
THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350
www.theoryofcomputing.org

SPECIAL ISSUE IN HONOR OF RAJEEV MOTWANI

Approximate Nearest Neighbor: Towards
Removing the Curse of Dimensionality

Sariel Har-Peled∗ Piotr Indyk † Rajeev Motwani ‡

Received: August 20, 2010; published: July 16, 2012.

Abstract: We present two algorithms for the approximate nearest neighbor problem in
high-dimensional spaces. For data sets of size n living in Rd , the algorithms require space
that is only polynomial in n and d, while achieving query times that are sub-linear in n and
polynomial in d. We also show applications to other high-dimensional geometric problems,
such as the approximate minimum spanning tree.

The article is based on the material from the authors’ STOC’98 and FOCS’01 papers. It
unifies, generalizes and simplifies the results from those papers.

ACM Classification: F.2.2

AMS Classification: 68W25

Key words and phrases: approximate nearest neighbor, high dimensions, locality-sensitive hashing

1 Introduction

The nearest neighbor (NN) problem is defined as follows: Given a set P of n points in a metric space
defined over a set X with distance function D, preprocess P to efficiently answer queries for finding the
point in P closest to a query point q ∈ X . A particularly interesting case is that of the d-dimensional
Euclidean space where X = Rd under some `s norm. This problem is of major importance in several

∗Supported by NSF CAREER award CCR-0132901 and AF award CCF-0915984.
†Supported by a Stanford Graduate Fellowship, NSF Award CCR-9357849 and NSF CAREER award CCF-0133849.
‡Supported by a Sloan Fellowship, and IBM Faculty Partnership Award, an ARO MURI Grant DAAH04-96-1-0007 and

NSF Young Investigator Award CCR 9357849.

2012 Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani
Licensed under a Creative Commons Attribution License DOI: 10.4086/toc.2012.v008a014

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2012.v008a014

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

areas, such as data compression, databases, data mining, information retrieval, image and video databases,
machine learning and signal processing. The diverse interest in the problem stems from its wide
applicability. Specifically, many large data sets consists of objects that can be represented as a vector of
features (i. e., a point in Rd); in such cases, finding an object similar to a given one can be achieved by
finding a nearest neighbor in the feature space. The number of features (i. e., the dimensionality) ranges
anywhere from tens to millions. For example, one can represent a 1000×1000 image as a vector in a
1,000,000-dimensional space, one dimension per pixel.

The problem and its variants is one of the prototypical questions in computational geometry. Originally
posed in the 1960s by Minsky and Papert ([47], p. 222), it has been the subject of substantial research
efforts since then. Many efficient solutions have been discovered for the case when the points lie in a
space of constant dimension. For example, if the points lie in the plane, the nearest neighbor problem can
be solved with O(logn) time per query, using only O(n) storage [59, 45].

Unfortunately, as the dimension grows, these algorithms become less and less efficient. More
specifically, their space or time requirements grow exponentially in the dimension. In particular, the
nearest neighbor problem has a solution with O(dO(1) logn) query time, but using nO(d) space ([46],
building on [22]). This is partly because the Voronoi decomposition of P, i. e., the decomposition of Rd

into cells such that all points within each cell have the same nearest neighbor in P, has complexity nΘ(d).
Alternatively, if one insists on linear (or near-linear) storage, the best known running time bound even
for random point sets is of the form min(2O(d),dn), which is essentially linear in n even for moderate
d. Worse still, the exponential dependence of space and/or time on the dimension (called “curse of
dimensionality”) has been observed in practice as well [60].

The lack of success in removing the exponential dependence on the dimension led many researchers
to conjecture that no efficient solutions exists for these problems when the dimension is large enough
(e. g., see [47]). At the same time, it raised the question whether it is possible to remove the exponential
dependence on d, if we allow the answers to be approximate. Specifically, in the c-approximate nearest
neighbor problem, instead of reporting the point p closest to q, the algorithm is allowed to report any
point within distance c times the distance from q to p, for some approximation factor c > 1. The appeal of
this approach is that, in many cases, an approximate nearest neighbor is almost as good as the exact one.
In particular, if the distance measure accurately captures some notion of quality, then small differences
in the distance should not matter much. Moreover, an efficient approximation algorithm can be used to
solve the exact nearest neighbor problem, simply by enumerating all approximate nearest neighbors and
returning the closest point encountered.

Our results. In this paper, we provide several results for the approximate nearest problem under the `s

norms for s ∈ [1,2]. For concreteness, we start with the case of s = 1. Let c = 1+ ε , where ε > 1/n. We
show:

1. A deterministic data structure for (1+ γ)(1+ ε)-NN, for any constant γ > 0, with space and prepro-
cessing time bounded by O(n log2 n)×O(1/ε)d , and query time O(d logn).

1b. A randomized data structure for (1+γ)(1+ε)-NN, for any constant γ > 0, with space and preprocess-
ing time bounded by nO(log(1/ε)/ε2), and query time polynomial in d, logn and 1/ε . It is obtained

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 322

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

by reducing the dimension d to O(logn/ε2) (using the Johnson-Lindenstrauss lemma [38]), and
then utilizing the result above.

2. A randomized data structure for c(1 + γ)-NN, for any constant γ > 0, with space that is sub-
quadratic in n and query time sub-linear in n. Specifically, the data structure uses space O(dn+
n1+1/c log2 n log logn), and has query time of O(dn1/c log2 n log logn). The algorithm is based on
Locality-Sensitive Hashing, see below for further details.

The results can be further extended to `s norm for s ∈ [1,2]. This is done by using an embedding
from `d

s into `d′
1 , for d′ = O(d log(1/ε)/ε2), which preserves all distances by a factor of 1+ ε [39]. The

reduction increases the query complexity by an additive term of O(dd′).
The above results naturally complement each other. The first one (1 and 1b) shows that it is possible

to construct approximate data structures that suffer from only a mild form of the “curse of dimensionality.”
The data structure (1) is the first to support (1+ε)-NN queries in time logarithmic both in n and 1/ε , while
requiring only space that is near linear in n. If ε is strictly separated from zero, then data structure (1b)
removes the “curse” completely. Unfortunately, the resulting data structure is mostly of theoretical interest,
since the log(1/ε)/ε2 term in the exponent makes the data structure highly memory-intensive even for
relatively large ε . On the other hand, the second algorithm (2) provides a more modest improvement in
the running time, but the space penalty is much less severe. As a result, the second algorithm is much
more practical when the dimension d is high.

An additional benefit of the first algorithm is that in fact it provides a low-complexity approximate
Voronoi decomposition. Specifically, we show that the algorithm can be used to construct a decomposition
of Rd into O(n log2 n)×O(1/ε)d+1 simple cells, such that for each cell C one can identify a single point
in P that is an (1+ ε)-approximate nearest neighbor for any q ∈C. This is an approximate analog of
the Voronoi decomposition, which provides such a structure for the case of the exact nearest neighbor.
However, the complexity of our decomposition is much lower than that of the exact one.

Finally, we show how to use our efficient approximate nearest neighbor algorithm to solve other
proximity problems. In particular, we show how to approximate the Geometric Minimum Spanning Tree
(MST) of a given set on n points by performing near-linear number of calls to an approximate nearest
neighbor data structure. By plugging in the second data structure (based on Locality-Sensitive Hashing)
we can find a c-approximate MST in time O(dn1+1/c log3 n).

Our techniques Our approximate nearest neighbor data structures are obtained in two steps. First, we
show how to solve a “decision version” of the approximate nearest neighbor problem, that we term the
approximate near neighbor problem.1 Here, we are given a fixed radius r, and the goal is to build a data
structure for a given point-set P that for any query q does the following: if there is a point in P within
distance r from q, then it reports a point p′ ∈ P within distance cr from q. We show how to construct two
such data structures. One utilizes the aforementioned approximate Voronoi decomposition, leading to
a fast lookup time and space that is mildly exponential in d. The second one is based on the notion of
locality-sensitive hashing (LSH). Its key idea is to hash the points in a way that the probability of collision
is much higher for objects which are close to each other than for those which are far apart. Then, one can

1In [35, 30], this problem was referred to as “Point Location in Equal Balls” (PLEB). In this paper we are using more recent
terminology from [34].

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 323

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

determine near neighbors by hashing the query point and retrieving elements stored in buckets containing
that point. We show that such families of hash functions exist for Hamming distance and its variants, and
extend them to `s norms.

In the second step, we show how to reduce the approximate nearest neighbor problem to the near
neighbor problem. A simple way of performing this task is to build several data structures for the latter
problem, with radii r = ∆,∆/c,∆/c2, . . ., where ∆ is the largest possible distance between the query and
the point-set. Unfortunately, in general this approach leads to space complexity that is not bounded by
any function of n. We overcome this problem by providing a more efficient reduction, which utilizes only
some of the radii r. Our reduction multiplies the space complexity of the near neighbor data structure by
a factor of O(log2 n), and the query time by O(logn). Composing the reduction with the aforementioned
algorithms for the approximate near neighbor problem provides algorithms for the approximate nearest
neighbor problem.

Relation to conference papers Thanks to the amount of time that has passed since the publication of
the initial conference papers [35, 30] on which this paper is based, we were able to simplify some of the
arguments considerably. As a result, several algorithms in this paper are simpler, and sometimes more
general, than the algorithms in the original papers. In particular, the reduction from the near to the nearest
neighbor presented here is a simplification of the reduction in [30] (which itself was much simpler and
more efficient than the reduction in [35]). It works for general metric spaces, and can be performed using
near-linear number of approximate near neighbor queries. In contrast, the preprocessing algorithm in [30]
was tailored to `s spaces, while the algorithm in [35] ran in quadratic time.

