
THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57
www.theoryofcomputing.org

The Complexity of Parity Graph
Homomorphism: An Initial Investigation

John Faben∗ Mark Jerrum†

Received November 28, 2013; Revised March 2, 2015; Published March 14, 2015

Abstract: Given a graph G, we investigate the problem of determining the parity of
the number of homomorphisms from G to some other fixed graph H. We conjecture that
this problem exhibits a complexity dichotomy, such that all parity graph homomorphism
problems are either polynomial-time solvable or ⊕P–complete, and provide a conjectured
characterisation of the easy cases.

We show that the conjecture is true for the restricted case in which the graph H is a
tree, and provide some tools that may be useful in further investigation into the parity graph
homomorphism problem, and the problem of counting homomorphisms for other moduli.

ACM Classification: F.1.3, G.2.2

AMS Classification: 05C30, 05C60, 68Q17, 68Q25

Key words and phrases: complexity theory, graph homomorphisms, modular counting, dichotomy
theorem

1 Graph homomorphism

Graph homomorphism is a natural generalisation of graph colouring, in which the restrictions on adjacen-
cies between colours can be more general than in the usual graph colouring problem. A homomorphism
from a graph G to a graph H is an edge-preserving map between the vertices (see Definition 1.1). It is
sometimes referred to as an H-colouring (where the target graph for the homomorphism is H). Ordinary
graph colouring is the special case of homomorphisms into the complete graph.

∗Supported by EPSRC grant EP/E064906/1 “The Complexity of Counting in Constraint Satisfaction Problems”.
†Supported by EPSRC grant EP/I011935/1 “Computational Counting”.

© 2015 John Faben and Mark Jerrum
cb Licensed under a Creative Commons Attribution License (CC-BY) DOI: 10.4086/toc.2015.v011a002

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2015.v011a002


JOHN FABEN AND MARK JERRUM

Definition 1.1. A homomorphism from a graph G into another graph H is a map ϕ : V (G)→ V (H)
having the property that (ϕ(u),ϕ(v)) ∈ E(H) whenever (u,v) ∈ E(G). The set of homomorphisms from
G to H is denoted by Hom(G,H), and the number of homomorphisms by hom(G,H).

Example 1.2. A homomorphism from a graph G to the complete graph Kn is a (proper, vertex) n-colouring
of G.

Example 1.3. Let H1 be the graph with vertex set {a,b}, an edge joining a and b, and a loop at b. A
homomorphism from a graph G to H1 can be considered as an independent set of G. The vertices mapped
to vertex a form an independent set (as none of them can be pairwise adjacent) and, conversely, given
an independent set, it is possible to map the vertices of the independent set to a and the vertices of its
complement to b. So there is a natural one-to-one correspondence between homomorphisms to H1 and
independent sets.

For the purposes of this paper, both G and H are allowed to have loops on their vertices, but not
multiple edges. To reduce the potential for confusion, we will usually refer to the vertices of H as
“colours”, reserving the word “vertex” for vertices of G.

Fix a target graph H. There are a number of computational problems of the form: given an instance
(graph) G return some information about Hom(G,H). The most basic one is the decision problem, which
asks if Hom(G,H) is non-empty. Each H specifies a particular decision problem; for example, if H is the
triangle, the problem is to decide if G is 3-colourable. The goal is then to classify the complexity of the
computational problem in terms of the graph H. The ideal is to identify a dichotomy, i. e., a partition of
graphs H into those that specify tractable problems and those that specify intractable ones.

The complexity of the decision version of the graph homomorphism problem was completely clas-
sified by Hell and Nešetřil in [14]. For a given graph H, deciding whether an arbitrary graph has a
homomorphism to H can be done in polynomial time if H has a loop or is bipartite. Hell and Nešetřil
showed that this decision problem is NP-complete in all other cases.

It is also natural to consider the counting problem, which asks for the cardinality hom(G,H) of
Hom(G,H). The problem of exactly counting the homomorphisms to a fixed graph H was considered
by Dyer and Greenhill [6], who gave a complete characterisation, again with a dichotomy theorem: the
counting problem is polynomial-time solvable if H is either a complete graph with loops everywhere or a
complete bipartite graph without loops, and it is #P-complete otherwise.

The result of Dyer and Greenhill has been extended in many different directions by various authors.
One possibility is to specify weights w : E(H)→ C for the edges of H; this edge-weighting naturally
induces a weighing of homomorphisms ϕ from G to H, by taking a product of weights w(ϕ(u),ϕ(v))
over edges {u,v} of G. In the weighted setting, one can express partition functions of models in statistical
physics. Note that the unweighted form of the problem can be recovered by restricting weights to be
{0,1}. Bulatov and Grohe [2] exhibited a dichotomy for non-negative real weights, which was extended
to arbitrary real weights by Goldberg, Grohe, Jerrum and Thurley [12], and then on to complex weights
by Cai, Chen and Lu [4]. The massive further generalisation to Constraint Satisfaction Problems (CSPs)
was undertaken by several authors (e. g., Bulatov [1] and Dyer and Richerby [7]), culminating in the
complex weighted case by Cai and Chen [3]. See Chen’s survey for more details [5].

In this paper, we shall mostly be concerned with the problem of determining the cardinality of
Hom(G,H) modulo k, for a positive integer k, with a special emphasis on k = 2, i. e., determining whether

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 36

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

the number of H-colourings is odd or even. For k ≥ 2 and n an integer, denote by [n]k the residue class
of n modulo k. We can of course identify these classes with the integers {0,1, . . . ,k−1}. Formally, our
computational problem is the following.

Name. #kH-COLOURING.

Instance. An undirected graph G.

Output. [hom(G,H)]k, i. e., the number of H-colourings of G modulo k.

Since the case k = 2 is of special significance, we introduce ⊕H-COLOURING as a synonym for #2H-
COLOURING.

We give a dichotomy theorem for ⊕H-COLOURING in the case where H is a tree: either ⊕H-
COLOURING is ⊕P-complete or it can be solved in polynomial time. (See Theorem 3.8.) Informally, ⊕P
is the class of problems that can be expressed in terms of deciding the parity of the number of accepting
computations of a non-deterministic Turing machine; see Section 2 for a precise definition. The proof
of the dichotomy is based on a reduction system which transforms H to a “reduced form” of equivalent
complexity. Since it is easy to decide the complexity of ⊕H-COLOURING for reduced forms, we obtain
not only the dichotomy result, but also an effective procedure for deciding the dichotomy. We conjecture
that the same reduction system decribes a complexity dichotomy for general graphs. Although this
conjecture remains open in general, Göbel, Goldberg and Richerby have extended our result by showing
that the conjecture holds for cactus graphs [10] and square-free graphs [11].

Finally we draw attention to some existing work in the general area of modular counting. The
complexity of modular counting problems has been studied for at least three decades, early contributions
being made by Valiant [21] and Papadimitriou and Zachos [19]. One of the more striking results, is that
of Valiant [22], who provides an example of a counting problem that is unexpectedly easy modulo 7,
though hard modulo 2. It is worth noting that modular CSPs have been studied, e. g., by Faben [8] and
Guo, Huang, Lu and Xia [13]. This work is both more general, in the sense of being set within the wider
context of CSPs, but also more restrictive, in that it relates to the two-element (Boolean) domain only.

A preliminary version of the results presented here appeared in the first author’s Ph. D. thesis [9].

2 Modular counting complexity

2.1 The classes #kP

In this section, we formally define the counting classes that we will use in this paper.
A classical counting problem can be considered as a function taking a problem instance to the number

of solutions associated with that instance. When counting is done modulo some number k ≥ 2, it is
possible to view the problem from two somewhat different standpoints. On the one hand there is the
decision or language view, where the task is to determine whether the number of solutions is different
from 0, modulo k. On the other is the function view, where the task is to compute the residue, modulo k,
of the number of solutions. Both views have been taken in earlier work, and the distinctions between
them have been examined by Faben [9].

In the current context, the function view seems more natural. We work within a class #kP of
computational problems which is the modular analogue of the classical class #P of counting problems.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 37

http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

Informally, #kP contains functions that can be expressed as the residue, modulo k, of the number of
accepting computations of a nondeterministic polynomial-time Turing machine.

