
THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14
www.theoryofcomputing.org

A Tradeoff Between
Length and Width in Resolution

Neil Thapen∗

Received November 24, 2014; Revised January 24, 2016; Published August 1, 2016

Abstract: We describe a family of CNF formulas in n variables, with small initial width,
which have polynomial length resolution refutations. By a result of Ben-Sasson and Wigder-
son it follows that they must also have narrow resolution refutations, of width O(

√
n logn).

We show that, for our formulas, this decrease in width comes at the expense of an increase in
size, and any such narrow refutations must have exponential length.

ACM Classification: F.4.1, I.2.3, F.2.3

AMS Classification: 03F20, 68Q17, 68T15

Key words and phrases: proof complexity, resolution, width, tradeoff, reflection, lower bound

1 Introduction and results

Resolution is a well-known proof system for refuting propositional CNF formulas. A literal is a
propositional variable or its negation. A clause is a disjunction of literals. We define a conjunctive normal
form formula or CNF to be a set of clauses, which we treat semantically as though it were a conjunction
of clauses. The resolution rule allows us to derive the clause C∨D from the two clauses C∨ q and
D∨¬q, where q is any propositional variable. The weakening rule allows us to derive a clause C from
any subclause D of C. A resolution refutation of a CNF F is a sequence of clauses, ending with the
empty clause, where each clause either comes from F or follows from earlier clauses by resolution or
weakening.

Every unsatisfiable CNF has a resolution refutation. However, interesting questions remain about
the complexity of refutations. We consider two measures of complexity, length and width, and will

∗Partially supported by grant P202/12/G061 of GAČR and RVO:67985840.

© 2016 Neil Thapen
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2016.v012a005

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2016.v012a005

NEIL THAPEN

also mention a third, space. The length (or size) of a resolution refutation Π is the number of clauses it
contains. The width of Π is the maximum width of any clause in Π, where the width of a clause is just
the number of literals it contains. Similarly the width of a CNF F is the maximum width of any clause
in F . The space or clause space of Π is the number of clauses that need to be kept in memory while
verifying Π (see Estaban and Torán [8]).

Ben-Sasson and Wigderson [6] showed an interesting and useful connection between the minimal
length and minimal width of refutations.

Theorem 1.1 (Ben-Sasson and Wigderson). Let F be a CNF in n variables with width k. Suppose
that F has a resolution refutation Π of length S. Then F also has a resolution refutation Π′ of width at
most k+

√
n logS.

In other words, every short refutation can be transformed into a narrow refutation. However, the
transformation of Π into Π′ used in the proof of Theorem 1.1 may increase the length of the refutation
exponentially. In this paper we address the natural question, posed for example in [4, 15, 14], of whether
the theorem can be strengthened to guarantee that the narrow refutation Π′ is not substantially longer
than the initial short refutation Π.1 We show that the expected answer (“no”) is correct. Our main result
is the following theorem.

Theorem 1.2. Fix ε > 0. Take any sufficiently large m such that both m and mε are powers of two. There
is a CNF Φm with Θ(m1+2ε) variables and Θ(m1+3ε) clauses, of width O(logm), such that

1. Φm has a refutation of length O(m1+3ε) and width m+O(logm),

2. Φm has a refutation of width O(mε),

3. Φm has no subexponential length refutation of width strictly less than m.

By Theorem 1.1, it follows from item 1 of Theorem 1.2 (even without item 2) that Φm has a refutation
of width O(m

1
2+ε
√

logm). But, by item 3, as long as ε < 1/2 every such refutation requires exponential
length.

This kind of result is known as a tradeoff between length and width. The reason for the name is
that if we need a refutation of small length, we can find one; and if we need a refutation of small width,
we can find one; but we must choose between small length and small width, since there is no way to
minimize both in the same refutation. We briefly describe some known tradeoffs between complexity
measures for resolution—see Nordström [14] for a detailed survey.

They were first studied by Ben-Sasson [4], who showed tradeoffs between space and width for
resolution and between space and length for treelike resolution (in which the underlying graph of every
refutation must be a tree). In particular he gave formulas of size n which have linear length treelike
refutations with constant space, and which also have constant width treelike refutations, but for which
for any refutation Π, the product of the width and the space of Π must be at least Ω(n/ logn), and

1A question about the relation between length and width in the opposite direction also arises from [6]. Any refutation
with width w must have length at most nO(w), since there only exist nO(w) many clauses of suitable width. Is there a family
of formulas for which this bound is tight, that is, the formulas are refutable in width w, but require length nΩ(w)? This was
answered recently by Atserias, Lauria and Nordström [2]: such families do exist, for w = nc for any constant c < 1/2.

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 2

http://dx.doi.org/10.4086/toc

A TRADEOFF BETWEEN LENGTH AND WIDTH IN RESOLUTION

for any treelike refutation Π the product of the width and the logarithm of the length of Π must be at
least Ω(n/ logn).

A tradeoff between space and length for unrestricted resolution was shown by Nordström [13], and
a robust system for showing such tradeoffs was developed by Ben-Sasson and Nordström in [5]. For
example, there are formulas of size n and constant width which have linear length refutations, and which
also have refutations with space O(n/ logn), but for which any refutation with minimal space must have
exponential length.