We note, however, that a side-effect of our reduction (as well as the reduction of [30]) is that in
the approximate near neighbor instances the ratio of the diameter of the point-sets to search radius r
is no longer small (polylogarithmic). The latter property is useful, e. g., when designing efficient LSH
functions for `d

1 space. We can ensure a somewhat weaker property directly by exploiting the “randomized
bucketing” approach of Bern [11] (Lemma 3.1). Luckily, the property suffices for our purpose.

Another result that was a subject to a substantial generalization is the algorithm for computing an
approximate MST. The algorithm outlined in the manuscript [36] relied on a data structure for maintaining
approximately close pairs of points under updates, which was used to simulate Kruskal’s MST algorithm.
Instead, in this paper we present a general reduction from the approximate MST problem to dynamic
approximate near neighbor data structure, that works in arbitrary metrics. The reduction is still based
on Kruskal’s algorithm. However, it has a particularly simple form, that was inspired by the algorithm
of [12] (see the comments in the next subsection).

1.1 Related work

Prior Work There has been a substantial amount of work on approximate nearest neighbor problem
in the computational geometry literature. However, all work prior to this paper yielded algorithms that
involved factors exponential in d in either the space or in the query time bound. One of the earliest works
on this topic is [9] (improved upon in [22] and [19]), who gave an algorithm with query time 1/εO(d) · logn
and space 1/εO(d) ·n. Another line of research [10] resulted in an algorithm with linear space O(dn) but
query time (d/ε)O(d) · logn. Other authors [11, 19] considered algorithms with approximation factor

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 324

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

polynomial in d, and provided algorithms that avoid exponential factors in the space and query time
bounds. Finally, two approximation algorithms were given in [42]: one with O(dn logd) space and O(n)
query time and one with nO(d) space and (d + logn)O(1) query time (for fixed ε > 0). The last algorithm,
although still suffering from the curse of dimensionality, has significantly influenced the developments in
this paper.

The locality-sensitive hashing approach introduced in this paper has several ancestors in the literature,
which investigated multi-index hashing-based algorithms for retrieving similar pairs of vectors with
respect to the Hamming distance. Although the analytic framework adopted in those papers made the
results generally incomparable to ours, some of the insights are shared. A few of the papers considered a
closely related problem of finding all “close” pairs of points in a data set. For simplicity, we translate
them into the near neighbor framework, since they can be solved by performing essentially n separate
near neighbor queries.

Typically, the hash functions projected the vectors on some subset of the coordinates {1, . . . ,d}. In
some papers [54, 29] the authors considered the probabilistic model where the data points are chosen
uniformly at random, and the query point is a “random” point “close” to one of the points in the data
set. A different approach [40] is to assume that the data set is arbitrary, but almost all points are far from
the query point. Finally, the paper [17] proposed an algorithm which did not make any assumption on
the input, and provided a method for determining the parameters (denoted here by k and L) to achieve
desired level of sensitivity and accuracy.

On a related front, the authors of [13, 14] considered similarity search between sets (say A,B) using
the Jaccard coefficient s(A,B) = |A∩B|/|A∪B|. They proposed a family of hash functions h(A) such that
Pr[h(A) = h(B)] = s(A,B), which can be plugged into our framework. Although their main motivation
was to construct short similarity-preserving “sketches” of sets, they also discuss methods for performing
similarity search using these functions.

Concurrent developments Parallel to our conference paper [35], the paper [43] presented an algorithm
with bounds similar to our result (1b). Specifically, it provides a data structure that, in case of the `d

1
norm, achieves O(d(logn+1/ε)O(1)) query time using space (dn)O(1/ε2). For the `2 norm, the query time
becomes O(d2(logn+1/ε)O(1)). The probabilistic guarantee provided by their data structure is somewhat
stronger: if the construction procedure is correct (which happens with a controlled probability) then the
data structure returns a correct approximate nearest neighbor to all queries q.2 Although the technical
development is somewhat different, the general approach is similar, in that a form of a randomized
dimensionality reduction is used to reduce the dimension to O(logn/ε2).

In another parallel development, the paper [12] presented a (1+ε)-approximation algorithm for MST
(for ε < 1), with running time O(dn1−aε2

) for some absolute constant a > 0.

Further developments Since the conference versions of this paper have appeared in [35, 36, 30], there
have been many further developments on approximate nearest neighbor search. In this section, we briefly
discuss some of those results. For a more in-depth treatment of the material see [34].

2Intuitively, this guarantee is obtained by setting a probability of failure to be inversely exponential in d, and applying a
union bound over the appropriately discretized set of all queries.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 325

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

The reduction from the approximate nearest to the near neighbor problem, and the resulting approxi-
mate Voronoi decompositions were further improved in [7] by using a well-separated pairs decomposi-
tion [18] to generate the cells needed to construct the approximate Voronoi diagram (note, that unlike
our construction, the number of cells is linear in n but has exponential dependency on the dimension).
This construction uses the same framework as suggested in [30]. This result was extended to improve the
tradeoff between the dependency on ε on the query time and space used. See [8] for further details and
related work. This construction results in an approximate Voronoi diagram of complexity n/εO(d).

An alternative construction was suggested in [57]. Building on the reduction from nearest-neighbor
search to near neighbor suggested in [30], they reduced the space requirements by a logarithmic factor.
By slightly changing the near-neighbor problem, they reduce the space bound to linear, which yields an
approximate Voronoi diagram of complexity n/εO(d).

The exponent in the space bound achieved by the algorithm (1b) is likely to be close to the optimal.
Specifically [6] showed that any (1+ ε)-approximate data structure in Hamming space that makes only a
constant number of memory accesses needs nΩ(1/ε2) storage (our data structure makes only one memory
access). There has been plenty of work on lower bounds for the exact and approximate nearest neighbor
problem, see [34] for an overview.

There has been substantial progress in designing LSH functions for various measures and under-
standing their limitations, see [4] for an overview. In particular, it is known that for the `1 norm, the 1/c
bound for the running time exponent given in this paper is tight ([50], building on [48]). Lower bounds in
more general models of computations were provided in [53]. In contrast, for the `2 norm, one can further
reduce the exponent to 1/c2 ([3], building on [26]). In addition, a different algorithm exploiting LSH
functions was proposed in [52]; this data structure achieves near-linear storage, at the price of increasing
the exponent by a constant factor.

From a more general perspective, the existence of fast approximate nearest neighbor algorithms for
high-dimensional `1 spaces enabled solving this problem for other metrics, by embedding them into
`1 with low distortion. This approach has been useful for variants of edit distance [49, 25, 24, 20, 51],
earth-mover distance [21, 37, 28, 5] and other metrics. Lower bounds for such embeddings have been
investigated as well [41].

Finally, the LSH algorithm and its variants have become popular practical algorithms for similarity
search in high dimensions. They have been successfully applied to computational problems in a variety
of areas, including web clustering [33], computational biology [15, 16], computer vision (see selected
articles in [58]), computational drug design [27] and computational linguistics [56].

1.2 Notation

We use (X ,D) to denote a metric space defined over X with the distance function D. Typically, we will
use X = Rd for some dimension d > 0 and D(p,q) = ‖p−q‖s for some s≥ 1. In those cases, we will
assume that d ≤ n, where n = |P|. For convenience, we assume that n is even.

For any point p∈ X , and r > 0, we use B(p,r) to denote the set {q∈ X : D(p,q)≤ r}. For a parameter
r > 0, let UBP(r) =

⋃
p∈P B(p,r) denote the union of equal balls of radius r centered at the points of

P. Moreover, let CCP(r) be a partitioning of P induced by the connected components of UBP(r). That
is, two points p,q ∈ P belong to the same set in the partitioning if there is a path contained in UBP(r)

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 326

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

connecting p to q; that is, there is a sequence p = p1, . . . , pk = q ∈ P, such that D(pi, pi+1) ≤ 2r, for
i = 1, . . . ,k−1.

Define DP(q) = minp∈P D(q, p). For a parameter c≥ 1, p′ ∈ P is a c-approximate nearest neighbor
of q if D(q, p′)≤ cDP(q).

Definition 1.1. The c-approximate nearest neighbor problem (or c-NN) with failure probability f is to
construct a data structure over a set of points P in metric space (X ,D) supporting the following query:
given any fixed query point q ∈ X , report a c-approximate nearest neighbor of q in P with probability
1− f . We use NearestNbr(P,c, f) to denote a data structure solving this problem. We skip the argument
f if it is equal to some absolute constant from (0,1).

Definition 1.2. The (c,r)-approximate near neighbor problem (or (c,r)-NN) with failure probability f is
to construct a data structure over a set of points P in metric space (X ,D) supporting the following query:
given any fixed query point q ∈ X , if DP(q) ≤ r, then report some p′ ∈ P∩B(q,cr), with probability
1− f . We use NearNbr(P,c,r, f) to denote a data structure solving this problem. We skip the argument f
in this or other definitions involving it if it is equal to some absolute constant from (0,1).

Note that, according to the above definition, if q /∈UBP(r) then the algorithm is allowed to report any
point in P, or no point at all (i. e., p′ is null). For convenience, if the reported point p′ is further than cr
from q (a condition that the algorithm can check), then we set p′ to null.