Let Σ be a finite alphabet over which we agree to encode problem instances, and M a non-deterministic
Turing Machine with input alphabet Σ. Denote by #accM(x) the number of accepting paths of the
machine M on the input x ∈ Σ∗.

Definition 2.1. The class #P consists of all functions f : Σ∗ → N that can be expressed as f (x) =
#accM(x) for some non-deterministic polynomial-time Turing Machine M. The class #kP consists of all
functions f : Σ∗→{0,1, . . . ,k−1} that can be expressed as f (x) = [#accM(x)]k.

In this paper, we are concerned particularly with the case k = 2, and we follow other authors in using
⊕P as a synonym for #2P [19].

Given a counting problem in #P, say #A, we write #kA for the #kP problem of determining the
number of solutions to A modulo k. So while #A : Σ∗ → N is a function defined from strings to the
natural numbers, #kA : Σ∗→{0, . . . ,k−1} is the function from strings to the integers modulo k defined by
#kA(x)≡ #A(x) (mod k). As an example, #kSAT is the problem of determining the number of satisfying
assignments to a CNF Boolean formula, modulo k. Naturally, ⊕SAT is the special case k = 2 of this
problem.

2.2 Completeness

Again, in an analogy with #P-completeness, we define the notion of #kP-completeness with respect
to polynomial-time Turing reducibility (also known as Cook reducibility). Essentially, a problem A is
#kP-hard if every problem in #kP can be solved in polynomial time given an oracle for A.

Definition 2.2. We say that a problem B is polynomial-time Turing reducible to a problem A if problem B
can be solved in polynomial time using an oracle for problem A. We write B≤T

p A.

Definition 2.3. A counting problem A is #kP-hard if, for every problem B in #kP, it is the case that
B≤T

p A. It is #kP-complete if, in addition, A is in #kP.

As one might expect, the modular counting versions of SAT, namely #kSAT for k ≥ 2, are examples
of #kP-complete problems for all k. This can easily be seen, as the usual reduction in Cook’s Theorem,
showing that SAT is NP-complete, is parsimonious (i. e., preserves the number of solutions), and so
certainly preserves the number of solutions modulo k for all k.

As mentioned above, the complexity of exactly counting the homomorphisms to a given graph H was
characterised by Dyer and Greenhill. They proved the following theorem.

Theorem 2.4 (Dyer and Greenhill [6]). If a graph H is a complete bipartite graph with no loops or a
complete graph with loops everywhere, then exactly counting H-colourings can be done in polynomial
time. Otherwise, the problem is #P-complete.

Clearly, if the number of homomorphisms to a graph H can be counted exactly in polynomial time,
then the parity can be determined in polynomial time. We will show that there are some cases in which
symmetries of H can make the related modular counting problem easy, even when the exact counting
problem is #P-hard.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 38

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

3 A confluent reduction system

As hinted at earlier, our approach is based on a reduction system for graphs H that preserves the complexity
of the problem #pH-COLOURING. The reductions are defined in terms of the automorphisms of H.

3.1 Reduction by automorphisms

Definition 3.1. An automorphism of a graph G is an injective homomorphism from G to itself. In other
words, an automorphism of a graph G is a permutation σ of the vertices of G such that

{σ(u),σ(v)} ∈ E(G) ⇐⇒ {u,v} ∈ E(G) .

If σ has order 2, i. e., σ is not the identity but σ ◦σ is, then we say that σ is an involution of G.

Definition 3.2. Let H be a graph, and σ an automorphism of H. We denote by Hσ the subgraph of H
induced by the fixed points of σ .

Lemma 3.3. If H is a graph, and σ an involution of H, the number of H-colourings of any graph G is
congruent modulo 2 to the number of Hσ -colourings of G.

Proof. We will in fact show that the number of H-colourings of G that are not Hσ -colourings is even,
which is equivalent to saying that the number of H-colourings that use at least one colour in V (H)\V (Hσ )
is even.

To see this, we partition the set of such colourings into subsets of size two. The basic idea here is that
to each colouring that uses at least one colour in V (H)\V (Hσ ) we can associate the colouring gained by
first applying σ to H and then colouring G. Formally, given any colouring ϕ : V (G)→V (H), consider
the alternative colouring σ ◦ϕ . This is still an H-colouring of G, as both σ and ϕ are edge-preserving. It
is different from ϕ as there is some vertex v ∈G such that ϕ(v) ∈V (H)\V (Hσ ), and so σ(ϕ(v)) 6= ϕ(v).
On the other hand σ ◦σ ◦ϕ is just ϕ , as σ is an involution. So σ acts as an involution on the set of
H-colourings of G that use at least one colour from V (H)\V (Hσ ). Since this involution has no fixed
points, the size of this set must be even.

Note that the above argument does not rely on any special properties of the modulus 2 beyond the
fact that it is prime.

Theorem 3.4. For any prime p, if H is a graph, and σ an automorphism of H of order p, the number of
H-colourings of any graph G is congruent modulo p to the number of Hσ -colourings of G.

It is not just the proof that fails for a composite modulus k. The complete graph K5 on five vertices
has an automorphism of order 6 that moves all the vertices, but it is not true that for every graph G the
number of 5-colourings of G is divisible by 6.

We define the following reduction system on the set of unlabelled graphs.

Definition 3.5. The binary relation→k on graphs is defined as follows. For graphs H and K, the relation
H →k K holds iff there exists an automorphism σ of H, of order k, such that Hσ = K. If there exists
a sequence of graphs H1,H2, . . . ,H` such that H →k H1→k H2→k · · · →k H` = K, we write H →∗k K

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 39

http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

and say that H reduces to K by automorphisms of order k. (If k = 2, we say that H reduces to K by
involutions.) If K has no automorphisms of order k we say that K is a reduced form associated with the
graph H.

Example 3.6. In Figure 1 we give an example of a graph H, along with two ways of reducing H by
involutions. On the right-hand side we reduce H by using the involution σ that swaps each of the pairs
of vertices a and e, b and f , c and d, leaving behind only the involution-free graph on the vertices g
and h. On the left-hand side, we begin with the involution τ that swaps e and f , and have to reduce the
resulting graph by involutions twice more before we get to the involution-free graph ((Hτ)υ)η , which is
isomorphic to the graph Hσ . This is not a coincidence. We will see in Theorem 3.7 that reduced forms
are unique.

To make further progress, we need to assume k = p is prime. Eventually, we will further restrict
attention to the case p = 2. However, we state and prove some intermediate results for a general prime p,
as they may be of use in further explorations of modular counting problems.

Theorem 3.4 says that in classifying the complexity of #pH-COLOURING problems, it is enough to
restrict attention to graphs H that are reduced forms, i. e., that do not have any automorphisms of order p.
This is enough for the proof of the main dichotomy result, but it is an interesting fact that reduced forms
are unique. In any case, the concepts used in the proof of uniqueness of the reduced form will be needed
later.

Theorem 3.7. Given a graph G, and a prime p there is (up to isomorphism) exactly one graph G∗ such
that G∗ has no automorphisms of order p and G→∗p G∗.

The proof is deferred to the next section. We can now state main result.

Theorem 3.8. If H is a tree, then ⊕H-COLOURING is ⊕P-complete if the reduced form obtained by
reducing H by involutions is non-trivial, i. e., has more than one vertex. Otherwise it is solvable in
polynomial time.

We conjecture that this result holds for graphs in general. The conjecture is unresolved, though Göbel,
Goldberg and Richerby [10] recently extended our result from trees to cactus graphs. One could extend
the conjecture to #pH-COLOURING, for primes p > 2. Specifically, one might conjecture that, for each p,
the set of reduced forms H corresponding to polynomial-time cases of #pH-COLOURING is finite (and
that all other reduced forms correspond to #pP-complete cases). However, we do not go that far here.

3.2 The Lovász vector of a graph

We need a modular version of the Lovász vector [14, §2.3] of a graph.

Definition 3.9. Let p be a prime, and G1,G2, . . . be a fixed enumeration of all pairwise non-isomorphic
graphs. (Thus every graph is isomorphic to exactly one graph in the sequence.) The mod-p Lovász vector
of a graph H is the sequence ([hom(Gi,H)]p : i≥ 1).

