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Abstract: We show that pseudorandom generators that fool degree-k polynomials over F2
also fool branching programs of width-2 and polynomial length that read k bits of input at
a time. This model generalizes polynomials of degree k over F2 and includes some other
interesting classes of functions, for instance, k-DNFs.

The proof essentially follows by a new decomposition theorem for width-2 branching
programs. The theorem states that if f can be computed by a width-2 branching program that
reads k bits of input at a time, then f can be (roughly) written as a sum f = ∑i αi fi where
each fi is a degree-k polynomial and ∑i |αi| is small.

Bogdanov and Viola (FOCS 2007) constructed a pseudorandom generator that fools
degree-k polynomials over F2 for arbitrary k. Their construction consists of summing k
independent copies of a generator that ε-fools linear functions. Our second result investigates
the limits of such constructions: We show that, in general, such a construction is not
pseudorandom against bounded fan-in circuits of depth O((log(k log1/ε))2).
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1 Introduction

This work studies the power and limitation of certain pseudorandom distributions and pseudorandom
generators. Let us begin with a definition. A distribution D on {0,1}n is ε-pseudorandom against a class
C of functions from {0,1}n to {0,1} if for every f ∈C,∣∣ Pr

x∼D
[ f (x) = 1]− Pr

x∼{0,1}n
[ f (x) = 1]

∣∣≤ ε ,

where x∼ {0,1}n means that x is uniformly distributed in {0,1}n. A function G : {0,1}m→ {0,1}n is
an ε-pseudorandom generator (PRG) against C if the distribution G(s), s∼ {0,1}m, is ε-pseudorandom
against C. We call m the seed length of the generator.

Bogdanov and Viola [4] suggested the following construction of a PRG against degree-k polynomials
over a finite field:

G′(s1, . . . ,sk) = G(s1)+ · · ·+G(sk) , (1.1)

where G is a PRG against linear functions [11]. Building on their work and subsequent work by Lovett [9],
Viola [16] proved that this generator is indeed pseudorandom against low-degree polynomials: If G is ε-
pseudorandom against linear functions, then G′ is O(ε1/2k−1

)-pseudorandom against degree-k polynomials.
By Viola’s analysis, this pseudorandom generator has seed length that is optimal up to a constant factor
(as long as the degree of the polynomial and ε are constant). However, the seed length deteriorates
exponentially with the degree, and the result becomes trivial when the degree exceeds logn.

Is the Bogdanov-Viola construction also pseudorandom for polynomials of, say, polylogarithmic
degree? A positive answer would give a new pseudorandom generator against polynomial-size constant-
depth circuits with modular gates, since such circuits can be approximated by polynomials of poly-
logarithmic degree in a very strong sense [12, 14]. In other words, it would give an example where a
pseudorandom generator that was designed for one class of functions (polynomials) would automatically
yield a derandomization of a different class (small-depth circuits). Conversely, if we believe that the
Bogdanov-Viola generator is not pseudorandom against polynomials of polylogarithmic degree, we could
try proving this by giving a constant-depth circuit against which the generator is not pseudorandom.

More generally, given a probability distribution with some property (k-wise independence, small bias
against linear functions, a convolution of several such distributions), is it pseudorandom against some
class of functions (small circuits, space bounded computations)? Such questions have been considered
before. For example, Linial and Nisan [8] showed that DNFs on n variables are fooled by O(

√
n logn)-

wise independent distributions and conjectured that polylogarithmic-wise independence suffices. A
beautiful sequence of papers improved our knowledge: Bazzi proved the Linial-Nisan conjecture for
depth-2 circuits [2], Razborov simplified Bazzi’s proof [13], and Braverman proved the conjecture for
constant-depth circuits [6].

This line of study could reveal insights about the power and limitations of existing constructions of
pseudorandom generators. In this paper we prove two results, one positive and one negative.

1.1 A positive result

Here we are interested in the class (k, t,n)-2BP of width-2 branching programs of length t that read k
bits of input at a time and compute a function from {0,1}n to {0,1}. This device can be described by
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a layered directed acyclic graph, where there are t layers and each layer contains two nodes, which we
label by 0 and 1. Each layer j < t is associated with an arbitrary k-bit substring x| j of the input x. Each
node in layer j has 2k outgoing edges to layer j+1 that are labelled by all possible values in {0,1}k. On
input x, the computation starts with the first node in the first layer, then follows the edge labelled by x|1
onto the second layer, and so on until a node in the last layer is reached. The identity of this last node is
the outcome of the computation.

This type of branching program can represent a degree-k polynomial, a “space-bounded” computation
with one bit of memory, as well as a k-DNF formula.1 We prove the following.