Let n = |P|. If the data structure NearNbr(P,c,r) is defined by the context, we will use T (n,c,r, f)
and Q(n,c,r, f) to denote the construction and query time of the data structure, respectively. We will
also use S(n,c,r, f) to denote its space complexity. Additionally, if the data structure supports updates
(insertions or deletions of points to or from P), we denote the update time by U(n,c,r, f). The time to
perform a deletion alone is denoted by D(n,c,r, f). We will skip the argument r if the time and space
functions do not depend on it, and the argument f if it is assumed to be equal to some small absolute
constant (e. g., 1/3).

For the algorithms discussed in this paper, we assume that T (n,c,r, f) = Ω(nd), S(n,c,r, f) = Ω(nd)
and Q(n,c,r, f) = Ω(d), i. e., the time and space bounds are at least linear in the input size. Moreover, by
standard replication arguments, we have T (n,c, f) = O(log1/ f)T (n,c); a similar relationship holds for
the other complexity measures.

Insertions and deletions in randomized data structures In this paper we present several randomized
data structures over sets of points P that support approximate nearest neighbor queries and updates. There
exist several possible types of guarantees that one can require from such a data structure. In this paper we
consider two models: “oblivious” and “adaptive.”

Both models require the notion of a well-formed sequence. Formally, consider any sequence S
of m operations on the data structures, where the ith operation is of the form (opi, pi), where opi ∈
{Query,Delete, Insert}. Given two sets of points P and Q, the sequence is called well-formed with respect
to P and Q if it satisfies the following conditions:

(A) Only the points in P can be deleted or inserted.
(B) Only the points in Q can be queried.
(C) A point can be deleted only after it has been inserted first.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 327

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

If Q (or P, respectively) is the set of all points in the metric space, we skip Q (or P, respectively) in
the above definition.

We start by defining the oblivious model where we require that for any well-formed sequence, the
data structure should be correct with some probability. This is the default model used in this paper. The
formal definition is as follows.

Definition 1.3. A randomized fully dynamic (r,c)-NN data structure Z with failure probability f is called
oblivious if for any sequence S that is well-formed:

Pr[the last operation in the sequence S is executed correctly by Z]≥ 1− f .

Note that one can bound the probability of correctness for all operations in the sequence via the union
bound.

In the adaptive model, the requirements are stronger than in the oblivious case. Specifically, once a
data structure is constructed correctly (which happens with probability 1− f), then it should correctly
execute any well-formed sequence of update and query operations, as long as the points come from a
pre-defined set. This in particular implies that the query and update operations can depend on the results
of prior operations.

Definition 1.4. Consider any two sets of points P and Q. A randomized fully dynamic (c,r)-NN data
structure Z with failure probability f is called adaptive with respect to P,Q if

Pr[Z is correct for any sequence S that is well-formed with respect to P,Q]≥ 1− f .

Miscellaneous For any P⊂ X , let P and P′ be two partitions of P. We say that P refines P′ (denoted
by Pv P′) if for any S ∈ P we have S′ ∈ P′ such that S⊂ S′.

We use DH(p,q) to denote the Hamming distance between vectors p and q, i. e., the number of
coordinates i such that pi 6= qi.

2 Reduction from the approximate nearest to near neighbor

2.1 Outline

In this section, we outline the reduction from the approximate nearest neighbor problem to a sequence of
approximate near neighbor problems.

We start from a description of an “ideal” reduction, which assumes a solution to the exact near
neighbor problem (i. e., for c = 1), and also assumes some constraints on the point set. The actual
reduction overcomes these requirements at the price of making it somewhat more complicated.

For simplicity, assume n is even. Let γ ∈ (1/n,1/2) be a parameter to be determined later (the
lower bound of 1/n ensures that log(n/γ) = O(logn), which simplifies some expressions). Let rmed
be equal to the smallest value of r such that UBP(r) has a component of size at least n/2+ 1, and let
UBmed = UBP(rmed). For the purpose of exposition, we assume that the largest component of UBmed has
size exactly n/2+1.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 328

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

We first construct a NearNbr data structure Zmed,2 = NearNbr(P,c,rmed/2). Given a query point q, if
q is within distance rmed/2 to some point p ∈ P (which can be decided by one near neighbor query in
Zmed,2), then we continue the search for the nearest neighbor recursively in the connected component of
UBmed that contains p. Note that such connected component is unique. Moreover, observe that the search
continues recursively into a subset of P of cardinality at most n/2+1.

Alternatively, if DP(q)≥ rtop for rtop� rmed (which can be decided by a single near neighbor query
in NearNbr(P,c,rtop)), then q is “far away” from the points of P, and we can continue the search on a
decimated subset of P. Namely, from each connected component of UBmed, we extract one point of P
that lies inside it. This results in a set P′ ⊂ P that contains at most n/2 points. We continue the recursive
search into P′. Although continuing the search into P′ introduces cumulative error into the search results,
we show that the overall error introduced is smaller than 1+O(γ) if we set rtop = Θ(nrmed log(n)/γ).

The only case that remains unresolved, is when rmed ≤ DP(q) ≤ rtop. Observe that rtop/rmed =
O((n logn)/γ). Namely, we can cover the interval [rmed,rtop] by

M = log1+γ

rtop

rmed
= O((1/γ) log(n/γ))

NearNbrs Z1, . . . ,ZM, where
Zi = NearNbr(P,c,rmed(1+ γ)i) ,

for i = 1, . . . ,M.
By performing a binary search on Z1, . . . ,ZM we can find, using O(logM) near neighbor queries,

the index i, such that q /∈ UB(P,rmed(1+ γ)i) and q ∈ UBP(rmed(1+ γ)i+1). Namely, we have found an
(1+ γ)-approximate nearest neighbor of q in P.

Overall, given a query point, either we found its (1 + γ)-approximate nearest neighbor using
O(logM) = O(log(n/γ)) near neighbor queries, or alternatively, we performed two near neighbor queries
and continued the search recursively into a set having at most n/2+1 points of P. Thus, one can find an
(1+O(γ))-approximate nearest neighbor by performing O(log(n/γ)) NearNbr queries.

This concludes the description of the ideal algorithm. Unfortunately, it suffers from several problems:
(i) it assumes a reduction to the exact near neighbor problem, (ii) it assumes that a component of size
n/2+1 always exists, and (iii) it requires computing the value of rmed, which is expensive. Instead, we
will only compute an approximation r∗med to rmed, such that rmed ≤ r∗med = O(nrmed). This will require
defining r∗bot that will play the role of rmed in the above argument, and readjusting the value of rtop.

2.2 Subroutines

Approximating rmed Recall that rmed is equal to the smallest value of r such that UBP(r) has a
component of size at least n/2+1, and UBmed = UBP(rmed). We start from describing an algorithm that
approximates the value of rmed.

Lemma 2.1. There exists a randomized algorithm that, given a set P of n points and a distance function D,
returns an estimate r∗med such that rmed ≤ r∗med ≤ (n−1)rmed with probability at least 1/2. The algorithm
runs in time O(n).

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 329

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

Proof. The algorithm first selects a point p uniformly at random from P. Then r∗med is defined to be the
median of the set D(p, p′) over p′ ∈ P. Note that the median of n−1 distances is uniquely defined.

To prove the lemma, define C ⊂ P to be the set of points inducing the largest connected component in
UBP(rmed). By definition of rmed, we have |C|/|P|> 1/2. Therefore, the point p belongs to C with given
probability. From now on we condition the analysis on this event.

First, we show that rmed ≤ r∗med. Indeed, the point p, together with the n/2 points closest to p, induces
a connected component in UBP(r∗med) of size n/2+ 1. By definition, rmed is the smallest radius that
induce such a component in UBP(r∗med).

On the other hand, all points in C are within the distance of (n−1)rmed from p. Since |C|> n/2, it
follows that the median of the distances (i. e., r∗med) is at most (n−1)rmed.

Let c > 1 be the approximation factor of the near-neighbor data structure that we reduce to. For λ =
O(logn/γ) where γ > 0 is a parameter to be determined, we define r∗bot = r∗med/(nc) and r∗top = r∗mednλc.
Note that r∗top/r∗bot = Θ(n2 logn). Assuming that r∗med is computed correctly, i. e., that rmed ≤ r∗med ≤
(n−1)rmed, then we also have r∗botc < rmed.

Claim 2.2. Suppose that r∗med is computed correctly, i. e., that rmed ≤ r∗med ≤ (n−1)rmed. Then
• each connected component of UBP(r∗botc) is induced by at most n/2 points, and
• there exists at least one connected component C ∈ CCP(r∗med) that has size at least n/2+1, and

thus there are at most n/2 connected components in CCP(r∗med).

Approximating CCP(r) We now describe an algorithm for approximating the connected components
CCP(r). Specifically, for given parameters r and c, we will show how to compute a partitioning P

of P such that P is a refinement of CCP(cr) and CCP(r) is a refinement of P. The algorithm uses a
NearNbr(P,c,r, f) data structure that is adaptive with respect to the query set P with failure probability at
most f , where f is some constant.

The algorithm is presented as Algorithm 1. The basic idea of the algorithm is simple: we compute
connected components of a graph with edges of the form (q, p′), where q ∈ P and p′ is a point output by
an approximate NearNbr query on q. This is done by implementing a standard graph search. However,
some care is needed to ensure that the running time of the algorithm is low, even though the graph itself
can have Ω(n2) edges. This is achieved by deleting from NearNbr the points that have been reached
during the search. This ensures that each new edge found by querying NearNbr leads to a vertex that has
not been reached yet.

Claim 2.3. The algorithm APPROXIMATECC computes a partitioning P that refines CCP(cr) and is
refined by CCP(r), i. e., CCP(r)v Pv CCP(cr). Its running time is

O
(
T (n,c, f)+nD(n,c, f)+nQ(n,c, f)

)
and the probability of failure is at most f .