This is a modular version of a concept introduced by Lozász, from which the terminology derives.
We show that the mod-p Lovász vector determines a graph, provided the graph has no automorphisms

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 40

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

a

b

c g d

e

f

h

σ

τ

H
τ

υ

η

σ

a

b

c g d

h

υ

Hτ

g

h

Hσ

c g d

h

η

(Hτ)υ

g

h

((Hτ)υ)η

Figure 1: An example of a graph H with the sequence of reductions we get from H if we start with each
of the involutions σ and τ .

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 41

http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

of order p. For the statement and proof of the classical (non-modular) version of Lemma 3.10 below,
see [18, Problem 15.20(b)]. Note that the ideas were generalised by Lovász to a much wider setting [17].

First recall the following fact about finite groups. For any prime p, a finite group G has an element of
order p if and only if the order of G is divisible by p. (In the context of group theory, the “if” direction is
Cauchy’s theorem and the “only if” Lagrange’s theorem.)

Lemma 3.10. Suppose p is a prime, and H and H ′ are two graphs, neither of which has an automorphism
of order p. Then H and H ′ are isomorphic if and only if they have the same mod-p Lovász vector.

Proof. Clearly the condition is necessary: two isomorphic graphs have the same mod-p Lovász vector.
Now we need to prove that it is sufficient. This proof is similar to the proof of Theorem 2.11 in Hell and
Nešetřil’s monograph [15].

So suppose H and H ′ have the same mod-p Lovász vector, that is,

hom(G,H)≡ hom(G,H ′) (mod p) , (3.1)

for all graphs G. We first observe that, in order to show that H and H ′ are isomorphic, it is sufficient to
prove that for every graph G,

inj(G,H)≡ inj(G,H ′) (mod p) , (3.2)

where inj(G,H) denotes the number of injective homomorphisms from G to H. To see this, first take
G = H in the above congruence (3.2). The left hand side of the congruence is just the order of the
automorphism group of H, which, since H does not have an automorphism of order p, is not congruent
to 0 modulo p. Therefore, the right hand side, inj(H,H ′), is also different from from 0 modulo p and, in
particular, there exists an injective homomorphism from H to H ′. Similarly, if we take G = H ′ we find an
injective homomorphism the other way, and thus an isomorphism between H and H ′.

We will prove that the system of congruences (3.1) implies the system (3.2), by induction on n, the
number of vertices of G. Specifically, our induction hypothesis is that if congruence (3.1) holds for all
graphs G with n or fewer vertices, then the same is true of congruence (3.2). If n = 1, then G has only
one vertex and every homomorphism from G to any other graph is injective and (3.2) holds.

Now assume n > 1. For a partition Θ = {Si : i ∈ I} of the vertex set V (G) of a graph G, define the
quotient graph G/Θ as follows. The vertex set of G/Θ is the index set I. There is an edge between i, j ∈ I
in G/Θ iff there is some edge joining a vertex in Si to a vertex in S j in Θ. (It may happen that i = j, in
which case G/Θ has a loop at i.) A colouring of G with H induces a partition of G in the obvious way,
with vertices which are given the same colour assigned to the same part of the partition. If we call this
partition Θ, then any H-colouring of G can be considered as an injective H-colouring of G/Θ, since each
vertex of G/Θ is associated with exactly one colour from H. Let ι be the partition consisting of a single
block for each vertex (i. e., the partition associated with injective homomorphisms from G to H). Then
we have both

hom(G,H) = inj(G,H)+ ∑
Θ 6=ι

inj(G/Θ,H)

and

hom(G,H ′) = inj(G,H ′)+ ∑
Θ 6=ι

inj(G/Θ,H ′) .

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 42

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

Since G/Θ is necessarily smaller than G if Θ 6= ι , we know by the induction hypothesis that inj(G/Θ,H)≡
inj(G/Θ,H ′) (mod p), and since hom(G,H)≡ hom(G,H ′) (mod p) by assumption, we do indeed have
inj(G,H)≡ inj(G,H ′) (mod p), as required.

Note that the largest graph G considered in the above inductive argument has the same number of
vertices as H. So if H and H ′ are not isomorphic then there must be a graph G with at most as many
vertices as H that distinguishes H and H ′, that is, hom(G,H) 6≡ hom(G,H ′) (mod p).

Proof of Theorem 3.7. Suppose G→∗p G∗ and G→∗p G†, where G∗ and G† have no automorphisms of
order p. Theorem 3.4 says the reduction operation→p preserves the mod-p Lovász vector, so G∗ and
G† have the same vector. On the other hand, Lemma 3.10 above says that the mod-p Lovász vector
characterises (isomorphism classes of) graphs with no automorphisms of order p, so G∗ and G† are
isomorphic.

4 Pinning colours to vertices

We would like to be able to count the number of H-colourings of a given graph G in which certain
vertices of G are forced to receive certain colours from H. This would allow us to isolate a suitable
“hard” subgraph H ′ of H, and hence reduce the known hard H ′-colouring problem to the particular
H-colouring problem that interests us. We achieve this by building gadgets, which are graphs with a
distinguished vertex, with the following property: effectively, only a certain set of colours can be applied
to the distinguished vertex of a gadget. By attaching these gadgets to a vertex of G, we can restrict that
vertex to be coloured with a particular set of colours.

4.1 Rooted graphs

Definition 4.1. A rooted graph is a pair (G,v) where G is a graph and v ∈V (G) is a distinguished vertex
of G (referred to as the root).

In essence, we want to show that for any two distinct colours h1,h2 ∈V (H) in a given H, there exists
some rooted graph (Γ,γ) such that the number of ways of H-colouring Γ with γ receiving h1 is different,
modulo 2, to the number of ways of H-colouring Γ with γ receiving h2. (In fact, as we can see, we can
find such a rooted graph Γ for all prime moduli.) Suppose G is an instance graph with distinguished root
vertex v. We can then use rooted graphs such as (Γ,γ) to pick out the colourings of G in which vertex v
receives a colour from some particular subset of the colours. Roughly, we do this by attaching a copy of
Γ to G, identifying γ and v. Call the resulting graph G′. Suppose a colouring of G with vertex v receiving
h1 extends to a colouring of G′ in (say) an odd number of ways. Then a colouring with v receiving h2 will
extend in an even number of ways. In this way we have effectively “cancelled” the colourings of G with v
coloured h2, while leaving untouched those with v coloured h1.

The construction of the required gadgets rests on a rooted version of Lemma 3.10. Before we give the
proof, we need to define rooted versions of a few concepts we have already encountered.

Definition 4.2. A homomorphism (repectively, isomorphism) between two rooted graphs (G,v) and
(G′,v′) is a graph homomorphism (respectively, isomorphism) ϕ : V (G)→ V (G′) with ϕ(v) = v′. An
automorphism of rooted graph (G,v) is an isomorphism of (G,v) to itself.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 43

http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

Definition 4.3. We denote the number of homomorphisms from rooted graph (G,g) to rooted graph
(H,h) by hom∗((G,g),(H,h)). If the roots are implied by the context we will sometimes suppress them
in the above notation, and just write hom∗(G,H).

Similarly, we denote the number of injective homomorphisms from rooted graph (G,g) to (H,h) by
inj∗((G,g),(H,h)) and, again, we may suppress the specified vertices if they are implied by the context,
instead writing inj∗(G,H).

Finally, we will use the concept of the Lovász vector of a rooted graph.

Definition 4.4. Let G1,G2, . . . be a fixed enumeration of all pairwise non-isomorphic rooted graphs. Then
the mod-p Lovász vector of a rooted graph H is the sequence ([hom∗(Gi,H)]p : i≥ 1).

We will use parity Lovász vector as an alternative name for mod-2 Lovász vector.

Lemma 4.5. Suppose p is a prime, and H and H ′ are two rooted graphs neither of which has an
automorphism of order p. Then H and H ′ are isomorphic if and only if they have the same mod-p Lovász
vector.

Proof. As for Lemma 3.10, but with hom∗ and inj∗ replacing hom and inj. In defining the quotient of a
rooted graph (G,g) by a partition Θ = {Si : i ∈ I}, we define the root of (G,g)/Θ to be the vertex i ∈ I
such that g ∈ Si.