A tradeoff between length and width was also shown in [13], giving formulas of size n and constant
width which have linear length refutations, and for which the minimal width of refutations is O(3

√
n), but

for which any refutation of minimal width must have exponential length. However, these parameters are
not enough to answer the question about Theorem 1.1 discussed above (in particular the linear length
refutations also have width O(3

√
n)), and the formulas and method of proof in this paper are completely

different.
A new tradeoff between length and width for treelike resolution was shown very recently by

Razborov [17] giving, for example, formulas of width 3
√

n which have refutations of width O(3
√

n),
but for which any treelike refutation of width n2/3−ε must have doubly exponential size.

The CNF Φm in Theorem 1.2 is a propositional version of the coloured polynomial local search
principle, or CPLS, which was introduced in [12] as a combinatorial principle as strong as reflection
for resolution. It thus in some sense captures the strength of resolution, and also of first-order theories
built around bounded Π2 induction (such as Buss’s theory T 2

2 [7]), as these are closely connected with
resolution. We say more about this in Section 2 below. In Section 3 we formally define the CNF Φm and
prove the length upper bound, and in Section 4 we prove the width upper bound, describing two different
refutations of small width. Finally in Section 5 we prove the length lower bound on refutations of small
width.

The idea of the lower bound proof is, roughly, that we consider four senses in which a clause can be
“narrow”—mostly these differ in which variables we are counting (see Lemma 5.4). Given a refutation Π,
if Π has small width it follows immediately that every clause in Π is narrow in our first sense. If
furthermore Π has subexponential length, then we can hit Π with a random restriction such that with high
probability every clause in the resulting refutation is also narrow in the remaining three senses. We then
use what is essentially an adversary argument to show that no such narrow refutation of the restricted
CNF can exist. The restriction and the adversary argument are simpler versions of those used in the
resolution length lower bound for the related formula GI3 in [18].

2 Coloured polynomial local search

We write [a] for {0, . . . ,a−1}. Consider a levelled directed graph whose nodes consist of all pairs (i,x)
from [a]× [b]. We refer to (i,x) as node x on level i. If i < a−1, this node has a single neighbour in the
graph, node fi(x) on level i+1. Every node in the graph is coloured with some set of colours from [0,c).
Consider the following three sentences.

1. Node 0 on level 0 has no colours.

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 3

http://dx.doi.org/10.4086/toc

NEIL THAPEN

2. For every node x on every level i < a−1, if the neighbour fi(x) of x on level i+1 has any colour y,
then x also has colour y.

3. Every node x on the bottom level a−1 has at least one colour, u(x).

Clearly, these cannot all be true at once in a finite graph. We formalize this principle as a first-order
sentence, using a relation Gi(x,y) to represent the presence of colour y on node (i,x).

Definition 2.1. The coloured polynomial local search principle is the universal closure of the following
first-order formula with parameters a,b,c. Suppose that Gi(x,y) is a three-place relation on [a]× [b]× [c],
that u(x) is a single-argument function from [b] to [c], and that fi(x) is a two-argument function, with
arguments i and x, from [a]× [b] to [b]. Then the following three formulas cannot all be true:

1. ∀y<c, ¬G0(0,y),

2. ∀i<a−1 ∀x<b ∀y<c, Gi+1(fi(x),y)→ Gi(x,y),

3. ∀x<b, Ga−1(x,u(x)).

We also use CPLS as the name of the total NP search problem in which we are given the size
parameters a, b and c, together with either oracles or polynomial time machines computing G, u and f ,
and have to find a witness that one of the three formulas above is false. If we fix c = 1 this is equivalent
to the well-known polynomial local search problem PLS of Johnson, Papadimitriou and Yannakakis [10].
The CPLS principle asserts that the CPLS search problem is total.

Without going into details about first-order proof systems, the CPLS principle can be proved by
bounded Π2 induction on i, starting at i = a−1 and working towards i = 0, using the inductive hypothesis
∀x<b∃y<cGi(x,y), that every node at level i has a colour. The short resolution refutation in the next
section will have essentially this form, deriving a set of clauses expressing ∀x<b∃y<cGi(x,y) for each i
in turn, and in particular using space and width closely related to the bounds b and c on the universal
and existential quantifiers. In fact, by a result of Krajíček [11] any first-order proof using a suitable form
of bounded Π2 induction can be made into a resolution refutation in a similar way (see [3] for a recent,
self-contained presentation of this translation).

On the other hand, CPLS is the hardest NP search problem that is provably total using this amount of
induction, in the sense that any other such search problem is reducible to CPLS. This is the main result
of [12], and follows from the translation of bounded Π2 induction into resolution mentioned above, plus
the fact that 1-reflection for resolution is reducible to CPLS. Here 1-reflection for resolution is the NP
search problem in which we are given (as oracles or polynomial time machines) a resolution refutation
of a narrow CNF together with an assignment to its variables, and have to find a clause of the CNF that
is falsified by the assignment. For more on connections of this form between proof systems, search
problems and induction, see [18].

3 The CNF and a short refutation

Let a be any natural number and let b and c be powers of two. We will define a CNF formula CPLSa,b,c.
The formula Φm in Theorem 1.2 is CPLSa,b,c with parameters a = b = mε and c = m. The bounds on
formula size and proof size in Theorem 1.2 are shown in this section.