Interval near neighbor Our algorithm will make use of a collection of NearNbr data structures which
solve the approximate nearest neighbor assuming the distance from the query to the data set belongs to a
given range. We will refer to this collection as Interval NearNbr, or INearNbr.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 330

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

procedure APPROXIMATECC(P,c,r)
Construct a NearNbr(P,c,r, f) data structure for P.
P= /0
E ′ = /0
while P 6= /0 do

Select any p ∈ P.
Delete p from P and from the associated NearNbr structure.
S = {p}
C = /0 . C is the next connected component to be computed
repeat

Select any q from S. . We will enumerate all edges going out of q
Add q to C.
Delete q from S.
repeat

Let p′ be the answer of the NearNbr structure on q.
if p′ is not null then

Add {q, p′} to E ′.
Delete p′ from P and the associated NearNbr structure.
Add p′ to S.

end if
until p′ is null

until S = /0 . Connected component C has been completed
Add C to the partition P.

end while
end procedure

Algorithm 1: Finding an approximation to CCP(r).

Lemma 2.4. For 1/2 > γ > 0 and c ≥ 1, given range [a,b] and a point-set P, one can construct a
collection of M = O((logb/a)/γ) NearNbr data structures with approximation parameter c and failure
probability f = 1/(3logM), so that given a query point q, one can decide that either:

(i) DP(q)≤ a,
(ii) DP(q)≥ b, or

(iii) find a point p′ ∈ P, so that D(q, p′)≤ c(1+ γ)DP(q).
The answer returned is correct with probability at least 2/3. If either case (i) or case (ii) occurs then
only two NearNbr queries are carried out, while if case (iii) occurs then O(log(log(b/a)/γ)) NearNbr
are performed.

Proof. Let ri = a(1+ γ)i−1/c, for i = 1, . . . ,M, where

M = dlog(1+γ)(cb/a)e= O
(

log(cb/a)
γ

)
(since γ < 1/2). Let Zi = NearNbr(P,c,ri, f) for i = 1, . . . ,M.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 331

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

Clearly, if a query to Z1 does not return null, we conclude that case (i) has occurred. Similarly, if a
query to ZM returns null, we conclude that case (ii) must have happened. Note that in both cases we only
perform one NearNbr query.

Otherwise, it must be the case that a/c≤ DP(q)≤ cb. By performing a binary search on Z1, . . . ,ZM

we can find an index i such that, on query q, Zi reports null and Zi+1 reports some point p′. Clearly, we
have

ri ≤ DP(q)≤ D(q, p′)≤ cri+1 ≤ c(1+ γ)ri ≤ c(1+ γ)DP(q) .

Thus, p′ is a c(1+ γ)-approximate nearest neighbor of q in P.

2.3 The reduction

Data structure construction Let f = 1/(E logn) for some constant E > 1. We will use NearNbr data
structures with probability of failure f . The preprocessing algorithm is described as Algorithm 2. It can
be viewed as building a search tree defined by the recursive calls, with each tree node containing a subset
of points and a collection of NearNbr data structures over that subset.

procedure CONSTRUCT(P,c,γ)
if |P|= 1 then

Store P.
return

end if
repeat

Compute r∗med, r∗bot and r∗top (Lemma 2.1 and Claim 2.2).
. Note that the last step succeeds with probability 1/2.

Compute a partitioning P= {P1, . . . ,Pk} of P s. t. CCP(r∗bot)v Pv CCP(cr∗bot) (Claim 2.3).
Compute another partitioning P′ = {P′1, . . . ,P′k′} of P s. t. CCP(r∗med)v P′ v CCP(cr∗med).

until |P′| ≤ n/2 and |Pi| ≤ n/2, for all i = 1, . . . ,k.
for i = 1, . . . ,k′ do

Select a representative p′i from P′i .
Construct INearNbr over P with range [r∗bot/2,r∗top] and parameters γ and c (Lemma 2.4).
Continue recursively on P1, . . . ,Pk and P′ = {p′1, . . . , p′k′}.

end for
end procedure

Algorithm 2: Constructing the approximate nearest neighbor data structure.

We now analyze the complexity of the construction algorithm.

Lemma 2.5. The number of points stored in all NearNbr structures in the constructed tree is O(Mn logn),
where M = O(log(n)/γ) is the number of times each point is replicated in INearNbr.

Proof. Let B(n) be the maximum number of points stored in the INearNbr structures. We analyze B(n)
and multiply the result by O(M).

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 332

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

First, observe that when the procedure terminates, we have k′ ≤ n/2 and k′ ≤ k. The latter inequality
holds since cr∗bot ≤ r∗med and therefore Pv P′. Without the loss of generality assume that n≥ 3. We have
the following recurrence:

B(n) = max
k′,k,n1,...,nk

k

∑
i=1

B(ni)+B(k′)+n (2.1)

subject to k′ ≤ n/2, k′ ≤ k, 1≤ ni ≤ n/2 and ∑
k
i=1 ni = n. We show this solves to B(n)≤Cn logn+1 for

some C > 1.
The proof is by induction. First, we apply the inductive assumption and substitute for B(ni) and B(k′)

in equation (2.1). Since k′ ≤ k we have

B(n)≤ max
k,n1,...,nk

k

∑
i=1

[Cni logni +1]+Ck logk+1+n (2.2)

subject to the same constraints as above.
We relax the assumption that ni’s are integers. Using the convexity of the negated entropy function

H(p) = p log p+(1− p) log(1− p), applied on pairs of ni’s, we observe that for each k, the maximum is
achieved when at most two values ni (say, n1 and n2) are set to a value greater than 1. Since 1 · log(1) = 0,
the right hand side of equation (2.2) simplifies to

max
k,n1,n2

[Cn1 logn1 +Cn2 logn2 + k+Ck logk]+n+1≤C max
k,n1,n2

[n1 logn1 +n2 logn2 + k logk]+2n ,

where n1 +n2 +(k−2) = n, k ≤ n/2 and ni ≤ n/2.
By using convexity again, we upper bound the right hand side by

2C(n/2) log(n/2)+C2log(2)+2n = 2C+Cn logn−Cn+2n ,

which is at most Cn logn if n≥ 3 and C is large enough.

Corollary 2.6. For any γ > 0, if the space/time complexity functions S(n,c, f) and T (n,c, f) are convex,
then the data structure constructed in Algorithm 2 uses O(S(n,c, f)/γ · log2 n) space, and is constructed
in expected time

O
(

T (n,c, f)
γ · log2 n

+n logn
[
Q(n,c, f)+D(n,c, f)

])
.

Search The search procedure follows the divide-and-conquer approach used in the data structure tree
construction. Let q be the query point. The procedure is described in Algorithm 3.

Observe that the height of the data structure tree is at most h = logn+O(1). Therefore, we have the
following claim.

Claim 2.7. The search procedure performs at most O(logn) NearNbr queries and distance computations.

Proof. The search procedure encounters case (iii) of an INearNbr query at most once; this takes time
O(logM). In other cases, it performs only O(1) NearNbr queries per tree level. The time complexity
follows.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 333

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

procedure SEARCH(P,q)
if |P|= 1 then

Report the point in P
else

Perform an INearNbr query with argument q (Lemma 2.4).
if the outcome is case (i) then

Let Pi be the set such that DPi(q)≤ r∗bot/2.
Perform Search(Pi,q).

else
if the outcome is case (ii) then

Perform Search(P′,q).
else

if the outcome is case (iii) then
Report the point p′ found by INearNbr.

end if
end if

end if
end if

end procedure
Algorithm 3: Searching for approximate nearest neighbor.

Recall that the probability of failure of the NearNbr data structures is equal to f = 1/(E logn). We
have:

Lemma 2.8. The search procedure reports a (1+ γ)2c-approximate nearest neighbor of q in P, with
probability of failure at most O(1/E).

Proof. Assume that the recursive call in the search procedure (in cases (i) or (ii)) reports an a-approximate
nearest neighbor. Depending on the outcome of the INearNbr query, we have the following three cases:

Case (i) The search procedure continues on the subset Pi that is guaranteed to contain the nearest neighbor.
Thus, the point reported by the recursive call is a a-approximate nearest neighbor of q in P.

Case (ii) The search procedure continues on the set P′ of representatives, with the property that for any
point p ∈ P, there is a point p′ ∈ P′ such that D(p, p′)≤ cnr∗med. Moreover, we know that

DP(q)≥ r∗top = r∗mednλc≥ λD(p, p′) .

It follows that if the recursive procedure finds an a-approximate nearest neighbor of q in P′, then
this point is also a (1+1/λ)a-approximate nearest neighbor of q in P.

Case (iii) The search procedure determines a (1+γ)c approximate nearest neighbor directly by querying
INearNbr.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 334

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

It follows that the search procedure reports an (1+ 1/λ)h(1+ γ)c-approximate nearest neighbor,
where h = logn+O(1) is the height of the data structure tree. We set λ = O(log(n)/γ) such that
(1+1/λ)h = 1+ γ .

The above analysis required that each of the O(logn) NearNbr data structures encountered in the
process was correct. The probability that this does not happen is at most O(1/E).

2.4 The result

We now state our main result of this section. The result is stated in two forms: without preprocessing, and
with preprocessing.

Theorem 2.9. Let P be a given set of n points in a metric space, and let c = 1+ ε > 1, f ∈ (0,1), and
γ ∈ (1/n,1) be prescribed parameters.