As with Lemma 3.10, it can be seen that we need only finitely many terms of the mod-p Lovász
vector to reconstruct (H,h).

4.2 Building gadgets

In the following we return to⊕H-COLOURING, and are only interested in automorphisms of order two, or
involutions. Note that many of the results in this section can be generalised to automorphisms of arbitrary
prime order, but we only require the gadgets for the case p = 2 in Section 5, so only this case is presented
here, for simplicity.

It will be useful to consider the case where H and H ′ have the same underlying graph but different
roots (note that for H and H ′ to be non-isomorphic as rooted graphs, there can be no automorphism of H
with takes h to h′, i. e., that h and h′ lie in different orbits of the automorphism group of H). Since we
will no longer be able to use the previous naming convention for the specified vertices, we will refer to
the two roots in H as x and y. In the following, we will be assuming that H (as an unrooted graph) is
involution-free. As we saw in Section 3, it suffices to consider the complexity of ⊕H-COLOURING for
involution-free H.

Lemma 4.5 allows us to construct the following useful gadgets: given an involution-free graph H
and two colours x and y which are in different orbits of Aut(H), there is a rooted graph (Γ,γ) that
distinguishes x and y.

Lemma 4.6. Given an involution-free graph H and two vertices x and y which lie in different orbits of
Aut(H), there exists a rooted graph (Γ,γ) such that hom∗((Γ,γ),(H,x)) 6≡ hom∗((Γ,γ),(H,y)) (mod 2).

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 44

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

Proof. Since (H,x) and (H,y) are non-isomorphic as rooted graphs, they have different parity Lovász
vectors by Lemma 4.5. Simply take (Γ,γ) to be the first rooted graph for which the corresponding entries
of the parity Lovász vectors of (H,x) and (H,y) differ.

We will use rooted graphs such as those guaranteed by Lemma 4.6 as “gadgets” in a reduction from
the problem of counting restricted H-colourings (in which a given vertex of the instance graph is forced
to be coloured with colours from a specified orbit of Aut(H)) to the problem of counting unrestricted
H-colourings modulo 2.

Theorem 4.7. Given an involution-free graph H, an orbit O of the automorphism group of H, and an
oracle for ⊕H-COLOURING, it is possible to determine, in polynomial time, the parity of the number of
H-colourings of a rooted graph G in which the root receives a colour from O.

Note that this result would follow immediately if we were able to build a gadget (i. e., rooted graph)
(Γ,γ) such that hom∗((Γ,γ),(H,x)) is odd, while hom∗((Γ,γ),(H,y)) is even for all y 6= x. Then we
could just attach a copy of Γ at the vertex of G that we want to colour with x, identifying this vertex
with γ , and then count H-colourings of the new graph. Unfortunately, Lemma 4.6 doesn’t allow us to
construct such a gadget, as it doesn’t allow us to choose which colour is x and which is y. However, we
can construct a series of gadgets that allow us to count colourings of G in which the root of G receives a
colour from a given orbit of H, by developing a sort of algebra on the gadgets, as described below.

Definition 4.8. Suppose H is a graph, and h1, . . . ,hn is an enumeration of the vertices of H. With each
gadget (Γ,γ) we associate a vector vH(Γ) ∈ GF(2)n, indexed by {1, . . . ,n}, such that the ith component
of the vector is 1 if there are an odd number of H-colourings of Γ that use colour hi at γ , and 0 otherwise.

Note that if two colours (vertices of H) hi and h j are in the same orbit of the automorphism group of H
then the ith and jth entries of vH(G) are the same for all rooted graphs G. So we may instead consider the
vector v∗H(G) which is indexed by orbits of the automorphism group of H rather than individual vertices
of H, the coordinate of v∗H(G) associated with a given orbit being the coordinate of vH(G) associated
with any (and hence all) of the colours in that orbit. Note that vH(G) and v∗H(G) contain exactly the same
information.

We define an operation that combines two rooted graphs by identifying their root vertices.

Definition 4.9. Given two rooted graphs Γ and Π, we define the the new rooted graph Γ ·Π to be the
graph obtained by identifying the roots of each. The root of Γ ·Π is the vertex formed by identifying the
roots of the other two graphs.

If we think of each gadget Γ and Π as enforcing a certain set of allowed colours at its root vertex, we
can view this operation as forming a gadget that enforces the intersection of these sets. This is equivalent
to saying that vector vH associated with the new gadget is obtained by taking the coordinate-wise product
of the vectors associated with the individual gadgets.

Definition 4.10. We define the operation ∗ : GF(2)n×GF(2)n → GF(2)n to be the coordinate-wise
product of two vectors, so the ith coordinate of v ∗w is the ith coordinate of v multiplied by the ith

coordinate of w.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 45

http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

Lemma 4.11. Suppose Γ and Π are two rooted graphs, and H is graph. Then vH(Γ ·Π) = vH(Γ)∗vH(Π).

Proof. Fix a colour hi ∈V (H). The number of colourings of Γ ·Π with the root receiving colour hi is just
the product of the number of colourings Γ and Π with the roots in each case receiving colour hi. Thus, if
there is a zero in the ith place of either of the vectors vH(Γ) or vH(Π), then there is a zero in the ith place
of vH(Γ ·Π); otherwise there is a one.

We now introduce a formal sum of rooted graphs, with coefficients in GF(2), which preserves addition
of these vectors. Note that since this sum has coefficients in GF(2) we have Γ+Γ = 0.

Definition 4.12. For a set of rooted graphs Γ1,Γ2, · · · ,Γr, we define vH(Γ1+Γ2+ · · ·+Γr) to be vH(Γ1)+
vH(Γ2)+ · · ·+ vH(Γr).

Definition 4.13. We will say that a vector v ∈ GF(2)n is implementable for some n-vertex H if there is a
set of rooted graphs {Γ1,Γ2, . . . ,Γr} such that v is equal to vH(Γ1 +Γ2 + · · ·+Γr).

Suppose v is the characteristic vector of a set of colours we wish to restrict to, as in the discussion
following Theorem 4.7. We’ll see presently that the gadgets Γ1, . . . ,Γr will enable us to effectively restrict
to that colour set, justifying the term “implementable”.

Lemma 4.14. The set of vectors that are implementable for a given H is closed under the operations of
vector addition and point-wise multiplication (or the operation ∗, as defined in Definition 4.10).

Proof. Suppose v = vH(Γ1 +Γ2 + · · ·+Γr) and v′ = vH(Π1 +Π2 + · · ·+Πs) are any two implementable
vectors. Then v+ v′ is implementable, since

v+ v′ = vH(Γ1 +Γ2 + · · ·+Γr +Π1 +Π2 + · · ·+Πs) .

Furthermore, noting that ∗ distributes over +,

v∗ v′ = vH(Γ1 +Γ2 + · · ·+Γr)∗ vH(Π1 +Π2 + · · ·+Πs)

=
(
vH(Γ1)+ vH(Γ2)+ · · ·+ vH(Γr)

)
∗
(
vH(Π1)+ vH(Π2)+ · · ·+ vH(Πs)

)
= vH(Γ1)∗ vH(Π1)+ vH(Γ1)∗ vH(Π2)+ · · ·+ vH(Γr)∗ vH(Πs)

= vH(Γ1 ·Π1)+ vH(Γ1 ·Π2)+ · · ·+ vH(Γr ·Πs) (4.1)

= vH(Γ1 ·Π1 + · · ·+Γr ·Πs) ,

where equality (4.1) follows from repeated application of Lemma 4.11.

Lemma 4.15. For any involution-free graph, H, the all-ones vector is implementable, and for any pair of
distinct orbits in H there is at least one implementable vector that has a 1 at every vertex in one of the
two orbits and a 0 at every vertex in the other orbit.

Proof. The all-ones vector is implementable using the graph on one vertex. The rooted graphs whose
vectors distinguish between distinct orbits of colours in H are obtained using Lemma 4.6.

We’ll now show that Lemmas 4.14 and 4.15 together imply that any vector that is constant on orbits
is implementable.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 46

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

Lemma 4.16. Consider a set, S, of vectors in GF(2)n which contains the all-ones vector (1,1, . . . ,1) and
has the property that for any two indices i and j there is some vector in the set whose ith coordinate differs
from its jth coordinate. The closure of this set under the operations of coordinate-wise multiplication and
coordinate-wise addition includes each of the vectors in the standard basis.