Theorem 1.1. Let G be an ε-PRG against degree-k polynomials in n variables over F2. Then G is an
ε ′-PRG against the class of functions computed by a (k, t,n)-2BP, with ε ′ = t · ε .

Most of the literature on PRGs for branching programs deals with read-once programs, due to
their connection to space-bounded computation. We consider general branching programs that are not
necessarily read-once. General programs are interesting also due to Barrington’s theorem [1] which states
that any circuit of depth d can be simulated by a (non-read-once) branching program of width 5 and size
4d .

The fooling parameter ε ′ for branching programs in the theorem is t times the fooling parameter ε for
degree-k polynomials. A typical value for t is polynomial in the number of variables. This means that in
this case (according to the theorem above) only an inverse-polynomial error for polynomials implies a
non-trivial statement for branching programs.

1.2 A negative result

Our second result shows limitations of the Bogdanov-Viola construction.

Theorem 1.2. Let k be an integer and ε > 0. Let m = k log(1/ε)+1. For every n ≥ 2m2, there exists
a distribution D such that D is ε-pseudorandom against linear functions over {0,1}n, but the sum of k
independent copies of D is not 1/3-pseudorandom against bounded fan-in circuits (with and, or, and not
gates) of depth O(log2 m) and size polynomial in m.

It is known [11] that the seed length of an ε-biased generator against linear functions must be at
least Ω(logn+ log(1/ε)). Therefore, if we want the generator to be efficient, we are restricted to using
ε = 1/poly(n). For this setting of parameters, Theorem 1.2 tells us that the Bogdanov-Viola generator
does not fool bounded fan-in circuits of depth O((log(k logn))2). Barrington’s theorem implies, therefore,
that Dk is not pseudorandom against width-5 size-2O((log(k log1/ε))2) branching programs. Concluding, the
Bogdanov-Viola generator fools branching programs of width 2, but not of width 5. We do not know
what happens for width 3 or 4.

A correlation bound of Viola and Wigderson [17] shows that, in general, a distribution that is pseu-
dorandom against degree-k polynomials need not be pseudorandom against the “≡ 0 mod 3” function,
which is computable by a width-3 branching program. However, their (counter-)example is not a convolu-
tion of independent distributions with small bias against linear functions (i. e., it does not have the form
of the Bogdanov-Viola generator).

1In the special case of k-DNFs, Trevisan [15] has a better result. He showed that for every constant k there is an ε = 1/poly(n)
such that ε-biased generators against linear functions fool k-DNF over n variables.
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1.3 Proof overview for Theorem 1.1

It has been known for some time that read-once width-2 branching programs that read one bit at a time
can be fooled by linear generators.2 One way to argue this is to think of the computation of the branching
program B as a boolean function over Fn

2 and show inductively over the layers of B that the sum of the
absolute values of the Fourier coefficients of B is bounded from above by t. It is easy to see that linear
generators of bias ε are εL-pseudorandom against any boolean function whose sum of absolute values of
Fourier coefficients is at most L, and the correctness follows from there.

For branching programs that read more than one bit at a time, this argument cannot work, as there
exist width-2 branching programs that read 2 bits at a time and that are not fooled by some small-bias
linear generator. One such branching program computes the inner product function (for even n)

IP(x1, . . . ,xn) = x1x2 + · · ·+ x2i−1x2i + · · ·+ xn−1xn (mod 2) .

Nevertheless, we argue along the same lines. Instead of using the Fourier transform of the branching
program, we resort to “higher-order” representations of functions using low-degree polynomials. We show
that every branching program B of length t and width 2 that reads k bits at a time admits a “representation
of length t” in terms of degree-k polynomials. By “representation of length t” we mean that B can be
written as a sum over the reals of the form

(−1)B(x) = ∑
p:Fn

2→F2

αp · (−1)p(x)

where p ranges over all degree-k polynomials over F2, and αp are real coefficients such that ∑p|αp| ≤ t.
Unlike the Fourier transform, for degree 2 and larger this representation is not unique. Once this
representation has been obtained, we argue that a pseudorandom generator for degree-k polynomials is
also pseudorandom for B by linearity of expectation.

While our proof is not technically difficult, we find the application of “higher-order” Fourier type
analysis conceptually interesting and potentially relevant to other computer science applications.

2 Fooling width-2 branching programs

2.1 Width-2 branching programs as sums of polynomials

The following theorem is the basis for the proof of Theorem 1.1. It shows that width-2 branching
programs have a “short representation by polynomials of low degree.” For a function f : {0,1}n→{0,1},
we use the notation f̃ = (−1) f , a map from {0,1}n to {1,−1}. Define deg( f ) to be the degree of f when
viewed as a multilinear polynomial in F2[x1, . . . ,xn].