Assume that we are given a data structure for the (c,r)-approximate near neighbor that uses space
S(n,c, f), has query time Q(n,c, f), and has failure probability f . Then there exists a data structure for
answering c(1+O(γ))-NN queries in time O(logn)Q(n,c, f) with failure probability O(f logn). The
resulting data structure uses O(S(n,c, f)/γ · log2 n) space.

Theorem 2.10. Let P be a given set of n points in a metric space, and let c = 1+ ε > 1, f ∈ (0,1), and
γ ∈ (1/n,1) be prescribed parameters.

Assume that we are given a data structure for the (c,r)-approximate near neighbor over P that can be
constructed in T (n,c, f) time, uses S(n,c, f) space, has query time Q(n,c, f), has deletion time D(n,c, f),
and has failure probability f . Moreover, assume that the data structure is adaptive with respect to any set
of size nO(1).

Then one can build, in expected

O
(

T (n,c, f)
γ · log2 n

+
[
Q(n,c, f)+D(n,c, f)

]
n logn

)
time, a data structure for answering c(1+O(γ))-NN queries in time O(logn)Q(n,c, f) with failure
probability O(f logn). The resulting data structure uses O(S(n,c, f)/γ · log2 n) space. The number of
points stored in this data structure is O((n/γ) · log2 n).

3 Approximate near neighbor

In this section, we describe data structures for the approximate near neighbor problem (i. e., (c,r)-NN) in
`d

s . They can be used as subroutines in the reduction from the earlier section. Note that by scaling we can
assume r = 1. We start by describing two simplifying reductions, followed by two algorithms for the
approximate near neighbor problem.

3.1 Reductions

Coordinate range reduction We start by describing a method for reducing the range of coordinate
values of points in P∪{q}, for the case of the `1 norm. It is essentially due to Bern [11], who used it for

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 335

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

the purpose of designing approximate nearest neighbor algorithms with approximation factor polynomial
in d. This subroutine improves the efficiency of the data structures.

Lemma 3.1. Fix a > 1, and suppose there is a data structure for (c,1)-NN in [0,a]d under the `1 norm
that uses space S(n,d,c,r, f), has query time Q(n,d,c,r, f), and has failure probability f . Then there
exists a data structure for the same problem over `d

1 , with asymptotically the same time and space bounds,
and failure probability f +1/a.

Proof. First, we impose an orthogonal cubic grid on `d
1 , where each grid cell has side length a. The grid

is translated by a random vector chosen uniformly at random from [0,a]d . Consider any pair of points
p,q ∈ `d

1 such that ‖p−q‖1 ≤ 1. The probability that both p and q fall into the same grid cell is at least

1−∑
i

|pi−qi|
a

≥ 1− 1
a
.

Therefore, we can proceed as follows:
• For each grid cell C such that C∩P 6= /0, build a separate data structure for the set C∩P.
• In order to answer a query q ∈C, query the data structure for C∩P.

In this way we reduced the (c,1)−NN problem for points in `d
1 to the case when the coordinates

of points live in a cube of side a. The query time is increased by an additive term O(d), which (as
per the assumptions in Section 1.2) is subsumed by O(Q(n,d,c,r, f)). Since (as per the assumptions in
Section 1.2) S(n,d,c,r, f) is at least linear in dn, it follows that the space bound of the new data structure
remains O(S(n,d,c,r, f)). The probability of failure is increased by an additive term of 1/a.

Hamming cube Next, we show that the problem can be simplified further by assuming that the points
live in a low-dimensional Hamming cube.

Lemma 3.2. Fix δ > 0, a > 1, and suppose there is a data structure for (c,r)-NN in a dM-dimensional
Hamming cube for M = O(ad/δ) that uses space S(n,d,c,r, f), has query time Q(n,d,c,r, f), and has
failure probability f . Then there exists a data structure for (c(1+δ),1)-NN for `d

1 with the same time
and space bounds, and failure probability f +1/a.

Proof. By Lemma 3.1 we can assume all points live in [0,a]d . If we round all coordinates of points
and queries to the nearest multiple of δ/d, then the inter-point distance are affected only by an additive
factor of δ . Thus, solving a (c,1+ δ)-NN on the resulting point-set and queries yields a solution to
(c(1+δ),1)-NN over the original space `d

1 .
In order to solve the (c,1+ δ)-NN problem, define a scaling factor s = d/δ . Observe that, if we

multiply all coordinates of the data points and queries by s, then all coordinates become integers in the
range {0, . . . ,M}. In this case, we use a mapping unary : {0, . . . ,M}d →{0,1}dM, such that

unary((x1, . . . ,xd)) = unary(x1), . . . ,unary(xd) ,

where unary(x) is a string of x ones followed by a string of M− x zeros. Observe that the `1 distance
between any two points is equal to the Hamming distance of their images [44]. Thus, it now suffices to
solve an (c,(1+δ)s)-NN on the point-set and queries mapped by unary.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 336

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

In the following we focus on solving the problem in `s norms for s ∈ {1,2}. The generalization to any
s ∈ [1,2] follows from the theorem of [39], that states that for any d,γ , there exists a mapping f : `d

s → `d′
1 ,

d′ = O(d log(1/γ)/γ2), so that for any p,q ∈ `d
1 we have

‖p−q‖s ≤ ‖ f (p)− f (q)‖1 ≤ (1+ γ)‖p−q‖s .

Note that the mapping f is defined for all points in `d
s , even if they are not known during the preprocessing.

The mapping f is chosen at random from a certain distribution over linear mappings from `d
s to `d′

1 , which
takes time O(dd′). This allows us to reduce (c(1+ γ),r)-NN in `d

s to (c,r)-NN in `d′
1 .

3.2 Locality-sensitive hashing

In this section, we describe an algorithm based on the concept of locality-sensitive hashing (LSH). The
basic idea is to hash the data and query points in a way that the probability of collision is much higher for
points that are close to each other than for those which are far apart. Formally, we require the following.

Definition 3.3. A family H = {h : X →U} is (r1,r2, p1, p2)-sensitive for (X ,D) if for any q, p ∈ X we
have

• if D(p,q)≤ r1 then PrH[h(q) = h(p)]≥ p1,
• if D(p,q)> r2 then PrH[h(q) = h(p)]≤ p2.

In order for a locality-sensitive family to be useful, it has to satisfy inequalities p1 > p2 and r1 < r2.
We can solve the (c,r)-NN problem using a locality-sensitive family as follows. We choose r1 = r

and r2 = c · r. Given a family H of such hash functions for these parameters, we amplify the gap between
the “high” probability p1 and “low” probability p2 by concatenating several functions. In particular, for k
specified later, define a function family G= {g : X →Uk} such that g(p) = (hi1(p), . . . ,hik(p)), where
hit ∈H, for I = {i1, . . . , ik} ⊂ {1, . . . , |H|}. For an integer L we choose L functions g1, . . . ,gL from G

independently and uniformly at random. Let I j denote the multi-set defining g j. During preprocessing,
we store a pointer to each p ∈ P in the buckets g1(p), . . . ,gL(p). Since the total number of buckets may
be large, we retain only the non-empty buckets by resorting to “standard” hashing.

To process a query q, we carry out a brute-force search for the neighbor of q in buckets g1(q), . . . ,gL(q).
As it is possible that the total number of points stored in those buckets is large, we interrupt the search
after finding the first 3L points (including duplicates). Let p1, . . . , pt be the points encountered during this
process. If there is any point p j such that D(p j,q)≤ r2 then we return the point p j, else we return null.

Correctness The parameters k and L are chosen so as to ensure that with some constant probability the
following two events hold. For any p∗ we define two events:

• E1(q, p∗) occurs iff either p∗ /∈ B(q,r) or g j(p∗) = g j(q) for some j = 1, . . . ,L.
• E2(q) occurs iff the total number of collisions of q with points from P−B(q,r2) is less than 3L,

i. e.,
L

∑
j=1
|(P−B(q,r2))∩g−1

j (g j(q))|< 3L .

Our first result is established for the oblivious case.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 337

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

Theorem 3.4. Suppose there is a (r,cr, p1, p2)-sensitive family H for (X ,D), where p1, p2 ∈ (0,1) and
let ρ = log(1/p1)/log(1/p2). Then there exists a fully dynamic data structure for (c,r)-NN over a set
P⊂ X of at most n points, such that:

• The query procedure requires at most O(nρ/p1) distance computations, evaluations of the hash
functions from G (that is, O(nρ/p1 · dlog1/p2

ne) evaluations of the hash functions from H), or other
operations; the same bound hold for the updates.

• The data structure uses at most O(n1+ρ/p1) words of space, in addition to the space needed to
store the set P.

The failure probability of the data structure is at most 1/3+1/e < 1.

Proof. Let q be a query point, and let P be the set of points at the time when the query is executed.
Assume that there exists p∗ ∈ B(q,r1) (otherwise there is nothing to prove).

Observe that if the events E1(q, p∗) and E2(q) hold, then the algorithm is correct. Thus it suffices to
ensure that E1 holds with probability P1 and E2 holds with probability P2 such that both P1 and P2 are
strictly greater than half.

Set k = dlog1/p2
ne. Then the probability that g(p′) = g(q) for p′ ∈ P−B(q,r2) is at most pk

2 = 1/n.
Thus the expected number of elements from P−B(q,r2) colliding with q under fixed g j is at most 1; the
expected number of such collisions with any g j is at most L. By Markov’s inequality, the probability that
this number exceeds 3L is less than 1/3. Therefore the probability that event E2(q) holds is P2 ≥ 2/3.