Proof. We proceed by induction on n. If n = 1 the lemma clearly holds, as the all-ones vector is the only
vector in the standard basis. Now, assume that n > 1; we shall attempt to construct the vectors in the
standard basis in GF(2)n.

By induction, we can construct vectors that agree with the standard basis in the first n− 1 places,
without being able to control what happens in the nth place (note that the restriction of the set of vectors S
to the first n−1 places still satisfies the conditions of the lemma). That is, we can certainly obtain vectors
of each of the following forms, where the xi can be either 0 or 1

(1 1 1 1 . . . 1 1 1)
(1 0 0 0 . . . 0 0 x1)
(0 1 0 0 . . . 0 0 x2)
(0 0 1 0 . . . 0 0 x3)
...

...
(0 0 0 0 . . . 0 1 xn)

This leaves several cases:
Case 1. The xi are all equal to zero. In this case, we already have the first n− 1 vectors from the

standard basis, and we can just take the sum of all n−1 vectors with the all-ones vector, which has a 1 in
the last place and zeros everywhere else, to get the last one.

Case 2. There are at least two i, j such that xi,x j = 1. But then the product of these two vectors is the
vector (0,0, . . . ,0,1). To obtain the remaining vectors from the standard basis, we just take the sum of
this vector with any of those from the original list which had a 1 in the nth place, i. e., ei is the sum of this
vector with the vector that had a 1 in the ith place and a 1 in the nth place.

Case 3. There is exactly one vector in the list, v with a 1 as the nth coordinate. Say this vector has a 1
in the ith and nth places. By assumption, there is some vector in S which has different values in the nth

and ith places. The product of this with v is a vector with exactly one 1, in either the ith or the nth place,
and the sum of this basis vector with v is the other of ei and en.

Lemma 4.17. For any involution-free graph H, and any orbit of O of Aut(H), the characteristic vector
of O (which is 1 in coordinates indexed by O and 0 elsewhere) is implementable.

Proof. For the purposes of this proof, it is convenient to think in terms to the abbreviated vectors v∗H(G)
in place of the full vectors vH(G). (This is not an essential change; we are merely eliminating duplicated
coordinates.) So, now, an implementable vector is one the form v∗H(Γ1+ · · ·+Γr), for some rooted graphs
Γ1, . . . ,Γr. By Lemma 4.14 the set of vectors we can implement is closed under the operations of addition
and coordinate-wise multiplication, and by Lemma 4.15 we can implement the all ones vector and, for
each pair of indices (orbits) i and j a vector v with vi 6= v j. Thus, by Lemma 4.16, every vector in the
standard basis is implementable.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 47

http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

We are now ready to return to Theorem 4.7. Let v be the characteristic vector of the orbit O. We know
that v is implementable. So we now just have to show that our definition of “implementable” actually
does what we want it to do. That is, it is possible to determine, in polynomial time using an oracle for
unrestricted H-colourings, the parity of the number of H-colourings of a rooted graph G in which the
root receives a colour from O.

Proof of Theorem 4.7. Let v ∈ GF(2)n be the characteristic vector of the orbit O. By Lemma 4.17, the
vector v is implementable, i. e., v = vH(Γ1 +Γ2 + · · ·+Γr) for some set of rooted graphs {Γ1, . . . ,Γr}.
Thus,

vH(G)∗ v = vH(G)∗ vH(Γ1 +Γ2 + · · ·+Γr)

= vH(G)∗ vH(Γ1)+ · · ·+ vH(G)∗ vH(Γr)

= vH(G ·Γ1)+ · · ·+ vH(G ·Γr) .

Now take the sum of the coordinates of the vectors, modulo 2:
n

∑
i=1

(vH(G)∗ v)i =
n

∑
i=1

vH(G ·Γ1)i + · · ·+
n

∑
i=1

vH(G ·Γr)i .

The left-hand side counts, modulo 2, H-colourings of G in which vertex x receives a colour from O;
this is exactly the quantity we are interested in computing. The jth term on the right hand side, counts,
modulo 2, the number of (unrestricted) H-colourings of the graph G ·Γ j. So the right-hand side can be
evaluated using r calls to an oracle for ⊕H-COLOURING.

Finally, we need an analogue of Theorem 4.7 which allows pinning of two vertices of G. (We thank
the authors of [10] for pointing out a lacuna at this point in an earlier version of the proof.)

Corollary 4.18. Suppose G is a graph with distinguished vertices x and y. Given an involution-free
graph H, orbits O and O′ of the automorphism group of H, and an oracle for ⊕H-COLOURING, it is
possible to determine, in polynomial time, the parity of the number of H-colourings of G in which x
(respectively y) receives a colour from O (respectively O′).

Proof. Define the matrix A = (ai j) ∈ GF(2)n×n as follows. For all 1≤ i, j ≤ n,

ai j =
[
number of colourings of G with x receiving colour i and y colour j

]
2 .

Let u and v be the characteristic vectors of O and O′. By Lemma 4.17 we know that u and v are
implementable, i. e., u = vH(Γ1)+ · · ·+ vH(Γr) and v = vH(Γ

′
1)+ · · ·+ vH(Γ

′
s) for some rooted graphs

Γ1, . . . ,Γr and Γ′1, . . . ,Γ
′
s. Thus

uᵀAv≡
(
vH(Γ1)+ · · ·+ vH(Γr)

)ᵀA
(
vH(Γ

′
1)+ · · ·+ vH(Γ

′
s)
)

≡
r

∑
i=1

s

∑
j=1

vH(Γi)
ᵀAvH(Γ

′
j) (mod 2) .

Note that the left hand side is the quantity we are interested in, namely the number of restricted H-
colourings of G. Finally note that the (i, j)th term in the last sum is equal, modulo 2, to the number of
colourings of G with Γi attached to x and Γ′j to y. So each term on the right hand side may be computed
using an oracle for ⊕H-COLOURING.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 48

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

5 Trees

As we have seen, applying the reduction operations in Definition 3.5 preserves the parity of the number of
H-colourings of any graph G. This allows us to concentrate on involution-free graphs. There are certain
involution-free graphs H for which the H-colouring problem obviously lies in P:

- the null graph (the graph on no vertices),

- the graph on one vertex with no loop,

- the graph on one vertex with a loop, and

- the graph on two disconnected vertices, one with a loop and one without.

(5.1)

Lemma 5.1. If H is one of the graphs in list 5.1, then H-colourings of an instance G can be counted in
polynomial time.

Proof. If H is the null graph then there is no H-colouring of G, so the counting problem is obviously
trivial. If H is the graph on one vertex then G has exactly one H-colouring if and only if G has no edges,
and zero otherwise, which can be determined in polynomial time. If H is the graph on one vertex with a
loop, then there is exactly one H-colouring of G. If H is the graph on two vertices one with a loop and
one without then there are exactly 2|Isol(G)| colourings of G, where Isol(G) is the set of isolated vertices
of G. Each isolated vertex can be coloured with either the looped vertex or the unlooped vertex of H
independently, and all the vertices which form part of a connected component of size greater than one
must be coloured with the looped vertex.

Corollary 5.2. Let H0 be the reduced form associated with H in the reduction system defined in Defini-
tion 3.5. If H0 is one of the graphs in list 5.1, then ⊕H-COLOURING is in P.

Proof. This follows directly from Lemma 5.1 and the fact that the reduction system preserves the parity
of the number of H-colourings, as shown in Lemma 3.3

We conjecture that for general graphs, the criterion given in Corollary 5.2, that is, H reducing by
involutions to one of the four trivial graphs, is the only way in which the ⊕H-COLOURING problem can
fail to be ⊕P-complete. Note that this criterion does encompass all of the easy cases identified by Dyer
and Greenhill [6]. A complete graph with loops everywhere reduces to the null graph if it has an even
number of vertices and the graph on one vertex with a loop if it has an odd number. On the other hand, a
complete bipartite graph reduces to the graph on one vertex if there are an odd number of vertices in total,
and the null graph otherwise.