Theorem 2.1. Let f : {0,1}n→ {0,1} be computed by a (k, t,n)-2BP. Then there exist α1, . . . ,αs ∈ R
and g1, . . . ,gs : {0,1}n→{0,1} such that

1. f̃ (x) = ∑
s
i=1 αi · g̃i(x) for all x ∈ {0,1}n (where the sum is over the reals),

2We are not aware of a published proof but have heard the result credited to Saks and Zuckerman.
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2. for all i ∈ [s], deg(gi)≤ k, and

3. ∑
s
i=1 |αi| ≤ t.

We defer the proof of Theorem 2.1 to Section 2.2 and proceed by showing how it implies our main
result.

Proof of Theorem 1.1. Let G : {0,1}m → {0,1}n be an ε-pseudorandom generator against degree-k
polynomials in n variables over F2. Let f : {0,1}n → {0,1} be computed by a (k, t,n)-2BP. By
Theorem 2.1, there exist α1, . . . ,αs ∈ R and g1, . . . ,gs : {0,1}n→{0,1} such that

1. f̃ (x) = ∑
s
i=1 αi · g̃i(x) for all x ∈ {0,1}n ;

2. for all i ∈ [s], deg(gi)≤ k ;

3. ∑
s
i=1 |αi| ≤ t.

For the rest of the proof x∼ {0,1}n and s∼ {0,1}m denote two independent random variables chosen
uniformly from their respective domains. First, note that for every function f : {0,1}n→{0,1},

2 ·
∣∣Pr[ f (G(s)) = 1]−Pr[ f (x) = 1]

∣∣= ∣∣E[ f̃ (G(s))− f̃ (x)]
∣∣ .

Thus, using the properties above, and using linearity of expectation,

2 ·
∣∣Pr[ f (G(s)) = 1]−Pr[ f (x) = 1]

∣∣ =
∣∣E[ f̃ (G(s))− f̃ (x)

]∣∣
=

∣∣∣ s

∑
i=1

αi ·E
[
g̃i(G(s))− g̃i(x)

]∣∣∣
≤

s

∑
i=1
|αi| ·

∣∣E[g̃i(G(s))− g̃i(x)
]∣∣

=
s

∑
i=1
|αi| ·2 ·

∣∣Pr[gi(G(s)) = 1]−Pr[gi(x) = 1]
∣∣

≤ 2 · t · ε ,

where the last inequality holds since G is an ε-pseudorandom generator against degree-k polynomials.

2.2 Proof of Theorem 2.1

Let f be a boolean function computed by a branching program B of width 2 and length t that reads k bits
of input at a time. We prove the theorem by induction on t.
Induction base: For the case t ≤ 2, the theorem holds since f (x) is a boolean function in at most k
variables and so deg( f )≤ k.
Induction step: Assume that the theorem holds for every function computed by a (k, t−1,n)-2BP. By
definition, there exists P : {0,1}k+1→{0,1} such that

f (x) = P( ft−1(x) , x|t−1) ,

THEORY OF COMPUTING, Volume 9 (7), 2013, pp. 283–293 287

http://dx.doi.org/10.4086/toc


ANDREJ BOGDANOV, ZEEV DVIR, ELAD VERBIN, AND AMIR YEHUDAYOFF

where ft−1 is the function computed at layer (t−1) of B, and x|t−1 is the k-bit substring of the input x
associated with layer (t−1).

Let p0 and p1 be two maps from {0,1}k to {0,1} defined as

p0(y) = P(0,y) and p1(y) = P(1,y) .

Since both of p0 and p1 depend on at most k variables, we know deg(p0) ≤ k and deg(p1) ≤ k. In
addition, for every z ∈ {0,1} and y ∈ {0,1}k,

P̃(z,y) =
1
2
(p̃0(y)− p̃1(y)) · (−1)z +

1
2
(p̃0(y)+ p̃1(y)) .

We can now use the induction hypothesis. By the choice of P, for every x ∈ {0,1}n,

f̃ (x) = P̃( ft−1(x),x|t−1) =
1
2
(

p̃0(x|t−1)− p̃1(x|t−1)
)
· f̃t−1(x)+

1
2
(

p̃0(x|t−1)+ p̃1(x|t−1)
)
.

By induction, there exist α1, . . . ,αs ∈ R and g1, . . . ,gs : {0,1}n→{0,1} that correspond to f̃t−1(x) and
satisfying the three stated properties. Thus, for all x ∈ {0,1}n

f̃ (x) =
1
2
(

p̃0(x|t−1)− p̃1(x|t−1)
)
·

s

∑
i=1

αi · g̃i(x)+
1
2
(

p̃0(x|t−1)+ p̃1(x|t−1)
)
.