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 4

http://dx.doi.org/10.4086/toc

A TRADEOFF BETWEEN LENGTH AND WIDTH IN RESOLUTION

We first list the propositional variables that we will use.

1. For each i < a, x < b and y < c, there is a variable Gi(x,y).

2. For each i < a, x < b and j < logb, there is a variable (fi(x)) j, standing for the jth bit of the value
of fi(x).

3. For each x < b and j < logc, there is a variable (u(x)) j, standing for the jth bit of the value of u(x).

The total number of variables is abc+ab logb+b logc.
If a number x′ < b has binary expansion (x′)0 . . .(x′)logb−1 we write fi(x) = x′ to stand for the con-

junction expressing that, for each j < logb, the variable (fi(x)) j has the same value as the corresponding
bit (x′) j. That is, fi(x) = x′ is the conjunction

q0∧·· ·∧qlogb−1 where q j =

{
(fi(x)) j if (x′) j = 1,
¬(fi(x)) j if (x′) j = 0.

Similarly if y < c has binary expansion (y)0 . . .(y)logc−1 we write u(x) = y to stand for the conjunction
expressing that, for each j < logc, the variable (u(x)) j has the same value as the corresponding bit (y) j.

We will frequently write v1∧ ·· ·∧ vk→ w1∨ ·· ·∨w` to stand for the clause ¬v1∨ ·· ·∨¬vk ∨w1∨
·· · ∨w`. With this notation the resolution rule may take the form: from A∧ q→ C and A∧¬q→ D
derive A→C∨D (where A is a conjunction).

Definition 3.1. The formula CPLSa,b,c consists of the following three sets of clauses, which we will call
Axioms 1, 2 and 3.

Axiom 1. For each y < c, the clause
¬G0(0,y) .

Axiom 2. For each i < a−1, each pair x, x′ < b and each y < c, the clause

fi(x) = x′∧Gi+1(x′,y)→ Gi(x,y) .

Axiom 3. For each x < b and each y < c, the clause

u(x) = y→ Ga−1(x,y) .

Axiom 2 has width logb+2 and Axiom 3 has width logc+1. The total number of clauses in the
formula is c+(a−1)b2c+bc.

Theorem 3.2. The formula CPLSa,b,c has a refutation simultaneously of length O(ab2c), of space
2b+ logb+3 (assuming logc≤ b) and of width c+ logb+1.

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 5

http://dx.doi.org/10.4086/toc

NEIL THAPEN

Proof. For each i, define a set of clauses

Mi :=
{∨

y<c
Gi(x,y) : x < b

}
expressing that every node at level i has a colour. Notice that Mi has space b and width c. We construct
the refutation by deriving Mi for i = a−1, . . . ,0 in turn, and then deriving the empty clause from M0. The
details are in the following three claims.

Claim 1. From Axiom 3 we can derive Ma−1 in length O(bc), space b+ logc+1 and width c.

Claim 2. For each i< a−1, from Axiom 2 and Mi+1 we can derive Mi in length O(b2c), space b+ logb+3
and width c+ logb+1.

Claim 3. From Axiom 1 and M0 we can derive the empty clause in length O(c), space 3 and width c.

We use Claim 1 to derive Ma−1. We then keep Ma−1 in memory, taking up b memory locations, while
using Claim 2 to derive Ma−2. We store Ma−2, forget Ma−1, and continue. Once we have derived M0 we
use Claim 3 to reach a contradiction. The maximum space used is either b+ logc+1 while deriving Ma−1,
or 2b+ logb+3 while deriving each Mi from Mi+1.

Proof of Claim 1. Fix x < b. For a binary string σ of length logc or less, and a number y < c, say that y
extends σ if the sequence of the first |σ | bits in the binary expansion of y equals σ , that is, if (y) j = σ j

for all j < |σ |.
Let φσ (x) be the conjunction q0∧·· ·∧q|σ |−1 where q j is (u(x)) j if σ j = 1 or ¬(u(x)) j if σ j = 0, so

that φσ (x) is true exactly in assignments where u(x) extends σ . Let θσ (x) be the clause

φσ (x)→
∨

y extends σ

Ga−1(x,y) .

Notice that if |σ |< logc, then θσ0(x) and θσ1(x) have the forms

θσ0(x) : φσ (x)∧¬(u(x))|σ |→
∨

y extends σ0

Ga−1(x,y) ,

θσ1(x) : φσ (x)∧ (u(x))|σ | →
∨

y extends σ1

Ga−1(x,y) .

We can derive θσ (x) from these by resolving on the variable (u(x))|σ |.
Axiom 3 consists of θσ (x) for every σ of length exactly logc. So by the observation above, we can

derive θ∅(x) from Axiom 3 using a derivation in the form of a complete binary tree of height logc. This
uses length O(c), space logc+ 2 and width c, the maximum width of the clauses θσ (x). Finally, the
clause θ∅(x) is exactly

∨
y<c Ga−1(x,y), so to show the claim we derive θ∅(x) for each x < b in turn.

Proof of Claim 2. Fix x < b. For x′ < b, let φ(x′) be the clause

fi(x) = x′→
∨
y<c

Gi(x,y) .

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 6

http://dx.doi.org/10.4086/toc

A TRADEOFF BETWEEN LENGTH AND WIDTH IN RESOLUTION

The clause φ(x′) can be obtained from
∨

y<c Gi+1(x′,y), which is in Mi+1, by resolving with instances of
Axiom 2 for each y < c in turn. This takes length O(c), space 3 and width c+ logb+1.