In this section, we will prove that this conjecture is true for trees. In particular, if, in the reduction
system of Definition 3.5, the reduced form associated with a given tree T has at most one vertex, then the
associated ⊕T -COLOURING problem can be solved in polynomial time. Otherwise, it is ⊕P-complete.
Note that Göbel, Goldberg and Richerby have recently extended the known range of validity of the
conjecture from trees to cactus graphs [10] and square-free graphs [11].

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 49

http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

5.1 Involution-free trees

Involution-free trees have quite a lot of structure, and we will exploit this when we build gadgets for our
reductions from ⊕INDSET (defined below) to ⊕H-COLOURING in the next section.

Lemma 5.3. An involution-free tree on more than one vertex has two vertices of degree 2 which are
adjacent to leaves.

Proof. The argument given below is very similar to the standard argument given to show that any tree
has at least two leaves.

The first observation to make is that any involution-free tree contains some path of length at least 3.
If the maximum-length path in a tree is of length 1, then the tree consists of a single edge, and so has an
involution. If it is of length 2, then the tree is a star, and exchanging any two of its leaves is an involution.

Consider a longest path in an involution-free tree, and label the vertices of this path p0, p1, . . . , p`.
Note that p0 and p` are both leaves. Then we claim that both vertices p1 and p`−1 are degree 2. Note
that p1 and p`−1 are in fact distinct vertices, as ` ≥ 3. Assume the degree of p1 is greater than 2, and
consider a vertex, v, adjacent to p1, which is neither p0 nor p2. This vertex cannot have any neighbours
which are not already in the path (as this would contradict maximality of the path). It also cannot have
any neighbours which are in the path (as this would create a cycle, contradicting the fact that G is a tree).
Therefore, it cannot have any neighbours other than p1. But then exchanging this vertex with p0 is an
involution of G, so there is no such vertex, and p1 is degree 2 as claimed. An analogous argument shows
that p`−1 must be degree 2.

We will also require the following lemma.

Lemma 5.4. An involution-free tree has trivial automorphism group.

Proof. The automorphism group of a tree can be formed from symmetric groups using the operations
of direct product and wreath product with a symmetric group (Pólya [20] after Jordan [16]). Since the
symmetric groups Sn for n > 1 have even order, the automorphism group of a tree is either of even order
or has order 1. If it has even order, then the tree has an involution.

Finally, we require the following technical lemma concerning the number of walks (i. e., not necessar-
ily simple paths) of various lengths between vertices in involution-free trees. Note that the vertices e0
and e` mentioned in the statement of the lemma are guaranteed by Lemma 5.3.

Lemma 5.5. Let H be an involution-free tree, let e0 be a vertex of degree 2 that is adjacent to a leaf in H,
and let e` be a vertex of even degree such that there are no vertices of even degree on the path joining e0
and e`, where ` ≥ 1 is the length of the path joining e0 and e`. We will name the vertices on this path
e0,o1,o2, . . . ,o`−1,e`.

Then there are an even number of vertices v such that both:

1. v is a neighbour of the first vertex on this path other than e0, i. e., v is a neighbour of e1 in the case
`= 1, and a neighbour of o1 otherwise; and

2. the number of walks of length ` from v to e` in H is odd.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 50

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

Proof. We will refer in this proof to the vertices o1 and o2, which do not exist if `= 1 or `= 2, we deal
with this at the end of this proof. For now, assume `≥ 3. We want to prove that there are an even number
of neighbours of o1 from which there are an odd number of walks of length ` to e` in H. There are an odd
number of paths of length ` from e` to each of the neighbours of o1 other than o2: there is, in fact, one
such walk, and it is the unique path connecting the neighbour to e` in the tree. We claim that there are an
even number of walks of length ` from e` to o2.

A walk of length ` from e` to o2 traverses exactly 1 edge more than once, as there is a unique path of
length `−2 from e` to o2. Two such walks which traverse the same edge more than once are identical.
There is therefore a one-to-one correspondence between these walks and the edges which are traversed at
least twice by at least one of them. We claim that the number of such edges is even.

Any edge which is adjacent to any of the vertices in {o2,o3, . . . ,e`}, and only those edges, may be
traversed more than once, so it suffices to show that there are an even number of such edges. To see
this, note that the only edges in this set which are adjacent to more than one of the vertices in the set
are: {(o2,o3),(o3,o4), . . . ,(o`−1,e`)}, there are the same number of edges in this set as the number of
vertices of odd degree in {o2, . . . ,e`}. The total number of edges is then just the sum of the vertex degrees
minus the number of edges which are adjacent to more than one of the vertices; but the sum of the vertex
degrees is `−2 (mod 2) (as there are `−2 vertices of odd degree) and the number of repeated edges is
`−2, so the parity of the total number of edges is (`−2)− (`−2)≡ 0 (mod 2).

As noted above, if `= 1 or if `= 2 the vertices o1 or o2 may not exist. However, the theorem still
holds.

In particular, if `= 1 then we actually have two adjacent vertices of even degree and the first vertex
on the path which is not e0 is in fact e1, which is of even degree. Clearly there are an even number of
vertices adjacent to e1 with an odd number of length 1 walks to e1, these being exactly the neighbours of
e1.

If `= 2, then again the vertex whose neighbours we are interested in is of odd degree, call it o1, and
there are an odd number of walks of length 2 from e2 to each of the neighbours of o1 other than itself: in
fact, there is exactly one such walk, the path joining the two vertices. On the other hand, e2 is of even
degree, so there are an even number of walks of length 2 from e2 to itself. Since o1 has an odd number of
neighbours, this leaves an even number of neighbours of o1 which have an odd number of length 2 walks
to e2, as claimed.

5.2 The reduction

Our starting point is the following problem, which was shown by Valiant [22] (in the guise of “Mon
2-CNF”) to be ⊕P-complete; see also Faben [8, Thm. 3.5]).

Name. ⊕INDSET.

Instance. An undirected graph G.

Output. The parity of the number of independent sets in G.

Theorem 5.6. Given an involution-free tree H with more than one vertex, ⊕H-COLOURING is ⊕P-
complete. In fact, there is a polynomial-time reduction from ⊕INDSET to ⊕H-COLOURING.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 51

http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

G σ2(G)

Figure 2: The 2-stretch of G.

Definition 5.7. Given a graph G, we call σ2(G) the graph obtained by replacing every edge in G with a
path of length 2. We refer to the newly introduced vertices as stretch vertices, and the original vertices of
G as G-vertices. The construction is illustrated in Figure 2.

The graph defined above, σ2(G), is usually referred to as the 2-stretch of G, and it is an established
result that counting H-colourings of σ2(G) is equivalent to counting H2-colourings of G, where H2 is
the multigraph whose adjacency matrix is the square of the adjacency matrix of H (see, e. g.,[6]). We
will use a variant of this stretch operation in which we count only those colourings of σ2(G) in which
both the stretch vertices and the G-vertices are coloured with specific subsets of the colours in H. This is
achieved using gadgetry based on the principles established in Section 4.

We now detail the reduction from ⊕INDSET. First, given any graph G, we will construct a certain
graph G∗. We then claim that the number of H-colourings of G∗, with certain vertices restricted to receive
certain colours from H, is congruent modulo 2 to the number of independent sets in G.

For a given involution-free tree H, pick a vertex of degree 2, e0, adjacent to a leaf, and a vertex of
even degree, ek such that the unique path of length k in H from e0 to ek does not contain any vertex of
even degree (exactly as in the statement of Lemma 5.5). Note that, as H is involution-free, there are
two vertices of even degree, and at least one vertex of degree two which is adjacent to a leaf in H by
Lemma 5.3, and we can choose e0 and ek with the above properties.

Now, given a graph G, first create σ2(G), then add two new vertices R and B. Add an edge between
each of the original vertices of G (G-vertices) and R, and a path of length k from every one of the new
vertices (stretch vertices) of σ2(G) to B. We call this new graph G∗, and the construction is illustrated in
Figure 3.

Now, using the technology described in Corollary 4.18, and the fact that the orbit of a vertex in an
involution-free tree is trivial by Lemma 5.4, we can determine the parity of the number of H-colourings
of G∗, in which R is restricted to be coloured with e0 and B is restricted to be coloured with ek, using
only a ⊕H-COLOURING oracle. We claim that this number is congruent (modulo 2) to the number of
independent sets in G. We will use what we know about the number of walks of length k between the
colours e0 and ek from Lemma 5.5.