We complete the proof by renaming the polynomials and the coefficients in the above sum. For j ∈
{1, . . . ,s}, set

β j =
α j

2
and h j(x) = p0(x|t−1)⊕g j(x)

and for j ∈ {s+1, . . . ,2s}, set

β j =−
α j−s

2
and h j(x) = p1(x|t−1)⊕g j(x)

(where ⊕ denotes summation in F2). Set β2s+1 = β2s+2 = 1/2, set h2s+1(x) = p0(x|t−1), and set
h2s+2(x) = p1(x|t−1). Finally, set s′ = 2s+2. Thus,

f̃ (x) =
s′

∑
j=1

β j · h̃ j(x)

for all x ∈ {0,1}n. In addition, every h j is of degree at most k (since addition in F2 does not increase the
degree), and

s′

∑
j=1
|β j| ≤ 1+2 ·

s

∑
i=1

|αi|
2
≤ 1+(t−1) = t .

3 Limitations of the Bogdanov-Viola construction

In this section we show that a sum of several copies of pseudorandom generators for linear functions fails
to fool small-depth, bounded fan-in circuits (Theorem 1.2).
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3.1 Proof of Theorem 1.2

Set m = k log(1/ε)+ 1 and partition the input x ∈ Fn
2 into n/m consecutive blocks x|1, . . . ,x|n/m ∈ Fm

2 .
Consider the following distribution D.

1. Choose a random linear subspace S of Fm
2 of dimension (m−1)/k.

2. For 1≤ i≤ n/m, choose each block x|i independently and uniformly from S.

To prove Theorem 1.2, we show the following two claims.

Claim 3.1. The distribution D is ε-pseudorandom against linear functions.

Claim 3.2. The sum Dk of k independent samples from D is not 1/3-pseudorandom against bounded
fanin circuits of depth O((logm)2) and size polynomial in m.

The theorem follows from these two claims.

Proof of Claim 3.1. Let a(x) = 〈a,x〉 be an arbitrary nonzero linear function over Fn
2. We split a as a sum

of linear functions ai over the blocks of x as

a(x) =
n/m

∑
i=1

ai(x|i) .

Without loss of generality, let us assume a1 is nonzero. Conditioned on the choice of S, the values of the
functions ai(x|i) are independent:

E
x∼D

[(−1)a(x)] = E
S

[n/m

∏
i=1

E
x|i∼S

[(−1)ai(x|i)]
]
.

Now for any fixed choice of S, the value Ex|i∼S[(−1)ai(x|i)] is 1 if ai ∈ S⊥ and 0 otherwise. Here

S⊥ = {y : 〈y,x〉= 0 for all x ∈ S} .

Therefore
| E
x∼D

[(−1)a(x)]|= Pr[for all i, ai ∈ S⊥]≤ Pr[a1 ∈ S⊥] = 2−(m−1)/k = ε

and so |Ex∼D[a(x)]−1/2| ≤ ε/2 < ε .

Proof of Claim 3.2. Let X1, . . . ,Xk be independent samples from the distribution D and X = X1+ · · ·+Xk.
Let Si denote the subspace of Fm

2 associated to the sample Xi. Since each block of Xi belongs to the
subspace Si, each block of X will belong to the sum of subspaces S = S1 + · · ·+Sk. The subspace S has
dimension at most m−1.

This suggests the following test for X : Arrange the first 2m blocks of X as rows in an m×2m matrix
M and compute the rank of M over F2. (By our choice of parameters, 2m2 ≤ n so this is always possible.)
If the matrix has full rank, output 1, otherwise output 0. If X is chosen from Dk, then all columns of M are
chosen from the same subspace of dimension m−1 so M will never have full rank. If X is chosen from
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the uniform distribution, then M is a random m×2m matrix and, by a standard argument, the probability
it doesn’t have full rank is at most 2−m < 1/3.

It remains to observe that the above test, which is essentially a rank computation, can be implemented
by a circuit of depth O((logm)2) and size polynomial in m, using a theorem of Mulmuley [10] (see also
earlier work by Csanky [7], Berkowitz [3], and Borodin et al. [5]).

4 Open Problems

First, the question of building a generator with seed length o(log2 n) that fools width-3 branching programs
is wide open. It is open even for read-once width-3 branching programs.

Second, as discussed in Section 1, it would be interesting to find a generator that fools read-once
degree-k polynomials, that has shorter seed-length than Lovett’s generator. (Recall that Lovett’s generator
also fools non-read-once polynomials).
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