We now use a similar argument to the proof of Claim 1 to derive the clause
∨

y<c Gi(x,y) from all
the clauses φ(x′), using a derivation in the form of a complete binary tree of height logb. To save space
we do not derive all of the clauses φ(x′) together at the beginning, but only as we need them. Hence the
derivation of

∨
y<c Gi(x,y) takes length O(bc), space logb+4 and width c+ logb+1. As before, to show

the claim derive this for each x < b in turn.

Proof of Claim 3. Resolve
∨

y<c G0(0,y) with all instances of Axiom 1.

This completes the proof of Theorem 3.2.

4 Two narrow refutations

The main purpose of this section is to motivate the definition of the random restriction ρ in Section 5
below. We describe, in Theorems 4.1 and 4.2, two narrow strategies for the Prover in a certain Prover-
Adversary game based on CPLSa,b,c (this is equivalent to, but intuitively simpler than, describing narrow
resolution refutations). In Section 5 we want to show that no narrow refutation can be small, which in
particular means that we should be able to show that no small strategy similar to the two outlined here
can work.

Part 1 of the definition of ρ (Definition 5.1) can be seen as blocking any small strategy similar to the
one outlined in Theorem 4.1, where the Prover tries to learn long paths in f , because it generates lots
of cases that the Prover must be able to remember, forcing his strategy to have many nodes. Part 3 of
the definition does the same for strategies similar to the one in Theorem 4.2, where the Prover tries to
remember a colour on many different nodes. (See Pudlák [16] for more on this kind of approach to length
lower bounds.)

The Prover-Adversary game works as follows. At each turn, the Prover can ask the Adversary the
value of a variable, and record the corresponding literal in his memory; alternatively, the Prover can forget
a literal to allow the memory location to be re-used. The Adversary can give any answer which does not
directly contradict the current contents of the Prover’s memory, and the Prover wins when his memory
falsifies some axiom of CPLSa,b,c. It is easy to see that a winning strategy for the Prover that requires no
more than w units of memory (where a unit is enough to record one literal) can be turned into a resolution
refutation of CPLSa,b,c of width w.

Theorem 4.1. CPLSa,b,c has a refutation of width a logb+ logc.

Proof. By querying all bits of each fi(xi) in turn, the Prover first learns a sequence x0, . . . ,xa−1 such that
x0 = 0 and fi(xi) = xi+1 for each i < a−1. This requires (a−1) logb units of memory.

The Prover then uses logc more units of memory to learn that u(xa−1) = y for some colour y. The
Prover then queries Ga−1(xa−1,y) and must get the answer 1, since otherwise the Adversary would violate
Axiom 3. At this point the Prover can forget u(xa−1) = y.

For i = a− 2, . . . ,0 the Prover then queries Gi(xi,y) and must get the answer 1 each time, or the
Adversary would violate Axiom 2. Each time the Prover may then forget the previous value Gi+1(xi+1,y).
For i = 0 this forces the Adversary to violate Axiom 1.

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 7

http://dx.doi.org/10.4086/toc

NEIL THAPEN

Theorem 4.2. CPLSa,b,c has a refutation of width 2b+ logb+ logc.

Proof. By a result of Atserias and Dalmau [1] bounding the minimal width of refuting a CNF in terms
of the minimal space, the existence of a refutation of roughly this width follows already from the space
upper bound on CPLSa,b,c shown by the refutation in Theorem 3.2. In some sense the refutation we
describe here is dual to that one (see also Filmus, Lauria, Mikša, Nordström and Vinyals [9]).

For each x < b in turn, the Prover learns u(x) = y for some colour y, queries Ga−1(x,y) and must get
the answer 1 (by Axiom 3), and then forgets u(x) = y. This can be done in b+ logc units of memory in
total.

The Prover then repeats the following process for each i = a−2, . . . ,0. For each x < b the Prover
learns fi(x) = x′ for some x′, then queries Gi(x,y), where y is the colour for which he knows Gi+1(x′,y).
This must get the answer 1 (by Axiom 2). The Prover then forgets fi(x) = x′ and goes on to the next x.
Having done this for every x at level i, he forgets all the values Gi+1(x,y) from the previous level. The
maximum memory used during this process is 2b+ logb.

When this has reached level 0, the Prover knows that G0(0,y) = 1 for some colour y, contradicting
Axiom 1.

The refutation in Theorem 4.1 has length at least ba, since it contains a distinct clause for every
possible sequence x0, . . . ,xa−1. The refutation in Theorem 4.2 has length at least cb, since it contains a
distinct clause corresponding to the conjunction Ga−1(0,y0)∧·· ·∧Ga−1(b−1,yb−1) for every possible
choice of colours y0, . . . ,yb−1.

5 A length lower bound for narrow refutations

We now prove the last part of Theorem 1.2, that there is no refutation of Φm with simultaneously small
width and subexponential length. Recall that Φm is the formula CPLSa,b,c with parameters a = b = mε

and c = m, where ε > 0 is a constant and m and mε are both powers of two.
By subexponential we mean smaller than 2mδ

for every fixed δ > 0. By exponentially high probability
we mean probability greater than 1−2−mδ

for some fixed δ > 0. By polynomially high probability we
mean probability greater than 1−m−δ for some fixed δ > 0. The main parameter appearing in the proof
will be a rather than m, but since a = mε this does not change these definitions.