Lemma 5.8. Suppose H is an involution-free tree, and let e0 be a vertex of degree 2 adjacent to a leaf,
and ek a vertex of even degree at distance k ≥ 1 from e0 such that there are no vertices of even degree on

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 52

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

R BG

Figure 3: The construction of G∗.

the path of length k joining them. Suppose G is a graph and let G∗ be constructed from G as described
above.

Then the number of H-colourings of G∗ in which R receives e0 and B receives ek is congruent
modulo 2 to the number of independent sets in G.

Proof. First consider the G-vertices in G. They are all neighbours of a vertex which is coloured with
e0, so they must therefore receive colours that are adjacent to e0 in H. But e0 was chosen to be one of
the vertices of degree 2 adjacent to a leaf in H, so G-vertices can only be coloured with either the leaf
adjacent to e0 (which we will call l) or with the first vertex on the path linking e0 and ek, which we will
call v1 in the remainder of this proof. This vertex is o1, except in the case k = 1 where it is e1.

Now, consider the stretch vertices. These are connected to a vertex which is coloured ek by a path of
length k. So, consider the colour used at a given stretch vertex, s. If there are an even number of walks
of length k from ek to this colour in H, then there are an even number of colourings of G∗ which use
that colour at s, as there are an even number of ways of colouring the path joining s and B, and the total
number of colourings is the product of the number of ways of colouring this path with the number of
ways of colouring the rest of the graph.

We therefore need to count colourings of G∗ in which the colours used at the stretch vertices are such
that there are an odd number of paths of length k between them and ek in H. Note that these colours
must also be adjacent to either v1 or l in H (as the G-vertices are all coloured with either v1 or l, and
every stretch vertex is adjacent to a G-vertex), and therefore, in fact, must be adjacent to v1, as the only
neighbour of l is e0, which is also a neighbour of v1.

Now, we are reduced to considering colourings of G∗ in which the following conditions hold. The
G-vertices are coloured either l or v1, while the stretch vertices are coloured with one of the neighbours
of v1 which has an odd number of length k walks from itself to ek. We claim that the parity of the number
of such colourings is equal to the parity of the number of ways of colouring G with the two colours l and
v1 such that no two vertices coloured with v1 are adjacent.

Consider a colouring of G with the colours v1 and l. If there are two vertices of G which are adjacent
in G and both coloured with v1 then there are an even number of extensions of this colouring to an
H-colouring of G∗: the stretch vertex between the two G-vertices in G∗ can be coloured with any one of
the neighbours of v1 which are at distance k from ek in H, and there are an even number of such vertices

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 53

http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

by Lemma 5.5.
On the other hand, if there are no two such vertices, there is exactly one extension of the given

colouring of G to an H-colouring of G∗: every one of the stretch vertices is adjacent to a vertex which is
coloured l, so the stretch vertices must all be coloured e0, and as there is only one path of length k from
e0 to ek in H, this determines the colouring of the vertices on the paths linking the stretch vertices to B.

So the number of colourings of G∗ with H such that R is coloured e0 and B is coloured ek is congruent
modulo 2 to the number of colourings of G in which each vertex is either coloured with l or v1 and
adjacent vertices may not both be coloured with v1. But these are exactly the independent sets of G:
vertices coloured v1 are “in” the independent set and vertices coloured l are “out”.

Proof of Theorem 5.6. By Theorem 4.18 and Lemma 5.4 we can count H-colourings of G∗ in which R
is coloured e0 and B is coloured ek in polynomial time if equipped with an H-colouring oracle. But we
know that the number of such colourings is congruent modulo 2 to the number of independent sets in G.
Since clearly G∗ can be constructed from G in polynomial time, this gives us a polynomial-time Turing
reduction from ⊕INDSET to ⊕H-COLOURING.

5.3 A dichotomy for trees

The main result now follows easily.

Proof of Theorem 3.8. By Lemma 3.3, the number of H-colourings of a graph G is congruent modulo
2 to the number of H ′-colourings, where H ′ is any graph obtained from H by reducing H by any of
its involutions. Also, if H is a tree then any graph H ′ which can be reached from H by reduction by
involutions is also a tree. It therefore suffices to consider involution-free trees.

If H is an involution-free tree, and H contains more than one vertex, then Theorem 5.6 shows
that ⊕H-COLOURING is ⊕P-complete. On the other hand, if H contains either 0 or 1 vertices then
#H-COLOURING (and hence ⊕H-COLOURING) is polynomial-time solvable by Lemma 5.1.

Note that the dichotomy described by Theorem 3.8 is decidable in polynomial time.

6 Other graphs

As noted earlier, we conjecture not only that there is a dichotomy for the complexity of ⊕H-COLOURING

for general H, but that this dichotomy arises in the same way as it does for trees. In other words, that
the only way in which a ⊕H-COLOURING problem can be polynomial-time solvable is if H reduces by
involutions to one of the four trivial graphs. If this is the correct characterisation, then the dichotomy
is certainly decidable, but it is not clear whether it can be decided in polynomial time. On the face
of it, finding the reduced form associated with a graph H requires finding an involution of H, and no
polynomial-time algorithm is known for this problem.

We finish by showing that in uncovering a dichotomy for general graphs it is enough to consider
connected H. That is, if an involution-free graph H has any connected component H1 for which ⊕H1-
COLOURING is ⊕P-hard, then the parity colouring problem associated with H is itself ⊕P-hard.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 54

http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

Theorem 6.1. Let H be an involution-free graph. If H1 is a connected component of H and ⊕H1-
COLOURING is ⊕P-hard, then ⊕H-COLOURING is ⊕P-hard.

Proof. Take any graph G, and assume that G is connected (since the number of H-colourings of G is just
the product of the number of H-colourings of each of its connected components). We can use an oracle
for H-colouring to determine the parity of the number of colourings of G in which only colours from H1
are used in the following way: let v ∈V (G) be any vertex of G. For each colour hi ∈V (H1), we can count
the colourings of G in which v is coloured hi using Theorem 4.7. Notice that the size of the orbit of hi in
Aut(H) is odd, as H has no involutions, so the parity of the number of colourings of G with hi at v is the
same as the parity of the number of colourings of G which use any of the vertices in the orbit of hi at v.

But we can do this for every vertex in H1, and since G is connected, any colouring which uses a vertex
from H1 at v can use only colours from H1 anywhere in G. Conversely, any colouring of G which uses
only colours from H1 must use some colour from H1 at v, so this does indeed allow us to count all such
colourings of G.

Note that this actually allows us to strengthen Theorem 3.8: the H-colouring problem associated with
any forest H is polynomial-time solvable if the reduced form associated with the forest in the reduction
system described in Section 3 is the null graph or the graph on one vertex, and ⊕P-complete otherwise.

References

[1] ANDREI A. BULATOV: The complexity of the counting constraint satisfaction problem. J. ACM,
60(5):34, 2013. Preliminary version in ICALP’08, also available at ECCC. [doi:10.1145/2528400]
36

[2] ANDREI A. BULATOV AND MARTIN GROHE: The complexity of partition functions.
Theoret. Comput. Sci., 348(2-3):148–186, 2005. Preliminary version in ICALP’04.
[doi:10.1016/j.tcs.2005.09.011] 36

[3] JIN-YI CAI AND XI CHEN: Complexity of counting CSP with complex weights. In Proc.
44th STOC, pp. 909–920, New York, 2012. ACM Press. [doi:10.1145/2213977.2214059,
arXiv:1111.2384] 36

[4] JIN-YI CAI, XI CHEN, AND PINYAN LU: Graph homomorphisms with complex values: A
dichotomy theorem. SIAM J. Comput., 42(3):924–1029, 2013. Preliminary versions in ICALP’10
and arXiv. [doi:10.1137/110840194] 36

[5] XI CHEN: Guest column: Complexity dichotomies of counting problems. SIGACT News, 42(4):54–
76, 2011. [doi:10.1145/2078162.2078177] 36

[6] MARTIN DYER AND CATHERINE GREENHILL: The complexity of counting graph homomor-
phisms. Random Structures Algorithms, 17(3-4):260–289, 2000. Extended abstract in SODA’00,
Corrigendum in Random Struct. Algorithms. [doi:10.1002/1098-2418(200010/12)17:3/4<260::AID-
RSA5>3.0.CO;2-W] 36, 38, 49, 52