Consider now the probability of g j(p∗) = g j(q). It is bounded from below by

pk
1 ≥ p

log1/p2
n+1

1 = p1n−
log1/p1
log1/p2 = p1n−ρ .

Thus the probability that such a g j exists is at least ζ = 1− (1− p1n−ρ)L. By setting L = nρ/p1 we get
ζ > 1−1/e. The theorem follows.

Remark 3.5. In the conference paper [35], the theorem and the proof implicitly assumed that the
probabilities p1 and p2 are bounded away from 0. Although this assumption holds for the LSH functions
described in this paper (see Section 3.2.1), this does not have to be the case in general. Therefore, in this
paper we make the dependence on p1 and p2 explicit. See [50] for a further discussion on this point.

We now consider the adaptive case. Let m be an upper bound on the number of queries performed by
the data structure, and let n be an upper bound on the number of points in the data structure at any time.
Compared to the oblivious case, the main difference is that now we will need to ensure that all possible
events E1 and E2 hold simultaneously. To this end we reduce the probability of failure by constructing
I = c log(m+n) instances Z1, . . . ,ZI of NearNbr using independent random coins, maintaining the same
set P. In order to answer a query q, we query all Zi’s and return any valid answer.

Lemma 3.6. There exists an absolute constant c such that

Pr[for all p ∈ P and q ∈ Q, there exists t ∈ {1, . . . , I} such that both E1(q, p) and E2(q) hold]≥ 1−1/n .

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 338

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

Proof. We have

Pr
[
∃p,q∀t(E1(p,q)∧E2(q)) does not hold for Zi

]
≤ ∑

p,q
Pr
[
∀t(E1(p,q)∧E2(q)) does not hold for Zi

]
= ∑

p,q
Pr
[
(E1(p,q)∧E2(q)) does not hold for Z1

]I
≤ nm(1/e+1/3)I ,

which is at most 1/n for an appropriate absolute constant c > 1.

Since E1 and E2 are monotone properties, if they hold for all the points of P and Q they also hold for
any subsets, we have the following.

Corollary 3.7. Consider any point-set Q of size m, and any point-set P of size n. There exists an absolute
constant c such that the data structure obtained by running c log(n+m) copies of the algorithm from
Theorem 3.4 is adaptive with respect to P and Q with probability of failure at most 1/n.

3.2.1 Hamming metric

In order to use Theorem 3.4 for the Hamming metric, we need to specify the proper family of hash
functions. To this end we use the family of all projections of the bit vector onto one of its coordinates.

Proposition 3.8. Let D(p,q) be the Hamming metric for p,q ∈ Σd , where Σ is any finite alphabet. Then
for any r,ε > 0, the family

H = {hi : hi((b1, . . . ,bd)) = bi, i = 1, . . . ,d}

is (r,rc,1− r/d,1− rc/d)-sensitive.

Remark 3.9. Note that by padding the input and query points with dummy coordinates equal to 0, we
can increase d by a constant factor, and ensure that the probabilities p1 and p2 in the above family are
bounded away from 0. This allows us to drop the dependence on these parameters in the reminder of this
paper.

Corollary 3.10. For any c > 1, there exists an algorithm for (c,r)-NN in Hamming metric over Σd using
O(n1+1/c) space (in addition to space needed to store the input point set). The query and update time are
bounded by the time needed to perform O(n1/c) distance computations (each taking at most O(d) time)
and hash function evaluations (each taking O(d/r · logn) time).

Proof. We use Proposition 3.8 and Theorem 3.4. First, we need to estimate the value of

ρ =
ln1/p1

ln1/p2
,

where p1 = 1− r/d and p2 = 1− rc/d. Let t = (1− p2)/(1− p1) and x = 1− p1. Then

ρ =
log(1− x)
log(1− tx)

≤ 1
t
=

1− p1

1− p2

by the following claim.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 339

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

Claim 3.11. For x ∈ [0,1) and t ≥ 1 such that 1− tx > 0, we have

log(1− x)
log(1− tx)

≤ 1
t
.

Proof. Observing that log(1− tx)< 0, the claim is equivalent to t log(1− x)≥ log(1− tx). This in turn
is equivalent to

f (x)≡ (1− tx)− (1− x)t ≤ 0 .

This is trivially true for x = 0. Furthermore, taking the derivative, we see f ′(x) =−t + t(1− x)t−1, which
is non-positive for x ∈ [0,1) and t ≥ 1. Therefore, f is non-increasing in the region in which we are
interested, and so f (x)≤ 0 for all values in this region.

Since ρ = (1− p1)/(1− p2) = 1/c, the bound on the exponent follows. The running time now
follows from Theorem 3.4 since dlog1/p2

ne= O(d/r · logn). Finally, the space need to store the set P is
O(dn).

3.2.2 Extension to normed spaces

In this section, we show how to extend the LSH algorithm to the `1 norm. The algorithm follows by
composing Lemma 3.2 and Corollary 3.10.

Theorem 3.12. For any c > 1, δ > 0, there exists a randomized data structure (with constant probability
of success) for the (c(1+δ),1)-NN over a set of at most n points in `d

1 , using O(dn+n1+1/c) space and
with O(d/δ ·n1/c logn) query and update time.

Proof. The algorithm follows by composing Lemma 3.2 and Corollary 3.10. The latter lemma is invoked
with r = (1+δ)d and the dimension of the Hamming cube bounded by O(d2/δ). The theorem follows
by observing that the distance computation (as in the statement of Corollary 3.10) can be done in O(d)
time.

Corollary 3.13. For any c > 1, δ > 0, γ ∈ (1/n,1), there exists a randomized data structure (with
constant probability of success) for the c(1+ γ)(1+δ)-NN over a set of at most n points in `d

1 , using
O(dn+n1+1/c log2(n) log log(n)/γ) space and with O(d/δ ·n1/c log2(n) log log(n)) query time.

Proof. Follows by composing Theorem 3.12 and Theorem 2.9, with f = O(1)/ logn.

Corollary 3.14. For any c > 1, δ > 0, there exists a randomized data structure for the (c(1+δ),1)-NN
over a set of at most n points in `d

1 , using O(dn+n1+1/c logn) space and with O(d/δ ·n1/c log2 n) query
and update time. For any point-set P of size n and query set Q of size nO(1) the algorithm is adaptive with
respect to P and Q, with the failure probability of at most 1/n.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 340

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

3.3 Bucketing

In this section, we show how to solve the (c,1)-NN problem in any norm `d
s , for any c = 1+ ε , for

ε ∈ (0,1/2). The query time is very fast, i. e., O(d). At the same time, the algorithm uses (C/ε)dn
space for some constant C > 1. Furthermore, in case of the `s norm for s ∈ {1,2} we can use the
Johnson-Lindenstrauss lemma [38] to reduce d to O(logn/ε2). This leads to space bound polynomial in
n, for fixed ε > 0.

Assume for now that s = 2. Impose a uniform grid of side length ε/
√

d on Rd . Clearly, the distance
between any two points belonging to one grid cell is at most ε . For each ball Bi = B(pi,1), pi ∈ P, define
Bi to be the set of grid cells intersecting Bi. Store all elements from

⋃
i Bi in a hash table, together with

the information about the corresponding ball(s). After preprocessing, to answer a query q it suffices to
compute the cell which contains q and check if it is stored in the table.

We claim that for 0 < ε < 1, |Bi|= O(1/ε)d . To see this, observe that |Bi| is bounded by the volume
of a d-dimensional ball of radius R = 2/ε ·

√
d. We use the following fact [55, page 11].

Fact 3.15. The volume V d
s (R) of a ball of radius R in `d

s is equal to

(2Γ(1+1/s))d

Γ(1+n/s)
Rd ,

where Γ(·) is Euler’s Gamma function. Specifically,

V d
2 (R) =

2πd/2

d Γ(d/2)
Rd .

Thus,
∣∣B∣∣= 2O(d)rd/dd/2 ≤ (C/ε)d . Hence, the total space required is O(n)×O(1/ε)d . The query

time is the time to compute the hash function.
For general `s norms, we set the grid side length to ε/d1/s. The bound on |B| applies unchanged.

Theorem 3.16. For 0 < ε < 1/2, there is an algorithm for (c,r)-NN in `d
s using O(n)×O(1/ε)d space

and preprocessing time and O(d) query time.

Dimensionality reduction If the dimension d is high, we can reduce the space bound using the
Johnson-Lindenstrauss (JL) lemma [38]. For `2 we can apply the JL lemma directly and reduce d
to d′ = O(logn/ε2). This leads to nO(log(1/ε)/ε2) space and preprocessing time, while the query time3

becomes O(dd′).
For `1 we proceed as follows. First, we apply Lemma 3.2, and reduce the points to dM-dimensional

Hamming space for M = O(d). Since for any two points p,q in the Hamming space we have DH(p,q) =
‖p− q‖2, we can now apply the dimensionality reduction to the points in the Hamming space. This
increases the query time by an additive term of O(dMd′). This can be further reduced to O(d), by
pre-computing and storing dot products of unary(pl) and the random vectors used to perform the

3Note that one can instead use Fast Johnson-Lindenstrauss Transform, which provides similar guarantees while reducing the
embedding time [1, 2]. See the papers for the exact results.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 341

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

(A) (B) (C)

Figure 1: (A) The point-set. (B) The generated set of NearNbr instances (different colors correspond to
different data points). (C) The approximate Voronoi decomposition.

dimensionality reduction. Since each pl is in the range {0, . . . ,M}, it follows that for each j we need to
store M = O(d/δ) numbers, for the total storage of O(d2/δ).