Suppose for a contradiction that there is a refutation Π of Φm with subexponential length and with
width strictly less than m. Let p = a−3/4 and w = a7/8.

Definition 5.1. A random restriction ρ is a partial assignment chosen in three stages, as follows.

1. Independently for each pair (i,x), with probability p put (i,x) into a set Γ. Then for each (i,x) ∈ Γ,
for each y set the variable Gi(x,y) independently to 0 or 1 with probability 1/2. For such (i,x) we
say “Gi(x, ·) is set in ρ .”

2. For each node x on level a−1 with (i,a−1) ∈ Γ, choose a random y such that Ga−1(x,y) = 1 and
set all bits of u(x) to satisfy u(x) = y. For such x we say “u(x) is set in ρ .” (With exponentially
small probability there is no such y — in this case do nothing.)

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 8

http://dx.doi.org/10.4086/toc

A TRADEOFF BETWEEN LENGTH AND WIDTH IN RESOLUTION

3. Independently for each pair (i,x) with i < a−1, with probability p put (i,x) into a set ∆. For each
i < a−1 let Si be the set of nodes x on level i with (i,x) ∈ ∆. Randomly choose an injection hi

from Si onto a random set of nodes of size |Si| on level i+1, and for each x ∈ Si set all bits of fi(x)
according to hi. For such (i,x) we say “ fi(x) is set in ρ .”

Definition 5.2. The CNF Φm�ρ is formed from Φm by removing every clause containing a literal satisfied
by ρ , and removing every literal falsified by ρ from the remaining clauses. Π�ρ is formed from Π by the
same operations.

After the restriction, Π�ρ is a resolution refutation of Φm �ρ (some instances of the resolution rule
in Π may have become instances of weakening in Π�ρ).

We now have two goals. The first is to use the assumption about the length of Π to show that with
exponentially high probability ρ simplifies Π, in that every clause in Π�ρ is narrow in a certain sense.
This is Lemma 5.4. The second is to show that, with polynomially high probability, not only does ρ not
immediately falsify Φm, but Φm �ρ does not even have any refutation that is narrow in the above sense.

For this we define safe configurations, which informally are certain partial assignment α such
that Φm �α looks difficult to refute. In Lemma 5.5 we show that with polynomially high probability ρ

does not contain certain local patterns that would make refuting Φm �ρ easy. In Lemmas 5.7 and 5.8 we
show that this implies that ρ is a safe configuration, and that no safe configuration falsifies Φm. Finally
we use a sequence of safe configurations to show that Π �ρ cannot be a narrow refutation of Φm �ρ ,
completing the proof.

Lemma 5.3. With exponentially high probability, for each pair (i,x) such that Gi(x, ·) is set in ρ ,
Gi(x,y) = 1 in ρ for at least one third of the colours y < c. Furthermore for each i < a, Gi(x, ·) is set
in ρ for at most 2pa values x < b, and for each i < a−1, fi(x) is set in ρ for at most 2pa values x < b.

Proof. This follows from the Chernoff bound and the union bound.

Lemma 5.4. With exponentially high probability, for every clause C in Π�ρ the following are true.

N1. C contains a variable Gi(x,y) for at most c−1 many triples (i,x,y).

N2. C contains any variable Gi(x,y) for at most w many pairs (i,x).

N3. C contains any variable from fi(x) for at most w many pairs (i,x).

N4. C contains any variable from u(x) for at most w many values x.

Proof. Item N1 follows directly from the assumption that the width of Π is strictly less than m. This is
the only place where we use this assumption.

For the remaining three items, since Π has subexponential length it is enough to show that, indepen-
dently for each clause C in Π, if C is not narrow in this sense then with exponentially high probability C
is satisfied by ρ , and hence does not appear in Π�ρ .

For item N2, suppose that a clause C in Π contains a literal Gi(x,y) or ¬Gi(x,y) for more than w
many pairs (i,x). For each such (i,x), the probability that such a literal is satisfied in ρ is at least p/2.
Hence the probability that none of these literals in C is satisfied is at most

(1− p/2)w < e−
1
2 pw = e−

1
2 a1/8

.

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 9

http://dx.doi.org/10.4086/toc

NEIL THAPEN

For item N3, there is a complication that, if fi(x1), . . . , fi(xt) are all the values of f set in ρ on
level i, then the bits (fi(xk)) j are not all independent, since the values assigned to fi(x) on level i are
constrained to be distinct for distinct nodes x. However, we may assume that fi(x1), . . . , fi(xt) were
chosen in the order shown, and that when each fi(xk) was chosen the only constraint was that the k−1
values already chosen on that level were excluded. By Lemma 5.3 we may assume k ≤ 2pa. Hence if a
literal ` has the form (fi(x)) j or ¬(fi(x)) j, if fi(x) is set in ρ then there are a/2 possible values it may
take which satisfy `, of which at most 2pa were excluded. Hence the probability that ` is satisfied is at
least p(a/2−2pa)/a = p/2−2p2, regardless of how earlier values were set, which is at least p/3 for
large a. We then argue as for item N2.

