-concentration.

Now, since s(t1, t2) has the desired property from Lemma 4.2, f (x+ s(t1, t2)) is `-concentrated for any
polynomial f (x) computed by a width-w ROABP. Recall that degt1(s) is bounded by (ndw)O(log logw) from
the construction in Lemma 4.5. The same bound also holds on degt2(s) because |W|= (ndw)O(log logw).

Lemma 4.7. Given n,d,w, one can compute a tuple s(t1, t2) ∈ F[t1, t2]n of degree (ndw)O(log logw) such
that for any n-variate, individual-degree-d polynomial f (x) ∈ F[x] computed by width-w ROABPs in any
order, f (x+ s(t1, t2)) is O(logw)-concentrated.

As mentioned before, O(logw)-concentration in f (x+ s) means that it has an O(logw)-support
monomial with a nonzero coefficient. Lemma 4.7 gives a bivariate tuple s(t1, t2) for the shift. We argue
that one can substitute field values for t1 and t2 such that any chosen nonzero coefficient in f (x+s) remains
nonzero after the substitution. Note that any coefficient of f (x+ s) is a polynomial in t1 and t2 with its
degree being at most deg( f ) ·deg(s), which is (ndw)O(log logw). Thus, by Schwartz-Zippel-DeMillo-Lipton
Lemma, substituting (ndw)O(log logw) many field values for t1 and t2 suffices.

Now, we move on to the second step of Forbes, Shpilka and Saptharishi [14]. They give an
(ndw)O(log logw)-size hitting set for an already O(logw)-concentrated polynomial which is computed
by ROABPs in any order. They do this by reducing the PIT question to an O(logw)-variate ROABP [14,
Lemma 7.6].

Lemma 4.8 ([14]). Let f (x)∈ F[x] be an n-variate, individual-degree-d polynomial computed by width-w
ROABPs in any order. Suppose f (x) has an (≤ `)-support monomial with a nonzero coefficient. Then,
there is a poly(n,w,d)-time computable m-variate map φ : x→ F[y1,y2, . . . ,ym] such that f (φ(x)) is a
nonzero polynomial of degree < d2n4, where m = O(`2). Moreover, f (φ(x)) is computed by width-w,
m-variate ROABPs in any order.

From the results of [15, 2], we know that an m-variate, width-w ROABP has an (mdw)O(logm)-size
hitting set. Combining Lemma 4.7 and Lemma 4.8 with this fact and putting m = O(log2 w), we get the
following.

Theorem 4.9. For the class of n-variate, individual-degree-d polynomials computed by width-w ROABPs
in any order, one can construct a hitting set of size (ndw)O(log logw).

Concentration in Set-multilinear Circuits. Similar to Theorem 4.9, it would be interesting to achieve
the same size hitting set for set-multilinear circuits. Recall from Section 2.2.3 that a polynomial computed
by a depth-3 set-multilinear circuit can be written as (1,1, . . . ,1) ·D, where D = D1(x1)D2(x2) · · ·Dq(xq)
is a product of linear polynomials over a commutative algebra of dimension k. Here the partition
x = x1∪ x2∪·· ·∪ xq is unknown. Note that the polynomial D can also be expressed as

D = Dσ(1)(xσ(1))Dσ(2)(xσ(2)) · · ·Dσ(q)(xσ(q))

THEORY OF COMPUTING, Volume 13 (2), 2017, pp. 1–21 16

http://dx.doi.org/10.4086/toc


IDENTITY TESTING FOR READ-ONCE OBLIVIOUS BRANCHING PROGRAMS

for any permutation σ on [q]. Hence, one can follow the same arguments as for polynomials computed by
ROABPs in any order to get concentration in set-multilinear circuits. Hence, we get the following result
analogous to Lemma 4.7.

Corollary 4.10. Given n,k, one can compute an n-tuple s(t1, t2) of degree (nk)O(log logk) such that for any
n-variate polynomial f (x) computed by a depth-3 set-multilinear circuit with top fan-in k, the polynomial
f (x+ s(t1, t2)) is O(logk)-concentrated.

However, it is not clear whether the second step of the hitting-set construction can be done for
set-multilinear circuits, i. e., finding a better hitting set by assuming that the polynomial is already
concentrated (Lemma 4.8).

5 Discussion

For our first result (Theorem 3.6), there are three directions for improvement. Ideally, one would like to
have all three at once.

1. Find a similar hitting set for the unknown-order case. In fact, we conjecture that the same hitting
set (Lemma 3.5) works for the unknown-order case as well.

2. Get a hitting set for all fields (including low-characteristic fields). It is easy to construct examples
over small characteristic fields where our hitting set does not work.

3. Reduce the hitting-set size to polynomial. To achieve this, it seems one has to do away with the
divide and conquer approach.

The map described in Conjecture 3.8 is a possible candidate for a polynomial-size hitting set for ROABPs
and proving this conjecture would resolve two of the points above.

As mentioned earlier, we believe the ideas here may help in finding a better PRG for ROBPs. Studying
such connections would in particular take us closer towards resolving a major open question of finding an
O(logn)-seed-length PRG for constant width ROBPs.
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