Thus, we obtain the following theorem.

Theorem 3.17. For s ∈ {1,2}, and 0 < ε < 1/2, there is an algorithm for (c,r)-NN in `d
s using

nO(log(1/ε)/ε2) space and preprocessing time and O(d logn/ε2) query time.

3.4 Approximate Voronoi diagram

Section 3.3 and Theorem 2.10 reduce the c-NN problem to performing O(logn) lookups in appropriate
grids. It is natural to ask if one can collapse all these grids together, and obtain some natural geometric
representation of the input point set. In this section we show that this is indeed the case. Specifically, we
show the following theorem.

Theorem 3.18. There is an absolute constant C > 0 such that given a set P of n points in Rd and
a parameter ε ∈ (0,1/2), one can compute, in O((n(C/ε)d+1) log3 n) time, an approximate Voronoi
diagram of P of size O((n(C/ε)d+1) log2 n), such that

• every cell in this diagram is either a cube or a set difference of two cubes, and
• every such cell has a point of P associated with it that is a (1+ ε)-approximate nearest neighbor

of all the points of the cell.

Proof. We follow the reduction from the approximate nearest to near neighbor in Section 2 combined
with the bucketing approach to approximate near neighbor given in Section 3.3. First, observe that by
scaling and minor readjustment of parameters, we can assume that the side lengths of the grids used in
the reduction are powers of 2. Also, we can assume that they are centered at the origin. As a result, the
grids are nested—a cell in a finer grid is fully contained in some cell of a coarser grid.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 342

http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

Consider instances Z1, . . . ,Zk of NearNbr generated by the reduction. Let ri be the radius of the
instance Zi, and let ti be the cell side length of the grid corresponding to Zi. For every Zi and every point
p represented by that data structure, we label every such grid cell intersecting the ball B(p,ri) with p. If a
grid cell is marked by several balls, its label is the smallest such ball. In the end of this process we have a
total of O(n(C/ε)d+1 log2 n) grid cells (of different resolution) that were labeled.

Consider any query point q, and let U be the grid cell of the smallest side length that contains q. By
straightforward but tedious argument following the recursive construction in Theorem 2.10 we have that
the label of U is a correct approximate nearest neighbor for q. The decomposition can be now obtained
by superimposing all grids onto the space Rd , where any point takes the label of the smallest grid cell
containing it.

This concludes the description of the approximate Voronoi decomposition construction. In the
reminder of this section, we describe various ways in which the construction can be used for finding an
approximate nearest neighbor.

From the perspective of this paper, the simplest approach is to apply the search algorithm from
Section 2.3. An alternative (described, e. g., in [30, 32, 31]) is to construct a so-called compressed d-
dimensional quadtree for the grid cells constructed in Theorem 3.18. The data structure enables locating
the smallest grid cell in time O(d logn), which matches the time achieved by our search algorithm.
However, it is possible to improve it further. In particular, consider data sets with “low” aspect ratio,
i. e., the ratio of their diameter to the closest distance between any two distinct points. For such point
sets, one can perform searches in quadtrees in time faster than O(logn). See [32, 31] for a more detailed
description.

4 Minimum Spanning Tree

In this section, we show how to use NearNbr data structure(s) to find a c(1+ γ)-approximate MST for
a set of points in `d

s , for s ∈ {1,2}. Our algorithm is based on Kruskal’s method [23]: we keep adding
edges between points in approximately increasing order, and merging components that are connected
by the edges. The algorithm proceeds in stages. In the ith stage, we identify pairs of points that are
(approximately) within a distance of ri from each other, and merge the components connecting the points.
This is done using an algorithm APPROXIMATECC from Algorithm 1.

Recall that APPROXIMATECC(P,c,r) returns a partition P′ of P such that CCP(r)v P′ v ccP(cr).

Lemma 4.1. The above algorithm reports a c(1+2γ)-approximate MST.

Proof. Let e1,e2, . . . ,en−1 be the edges in the set E, ordered by the stage when they were picked (within
the same stage the edges are ordered arbitrarily). Consider the exact Kruskal algorithm, which examines
the edges between points in non-decreasing order, and selects those whose endpoints belong to different
sets; let e∗1,e

∗
2, . . . ,e

∗
n−1 be the edges picked by that algorithm. We will show that the sum of the costs of

et’s is at most c(1+ γ) times the sum of the costs of e∗t ’s.
We start from edges processed at stage i = 0. Since the algorithm collects at most n−1 edges, and

each edge collected at stage 1 has length at most cr0 = crγ/n, the total cost of edges collected at this
stage is at most crγ . This is at most cγ times the MST cost.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 343

http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

E = /0
Select q ∈ P
Let r be the maximum value of D(q, p) over p ∈ P
Define ri = r/(1+ γ)M−i, for i = 0, . . . ,M, where M = log1+γ(n/γ)
Create P= {p1},{p2}, . . . ,{pn}, where P = {p1, . . . , pn}
for i = 0, . . . ,M do

Invoke APPROXIMATECC(P,c,ri)
Let E ′ be the set of edges generated by the algorithm
for e = {u,v} ∈ E ′ do

if u and v belong to different sets Pi,Pj in the partition P then
Merge Pi and Pj in P

Add e to E
end if

end for
end for

Algorithm 4: Approximate minimum spanning tree algorithm.

Consider an edge et processed at stage i. We have that the cost of et is greater than ri−1, since
otherwise this edge would have been picked up in the earlier stage. Let l be the largest index such that the
cost of e∗l is at most ri−1. Since all nodes connected by edges e∗1, . . . ,e

∗
l are connected before stage i, it

follows that t > l.
Since the cost of et is at most cri and the cost of e∗t is greater than ri−1, we have that the cost of et is

at most c(1+ γ) times the cost of e∗t . The lemma follows.

Theorem 4.2. A c(1+2γ)-approximate MST of n points in `d
1 can be computed in O(dn1+1/c log3(n)/γ)

time.

Proof. The algorithm makes O(logn) calls to APPROXIMATECC, each using O(n) query and delete
operations on a data structure provided by Corollary 3.14.

The extension to `d
s norms for s ∈ [1,2] follows from the embedding of [39].

Acknowledgments

The authors would like to thank Alexandr Andoni, Jelani Nelson, Steve Oudot, Ashish Goel and the
referees for their very helpful comments on this paper.

References

[1] NIR AILON AND BERNARD CHAZELLE: The fast Johnson–Lindenstrauss transform and approxi-
mate nearest neighbors. SIAM J. Comput., 39(1):302–322, 2009. Preliminary version in STOC’06.
[doi:10.1137/060673096] 341

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 344

http://dx.doi.org/10.1145/1132516.1132597
http://dx.doi.org/10.1137/060673096
http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

[2] NIR AILON AND BERNARD CHAZELLE: Faster dimension reduction. Commun. ACM, 53(2):97–
104, 2010. [doi:10.1145/1646353.1646379] 341

[3] ALEXANDR ANDONI AND PIOTR INDYK: Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Proc. 47th FOCS, pp. 459–468. IEEE Comp. Soc. Press,
2006. [doi:10.1109/FOCS.2006.49] 326

[4] ALEXANDR ANDONI AND PIOTR INDYK: Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, 2008.
[doi:10.1145/1327452.1327494] 326

[5] ALEXANDR ANDONI, PIOTR INDYK, AND ROBERT KRAUTHGAMER: Earth mover distance over
high-dimensional spaces. In Proc. 19th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’08),
pp. 343–352. ACM Press, 2008. [ACM:1347082.1347120] 326

[6] ALEXANDR ANDONI, PIOTR INDYK, AND MIHAI PĂTRAŞCU: On the optimality of the dimen-
sionality reduction method. In Proc. 47th FOCS, pp. 449–458. IEEE Comp. Soc. Press, 2006.
[doi:10.1109/FOCS.2006.56] 326

[7] SUNIL ARYA AND THEOCHARIS MALAMATOS: Linear-size approximate Voronoi diagrams. In
Proc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’02), pp. 147–155. ACM Press,
2002. [ACM:545400] 326

[8] SUNIL ARYA, THEOCHARIS MALAMATOS, AND DAVID M. MOUNT: Space-time
tradeoffs for approximate nearest neighbor searching. J. ACM, 57(1):1:1–1:54, 2009.
[doi:10.1145/1613676.1613677] 326

[9] SUNIL ARYA AND DAVID M. MOUNT: Approximate nearest neighbor queries in fixed dimensions.
In Proc. 4th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’93), pp. 271–280. ACM Press,
1993. [ACM:313768] 324

[10] SUNIL ARYA, DAVID M. MOUNT, NATHAN S. NETANYAHU, RUTH SILVERMAN, AND AN-
GELA Y. WU: An optimal algorithm for approximate nearest neighbor searching in fixed dimensions.
J. ACM, 45(6):891–923, 1998. Preliminary version in SODA’94. [doi:10.1145/293347.293348] 324

[11] MARSHALL W. BERN: Approximate closest-point queries in high dimensions. Inform. Process.
Lett., 45(2):95–99, 1993. [doi:10.1016/0020-0190(93)90222-U] 324, 335

[12] ALLAN BORODIN, RAFAIL OSTROVSKY, AND YUVAL RABANI: Subquadratic approximation
algorithms for clustering problems in high dimensional spaces. Machine Learning, 56(1-3):153–167,
2004. Preliminary version in STOC’99. [doi:10.1023/B:MACH.0000033118.09057.80] 324, 325

[13] ANDREI Z. BRODER: On the resemblance and containment of documents. In Proc. Conf. Compres.
Complex. Sequences (CCCS’97), pp. 21–29, 1997. [doi:10.1109/SEQUEN.1997.666900] 325