For item N4, suppose that a literal ` has the form (u(x)) j or ¬(u(x)) j. Then if Ga−1(x, ·) is set in ρ ,
by the Chernoff bound we may assume that, of the c/2 possible values y of u(x) that would satisfy `, for
at least one third we have Ga−1(x,y) = 1. Hence for any x the probability that u(x) is set in ρ in a way
that satisfies ` is at least p/6. We then argue as for item N2.

We define a path of length k ≥ 0 in a partial assignment α as a sequence of pairs (i,x0), . . . ,(i+ k,xk)
such that fi+ j(x j) = x j+1 in α for each j < k.

Lemma 5.5. With polynomially high probability, the following are all true.

P1. G0(0, ·) and f0(0) are not set in ρ .

P2. There is no triple (i,x,x′) such that Gi(x, ·), Gi+1(x′, ·) and fi(x) are all set in ρ , with fi(x) = x′. In
other words, there is no path in ρ of length 1 with G set at both ends.

P3. There is no 4-tuple (i,x,x′,x′′) such that Gi(x, ·), Gi+2(x′′, ·), fi(x) and fi+1(x′) are all set in ρ , with
fi(x) = x′ and fi+1(x′) = x′′. That is, there is no path in ρ of length 2 with G set at both ends.

P4. There is no 4-tuple (i,x,x′,x′′) such that fi(x), fi+1(x′) and fi+2(x′′) are all set in ρ , with fi(x) = x′

and fi+1(x′) = x′′. That is, there is no path in ρ of length 3 or more.

Proof. Item P1 is true with probability (1− p)2.
For item P2, for any triple (i,x,x′) the probability that Gi(x, ·), Gi+1(x′, ·) and fi(x) are all set is p3,

and the probability that fi(x) = x′ is 1/a. There are no more than a3 such triples, so by the union bound
the probability that there is any triple violating the condition is less than (p3/a)a3 = a2 p3 = a−1/4. The
calculation for item P3 is similar.

For item P4, for any 4-tuple (i,x,x′,x′′) the probability that fi(x), fi+1(x′) and fi+2(x′′) are set
is p3, and the probability that fi(x) = x′ and fi+1(x′) = x′′ is 1/a2. There are no more than a4 such
tuples, so by the union bound the probability that there is any tuple violating the condition is less than
(p3/a2)a4 = a2 p3 = a−1/4.

Fix a restriction ρ which satisfies the conditions of Lemmas 5.3, 5.4 and 5.5.

Definition 5.6. A safe configuration is a partial assignment α which extends ρ and satisfies the conditions
listed below. We say that a colour y is present or forbidden at (i,x) if respectively Gi(x,y) = 1 or
Gi(x,y) = 0 in α .

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 10

http://dx.doi.org/10.4086/toc

A TRADEOFF BETWEEN LENGTH AND WIDTH IN RESOLUTION

S1. For each pair (i,x) either all variables belonging to fi(x) are set, or none are. Similarly for each x
either all variables belonging to u(x) are set, or none are.

S2. For each level i < a, the partial assignment to the variables fi defines a partial injection.

S3. If (0,0) and (i,x) are on the same path in α , then no colour y is present at (i,x).

S4. If (i,x) and (i′,x′) are on the same path in α , then no colour y is simultaneously present at (i,x)
and forbidden at (i′,x′).

S5. If (i,x) and (a−1,x′) are on the same path in α and u(x′) is set to a colour y, then the colour y is
not forbidden at (i,x).

Lemma 5.7. The restriction ρ is a safe configuration.

Proof. It satisfies conditions S1 and S2 by construction. It satisfies condition S3 by item P1 of Lemma 5.5,
which guarantees that (0,0) is not on any non-trivial path. It satisfies condition S4 by items P2, P3 and
P4 of Lemma 5.5. Condition S5 follows from condition S4 and the fact that, if u(x) is set in ρ , then we
must have Ga−1(x,u(x)) = 1 in ρ .

Lemma 5.8. No clause in Φm, and hence no clause in Φm �ρ , is falsified by any safe configuration.

Proof. Conditions S3, S4 and S5 of the definition of safe configuration respectively guarantee that no
clause from Axiom 1, 2 or 3 of CPLSa,b,c is falsified.

The next lemma will allow us to derive a contradiction from the existence of the refutation Π�ρ . The
empty clause at the end of the refutation is falsified by a safe configuration, namely ρ . Now suppose
that a clause E in Π�ρ is falsified by some safe configuration. Either E is derived from an earlier clause
by weakening, or E is derived from two earlier clauses by resolution, or E is an initial clause of Φn �ρ .
In both of the first two cases we can find an earlier clause in the proof which is falsified by some safe
configuration—in the case of weakening this is trivial, and in the case of resolution we use Lemma 5.9.
Hence we must eventually find an initial clause of Φn �ρ which is falsified by some safe configuration,
contradicting Lemma 5.8.

Lemma 5.9. Suppose that a clause E in Π � ρ is derived from clauses C and D by a single use of
the resolution rule, and that there is a safe configuration α which falsifies E. Then there is a safe
configuration β which falsifies either C or D.