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 55

http://dx.doi.org/10.1007/978-3-540-70575-8_53
http://eccc.hpi-web.de/eccc-reports/2007/TR07-093/index.html
http://dx.doi.org/10.1145/2528400
http://dx.doi.org/10.1007/978-3-540-27836-8_27
http://dx.doi.org/10.1016/j.tcs.2005.09.011
http://dx.doi.org/10.1145/2213977.2214059
http://arxiv.org/abs/1111.2384
http://dx.doi.org/10.1007/978-3-642-14165-2_24
http://arxiv.org/abs/0903.4728
http://dx.doi.org/10.1137/110840194
http://dx.doi.org/10.1145/2078162.2078177
http://dl.acm.org/citation.cfm?id=338219.338259
http://dx.doi.org/10.1002/rsa.20036
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
http://dx.doi.org/10.1002/1098-2418(200010/12)17:3/4<260::AID-RSA5>3.0.CO;2-W
http://dx.doi.org/10.4086/toc


JOHN FABEN AND MARK JERRUM

[7] MARTIN DYER AND DAVID RICHERBY: The #CSP dichotomy is decidable. In Proc. 28th Symp.
Theoretical Aspects of Comp. Sci. (STACS’11), volume 9 of Leibniz International Proceedings
in Informatics (LIPIcs), pp. 261–272. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2011.
[doi:10.4230/LIPIcs.STACS.2011.261] 36

[8] JOHN FABEN: The complexity of counting solutions to generalised satisfiability problems modulo k.
In CoRR, 2008. [arXiv:0809.1836] 37, 51

[9] JOHN FABEN: The Complexity of Modular Counting in Constraint Satisfaction Problems. Ph. D.
thesis, School of Mathematics, Queen Mary, University of London, 2012. 37

[10] ANDREAS GÖBEL, LESLIE ANN GOLDBERG, AND DAVID RICHERBY: The complexity of
counting homomorphisms to cactus graphs modulo 2. ACM Trans. Comput. Theory, 6(4):17:1–
17:29, 2014. Preliminary version in STACS’14. [doi:10.1145/2635825, arXiv:1307.0556] 37, 40,
48, 49

[11] ANDREAS GÖBEL, LESLIE ANN GOLDBERG, AND DAVID RICHERBY: Counting homomorphisms
to square-free graphs, modulo 2. Jan 2015. [arXiv:1501.07539] 37, 49

[12] LESLIE ANN GOLDBERG, MARTIN GROHE, MARK JERRUM, AND MARC THURLEY: A com-
plexity dichotomy for partition functions with mixed signs. SIAM J. Comput., 39(7):3336–3402,
2010. Preliminary versions in STACS’09 and arXiv. [doi:10.1137/090757496] 36

[13] HENG GUO, SANGXIA HUANG, PINYAN LU, AND MINGJI XIA: The complexity of weighted
boolean #CSP modulo k. In Proc. 28th Symp. Theoretical Aspects of Comp. Sci. (STACS’11),
volume 9 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 249–260. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011. [doi:10.4230/LIPIcs.STACS.2011.249] 37

[14] PAVOL HELL AND JAROSLAV NEŠETŘIL: On the complexity of H-coloring. J. Comb. Theory Ser.
B, 48(1):92–110, 1990. [doi:10.1016/0095-8956(90)90132-J] 36, 40

[15] PAVOL HELL AND JAROSLAV NEŠETŘIL: Graphs and Homomorphisms. Oxford Univ. Press, 2004.
Available from Oxford University Press. 42

[16] CAMILLE JORDAN: Sur les assemblages de lignes. J. Reine Angew. Math., 1869(70):185–190,
1869. [doi:10.1515/crll.1869.70.185] 50

[17] LÁSZLÓ LOVÁSZ: On the cancellation law among finite relational structures. Period. Math. Hungar.,
1(2):145–156, 1971. [doi:10.1007/BF02029172] 42

[18] LÁSZLÓ LOVÁSZ: Combinatorial Problems and Exercises. North-Holland Publishing Co.,
Amsterdam-New York, 1979. 42

[19] CHRISTOS H. PAPADIMITRIOU AND STATHIS K. ZACHOS: Two remarks on the power of
counting. In Theoret. Comput. Sci., volume 145, pp. 269–276, London, UK, 1982. Springer.
[doi:10.1007/BFb0036487] 37, 38

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 56

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.261
http://arxiv.org/abs/0809.1836
http://drops.dagstuhl.de/opus/volltexte/2014/4470
http://dx.doi.org/10.1145/2635825
http://arxiv.org/abs/1307.0556
http://arxiv.org/abs/1501.07539
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1821
http://arxiv.org/abs/0804.1932
http://dx.doi.org/10.1137/090757496
http://dx.doi.org/10.4230/LIPIcs.STACS.2011.249
http://dx.doi.org/10.1016/0095-8956(90)90132-J
http://ukcatalogue.oup.com/product/9780198528173.do
http://dx.doi.org/10.1515/crll.1869.70.185
http://dx.doi.org/10.1007/BF02029172
http://dx.doi.org/10.1007/BFb0036487
http://dx.doi.org/10.4086/toc


THE COMPLEXITY OF PARITY GRAPH HOMOMORPHISM: AN INITIAL INVESTIGATION

[20] GEORGE PÓLYA: Kombinatorische Anzahlbestimmung für Gruppen, Graphen und chemische
Verbindungen. Acta Math., 68(1):145–254, 1937. [doi:10.1007/BF02546665] 50

[21] LESLIE G. VALIANT: The complexity of computing the permanent. Theoret. Comput. Sci., 8(2):189–
201, 1979. [doi:10.1016/0304-3975(79)90044-6] 37

[22] LESLIE G. VALIANT: Accidental algorithms. In Proc. 47th FOCS, pp. 509–517, Washington, DC,
USA, 2006. IEEE Comp. Soc. Press. [doi:10.1109/FOCS.2006.7] 37, 51

AUTHORS

John Faben
School of Mathematical Sciences
Queen Mary, University of London
jdfaben gmail com
http://www.johnfaben.com

Mark Jerrum
School of Mathematical Sciences
Queen Mary, University of London
m.jerrum maths qmul ac uk
http://www.maths.qmul.ac.uk/~mj

ABOUT THE AUTHORS

JOHN FABEN studied Mathematics at the University of Birmingham. He then spent a year
in Edinburgh doing a Masters in Operational Research before going on to do a Ph. D.
with Mark Jerrum at Queen Mary in London. The focus of his research there was the
complexity of modular counting, particularly in Constraint Satisfaction Problems, but he
also enjoyed the existence of the Combinatorics Study Group. He doesn’t do research
level mathematics any more, but has moved back to Scotland and works for Barclays
Bank in Glasgow. He plays both bridge and water polo, and has yet to meet anyone else
who can say the same.

MARK JERRUM graduated from Edinburgh University in 1981, where his advisor was Leslie
Valiant. He remained at Edinburgh until 2007, when he moved to Queen Mary, University
of London. He has a long-term interest in the computational complexity of counting
problems, and in randomised algorithms, particularly those based on Markov chain
Monte Carlo.

THEORY OF COMPUTING, Volume 11 (2), 2015, pp. 35–57 57

http://dx.doi.org/10.1007/BF02546665
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1109/FOCS.2006.7
http://www.johnfaben.com
http://www.maths.qmul.ac.uk/~mj
http://www.birmingham.ac.uk/schools/mathematics/index.aspx
http://msc.maths.ed.ac.uk/or/index
http://www.maths.qmul.ac.uk/
http://www.maths.qmul.ac.uk/seminar-series/combinatorics-study-group
http://www.maths.qmul.ac.uk/
http://dx.doi.org/10.4086/toc

	Graph homomorphism
	Modular counting complexity
	The classes sharp-k(P)
	Completeness

	A confluent reduction system
	Reduction by automorphisms
	The Lovász vector of a graph

	Pinning colours to vertices
	Rooted graphs
	Building gadgets

	Trees
	Involution-free trees
	The reduction
	A dichotomy for trees

	Other graphs
	References