Proof. We write α \ρ for the assignment γ disjoint from ρ such that α = ρ ∪ γ . By Lemma 5.4, by
shrinking α as necessary we may assume without loss of generality that α \ρ is narrow in the following
sense: it sets a variable Gi(x,y) for at most c−1 many triples (i,x,y); it sets any variable Gi(x,y) for at
most w many pairs (i,x); it sets fi(x) for at most w many pairs (i,x); and it sets u(x) for at most w many
values x.

Let q be the variable resolved on to derive E. If α already assigns a value to q, then α already falsifies
either C or D, by the structure of the resolution rule. Otherwise, it is enough to show how to extend α to
a safe configuration which assigns a value to q. We consider three cases.

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 11

http://dx.doi.org/10.4086/toc

NEIL THAPEN

First suppose that q has the form Gi(x,y). If (i,x) is on the same path as some node at which colour y
is present, or some node (a− 1,x′) such that u(x′) is set to y, we put Gi(x,y) = 1. Otherwise we put
Gi(x,y) = 0. This does not affect conditions S1 and S2 of the definition of a safe configuration and
preserves conditions S4 and S5 by construction. The only way it can falsify condition S3 is if (i,x) is on
a path which contains both (0,0) and some node (a−1,x′) such that u(x′) is set to y. But any such path
must have length a−1, the full height of the graph. By Lemma 5.5 all paths in ρ have length 2 or less,
hence by our assumption about the narrowness of α \ρ , the longest possible path in α would consist of
w+1 many paths of length 2 from ρ linked together by w many paths of length 1 from α \ρ , with total
length 3w+2.

Now suppose that q has the form (fi(x)) j. Say that a node (i+ 1,x′) is marked if any variable
Gi+1(x′,y) is assigned a value, or fi+1(x′) is set, or fi(x′′) = x′ for some x′′, or i+1 = a−1 and u(x′) is
set. In each of the four cases there are at most 2pa+w such nodes, by Lemma 5.3 and our assumption
about the narrowness of α \ρ . Hence for large a there are many unmarked nodes. Choose any unmarked
node (i+1,x′) and set fi(x) to be x′. By construction, this preserves conditions S1 and S2. It preserves
conditions S3 and S4 because it does not add or forbid a colour on any existing path, or join any paths
together. It preserves condition S5 because we avoid nodes (a−1,x′) for which u(x′) is set.

Finally suppose that q has the form (u(x)) j. Let π be the path containing (a−1,x). If π contains a
node (i,x) for which Gi(x, ·) is set in ρ , then every colour y is either forbidden or present on π , and by
Lemma 5.3 at most 2/3 of colours are forbidden. If π contains no such node, then by the assumption
about the narrowness of α \ρ , at most c− 1 colours are forbidden on π . In either case, at least one
colour y is not forbidden on π . Set u(x) = y. This does not affect conditions S1 to S4, and preserves
condition S5 by construction.

Acknowledgements

I am grateful to Jakob Nordström for making me aware of this problem, and to Jakob Nordström and
Nicola Galesi for helpful comments on an early version of this paper.

References

[1] ALBERT ATSERIAS AND VICTOR DALMAU: A combinatorial characterization of resolu-
tion width. J. Comput. System Sci., 74(3):323–334, 2008. Preliminary version in CCC’03.
[doi:10.1016/j.jcss.2007.06.025] 8

[2] ALBERT ATSERIAS, MASSIMO LAURIA, AND JAKOB NORDSTRÖM: Narrow proofs may be
maximally long. ACM Trans. Comput. Logic, 17(3):19:1–19:30, 2016. Preliminary version in
CCC’14. [doi:10.1145/2898435, arXiv:1409.2731] 2

[3] ARNOLD BECKMANN, PAVEL PUDLÁK, AND NEIL THAPEN: Parity games and propositional
proofs. ACM Trans. Comput. Logic, 15(2):17:1–17:30, 2014. Preliminary versions in MFCS’13 and
ECCC. [doi:10.1145/2579822] 4

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 12

http://dx.doi.org/10.1109/CCC.2003.1214424
http://dx.doi.org/10.1016/j.jcss.2007.06.025
http://dx.doi.org/10.1109/ccc.2014.36
http://dx.doi.org/10.1145/2898435
http://arxiv.org/abs/1409.2731
http://dx.doi.org/10.1007/978-3-642-40313-2_12
http://eccc.hpi-web.de/report/2013/092/
http://dx.doi.org/10.1145/2579822
http://dx.doi.org/10.4086/toc

A TRADEOFF BETWEEN LENGTH AND WIDTH IN RESOLUTION

[4] ELI BEN-SASSON: Size-space tradeoffs for resolution. SIAM J. Comput., 38(6):2511–2525, 2009.
Preliminary version in STOC’02. [doi:10.1137/080723880] 2

[5] ELI BEN-SASSON AND JAKOB NORDSTRÖM: Understanding space in proof complexity: Sepa-
rations and trade-offs via substitutions (extended abstract). In Proc. 2nd Symp. on Innovations in
Comput. Sci. (ICS’11), pp. 401–416, 2011. Available at ICS and ECCC. [arXiv:1008.1789] 3

[6] ELI BEN-SASSON AND AVI WIGDERSON: Short proofs are narrow - resolution made simple. J.
ACM, 48(2):149–169, 2001. Preliminary version in CCC’99. [doi:10.1145/375827.375835] 2

[7] SAMUEL BUSS: Bounded Arithmetic. Bibliopolis, 1986. 3

[8] JUAN LUIS ESTEBAN AND JACOBO TORÁN: Space bounds for resolution. Inform. and Comput.,
171(1):84–97, 2001. Preliminary version in STACS’99. [doi:10.1006/inco.2001.2921] 2

[9] YUVAL FILMUS, MASSIMO LAURIA, MLADEN MIKŠA, JAKOB NORDSTRÖM, AND MARC

VINYALS: From small space to small width in resolution. ACM Trans. Comput. Logic, 16(4):28:1–
28:15, 2015. Preliminary version in STACS’14. [doi:10.1145/2746339, arXiv:1409.2978] 8

[10] DAVID S. JOHNSON, CHRISTOS H. PAPADIMITRIOU, AND MIHALIS YANNAKAKIS: How easy
is local search? J. Comput. System Sci., 37(1):79–100, 1988. Preliminary version in FOCS’85.
[doi:10.1016/0022-0000(88)90046-3] 4

[11] JAN KRAJÍČEK: On the weak pigeonhole principle. Fundamenta Math., 170(1-2):123–140, 2001.
[doi:10.4064/fm170-1-8] 4

[12] JAN KRAJÍČEK, ALAN SKELLEY, AND NEIL THAPEN: NP search problems in low fragments of
bounded arithmetic. J. Symbolic Logic, 72(2):649–672, 2007. [doi:10.2178/jsl/1185803628] 3, 4

[13] JAKOB NORDSTRÖM: A simplified way of proving trade-off results for resolution. Inform. Process.
Lett., 109(18):1030–1035, 2009. [doi:10.1016/j.ipl.2009.06.006] 3

[14] JAKOB NORDSTRÖM: Pebble games, proof complexity and time-space trade-offs. Logical Methods
in Comput. Sci., 9(3):15:1–15:63, 2013. [doi:10.2168/lmcs-9(3:15)2013, arXiv:1307.3913] 2

[15] JAKOB NORDSTRÖM AND JOHAN HÅSTAD: Towards an optimal separation of space and length
in resolution. Theory of Computing, 9(14):471–557, 2013. Preliminary versions in STOC’08 and
ECCC. [doi:10.4086/toc.2013.v009a014, arXiv:0803.0661] 2

[16] PAVEL PUDLÁK: Proofs as games. Amer. Math. Monthly, 107(6):541–550, 2000.
[doi:10.2307/2589349] 7

[17] ALEXANDER RAZBOROV: A new kind of tradeoffs in propositional proof complexity. J. ACM,
63(2):16:1–16:14, 2016. Available at author’s website. [doi:10.1145/2858790] 3

[18] ALAN SKELLEY AND NEIL THAPEN: The provably total search problems of bounded arithmetic.
Proc. London Math. Soc., 103(1):106–138, 2011. [doi:10.1112/plms/pdq044] 3, 4

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 13

http://dx.doi.org/10.1145/509907.509975
http://dx.doi.org/10.1137/080723880
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/3.html
http://eccc.hpi-web.de/report/2010/125/
http://arxiv.org/abs/1008.1789
http://dx.doi.org/10.1109/CCC.1999.766251
http://dx.doi.org/10.1145/375827.375835
http://dx.doi.org/10.1007/3-540-49116-3_52
http://dx.doi.org/10.1006/inco.2001.2921
http://dx.doi.org/10.4230/LIPIcs.STACS.2014.300
http://dx.doi.org/10.1145/2746339
http://arxiv.org/abs/1409.2978
http://dx.doi.org/10.1109/sfcs.1985.31
http://dx.doi.org/10.1016/0022-0000(88)90046-3
http://dx.doi.org/10.4064/fm170-1-8
http://dx.doi.org/10.2178/jsl/1185803628
http://dx.doi.org/10.1016/j.ipl.2009.06.006
http://dx.doi.org/10.2168/lmcs-9(3:15)2013
http://arxiv.org/abs/1307.3913
http://dx.doi.org/10.1145/1374376.1374478
http://eccc.hpi-web.de/report/2008/026/
http://dx.doi.org/10.4086/toc.2013.v009a014
http://arxiv.org/abs/0803.0661
http://dx.doi.org/10.2307/2589349
http://people.cs.uchicago.edu/~razborov/files/ultimate.pdf
http://dx.doi.org/10.1145/2858790
http://dx.doi.org/10.1112/plms/pdq044
http://dx.doi.org/10.4086/toc

NEIL THAPEN

AUTHOR

Neil Thapen
Institute of Mathematics
Czech Academy of Sciences
thapen math cas cz
http://users.math.cas.cz/~thapen/

ABOUT THE AUTHOR

NEIL THAPEN received his doctorate in 2002 from the University of Oxford, where his
supervisor was Alex Wilkie. He works in mathematical logic, in particular on bounded
arithmetic and related things in proof complexity, and sometimes on games. He has been
a member of the Institute of Mathematics in Prague since 2005.

THEORY OF COMPUTING, Volume 12 (5), 2016, pp. 1–14 14

http://users.math.cas.cz/~thapen/
http://www.maths.manchester.ac.uk/~awilkie/
http://venuspatrol.nfshost.com/
http://dx.doi.org/10.4086/toc

	Introduction and results
	Coloured polynomial local search
	The CNF and a short refutation
	Two narrow refutations
	A length lower bound for narrow refutations
	References