[14] ANDREI Z. BRODER, STEVEN C. GLASSMAN, MARK S. MANASSE, AND GEOFFREY ZWEIG:
Syntactic clustering of the web. Computer Networks and ISDN Systems, 29(8-13):1157–1166, 1997.
(Proc. 6th Int. World Wide Web Conf. (WWW’97)). [doi:10.1016/S0169-7552(97)00031-7] 325

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 345

http://dx.doi.org/10.1145/1646353.1646379
http://dx.doi.org/10.1109/FOCS.2006.49
http://dx.doi.org/10.1145/1327452.1327494
http://portal.acm.org/citation.cfm?id=1347082.1347120
http://dx.doi.org/10.1109/FOCS.2006.56
http://portal.acm.org/citation.cfm?id=545400
http://dx.doi.org/10.1145/1613676.1613677
http://portal.acm.org/citation.cfm?id=313768
http://dl.acm.org/citation.cfm?id=314652
http://dx.doi.org/10.1145/293347.293348
http://dx.doi.org/10.1016/0020-0190(93)90222-U
http://dx.doi.org/10.1145/301250.301367
http://dx.doi.org/10.1023/B:MACH.0000033118.09057.80
http://dx.doi.org/10.1109/SEQUEN.1997.666900
http://dx.doi.org/10.1016/S0169-7552(97)00031-7
http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

[15] JEREMY BUHLER: Efficient large-scale sequence comparison by locality-sensitive hashing. Bioin-
formatics, 17(5):419–428, 2001. [doi:10.1093/bioinformatics/17.5.419] 326

[16] JEREMY BUHLER AND MARTIN TOMPA: Finding motifs using random projections.
J. Computational Biology, 9(2):225–242, 2002. Preliminary version in RECOMB’01.
[doi:10.1089/10665270252935430] 326

[17] ANDREA CALIFANO AND ISIDORE RIGOUTSOS: FLASH: A fast look-up algorithm for string
homology. In Proc. 1st Int. Conf. on Intelligent Systems for Molecular Biology (ISMB’93), pp.
56–64, 1993. [ACM:645630.662865] 325

[18] PAUL B. CALLAHAN AND S. RAO KOSARAJU: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–90, 1995.
Preliminary version in STOC’92. [doi:10.1145/200836.200853] 326

[19] TIMOTHY M. CHAN: Approximate nearest neighbor queries revisited. Discrete Comput. Geom.,
20(3):359–373, 1998. Preliminary version in SCG’97. [doi:10.1007/PL00009390] 324

[20] MOSES CHARIKAR AND ROBERT KRAUTHGAMER: Embedding the Ulam metric into `1. Theory
of Computing, 2(1):207–224, 2006. [doi:10.4086/toc.2006.v002a011] 326

[21] MOSES S. CHARIKAR: Similarity estimation techniques from rounding algorithms. In Proc. 34th
STOC, pp. 380–388. ACM Press, 2002. [doi:10.1145/509907.509965] 326

[22] KENNETH L. CLARKSON: A randomized algorithm for closest-point queries. SIAM J. Comput.,
17(4):830–847, 1988. [doi:10.1137/0217052] 322, 324

[23] THOMAS H. CORMEN, CHARLES E. LEISERSON, RONALD L. RIVEST, AND CLIFFORD STEIN:
Introduction to Algorithms. MIT Press, 2nd edition, 2001. 343

[24] GRAHAM CORMODE: Sequence Distance Embeddings. Ph.D. Thesis. University of Warwick, 2003.
326

[25] GRAHAM CORMODE, S. MUTHUKRISHNAN, AND SÜLEYMAN CENK SAHINALP: Permutation
editing and matching via embeddings. In Proc. 28th Internat. Colloq. on Automata, Languages and
Programming (ICALP’01), pp. 481–492, 2001. [doi:10.1007/3-540-48224-5_40] 326

[26] MAYUR DATAR, NICOLE IMMORLICA, PIOTR INDYK, AND VAHAB S. MIRROKNI: Locality-
sensitive hashing scheme based on p-stable distributions. In Proc. 20th Ann. Symp. on Computational
Geometry (SCG’04), pp. 253–262, 2004. [doi:10.1145/997817.997857] 326

[27] DEBOJYOTI DUTTA, RAJARSHI GUHA, PETER C. JURS, AND TING CHEN: Scalable partitioning
and exploration of chemical spaces using geometric hashing. Journal of Chemical Information and
Modeling, 46(1):321–333, 2006. [doi:10.1021/ci050403o] 326

[28] KRISTEN GRAUMAN AND TREVOR DARRELL: The pyramid match kernel: Efficient learning with
sets of features. J. Machine Learning Research, 8:725–760, 2007. Preliminary version in ICCV’05.
[ACM:1314524] 326

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 346

http://dx.doi.org/10.1093/bioinformatics/17.5.419
http://dx.doi.org/10.1145/369133.369172
http://dx.doi.org/10.1089/10665270252935430
http://portal.acm.org/citation.cfm?id=645630.662865
http://dx.doi.org/10.1145/129712.129766
http://dx.doi.org/10.1145/200836.200853
http://dx.doi.org/10.1145/262839.263001
http://dx.doi.org/10.1007/PL00009390
http://dx.doi.org/10.4086/toc.2006.v002a011
http://dx.doi.org/10.1145/509907.509965
http://dx.doi.org/10.1137/0217052
http://dx.doi.org/10.1007/3-540-48224-5_40
http://dx.doi.org/10.1145/997817.997857
http://dx.doi.org/10.1021/ci050403o
http://dx.doi.org/10.1109/ICCV.2005.239
http://portal.acm.org/citation.cfm?id=1314524
http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

[29] DAN GREENE, MICHAL PARNAS, AND FRANCES YAO: Multi-index hashing for infor-
mation retrieval. In Proc. 35th FOCS, pp. 722–731. IEEE Comp. Soc. Press, 1994.
[doi:10.1109/SFCS.1994.365720] 325

[30] SARIEL HAR-PELED: A replacement for Voronoi diagrams of near linear size. In Proc. 42nd
FOCS, pp. 94–103. IEEE Comp. Soc. Press, 2001. [doi:10.1109/SFCS.2001.959884] 323, 324, 325,
326, 343

[31] SARIEL HAR-PELED: Geometric Approximation Algorithms. Amer. Math. Soc., 2011. 343

[32] SARIEL HAR-PELED AND SOHAM MAZUMDAR: On coresets for k-means and k-median clustering.
In Proc. 36th STOC, pp. 291–300. ACM Press, 2004. [doi:10.1145/1007352.1007400] 343

[33] TAHER H. HAVELIWALA, ARISTIDES GIONIS, DAN KLEIN, AND PIOTR INDYK: Evaluating
strategies for similarity search on the web. In Proc. 11th Internat. Conf. on World Wide Web
(WWW’02), pp. 432–442. ACM Press, 2002. [doi:10.1145/511446.511502] 326

[34] PIOTR INDYK: Nearest neighbors in high-dimensional spaces. In J. E. GOODMAN AND

J. O’ROURKE, editors, Handbook of Discrete and Computational Geometry, chapter 39, pp.
877–892. CRC Press LLC, 2nd edition, 2004. 323, 325, 326

[35] PIOTR INDYK AND RAJEEV MOTWANI: Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. In Proc. 30th STOC, pp. 604–613. ACM Press, 1998.
[doi:10.1145/276698.276876] 323, 324, 325, 338

[36] PIOTR INDYK AND RAJEEV MOTWANI: Approximate nearest neighbors: towards removing the
curse of dimensionality. A final version of the STOC’98 paper, available at http: // people.
csail. mit. edu/ indyk/ nndraft. ps , 1999. 324, 325

[37] PIOTR INDYK AND NITIN THAPER: Fast color image retrieval via embeddings. In Work. Statis.
Comput. Theo. Vision, 2003. Held at ICCV’03. [PDF]. 326

[38] WILLIAM B. JOHNSON AND JORAM LINDENSTRAUSS: Extensions of Lipschitz mapping into
Hilbert space. Contemporary Mathematics, 26:189–206, 1984. 323, 341

[39] WILLIAM B. JOHNSON AND GIDEON SCHECHTMAN: Embedding lm
p into ln

1 . Acta Mathematica,
149:71–85, 1982. [doi:10.1007/BF02392350] 323, 337, 344

[40] RICHARD M. KARP, ORLI WAARTS, AND GEOFFREY ZWEIG: The bit vector intersection problem.
In Proc. 36th FOCS, pp. 621–630. IEEE Comp. Soc. Press, 1995. [doi:10.1109/SFCS.1995.492663]
325

[41] SUBHASH KHOT AND ASSAF NAOR: Nonembeddability theorems via Fourier analysis. Mathema-
tische Annalen, 334(4):821–852, 2006. Preliminary version in FOCS’05. [doi:10.1007/s00208-005-
0745-0] 326

[42] JON M. KLEINBERG: Two algorithms for nearest-neighbor search in high dimensions. In Proc.
29th STOC, pp. 599–608. ACM Press, 1997. [doi:10.1145/258533.258653] 325

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 347

http://dx.doi.org/10.1109/SFCS.1994.365720
http://dx.doi.org/10.1109/SFCS.2001.959884
http://dx.doi.org/10.1145/1007352.1007400
http://dx.doi.org/10.1145/511446.511502
http://dx.doi.org/10.1145/276698.276876
http://people.csail.mit.edu/indyk/nndraft.ps
http://people.csail.mit.edu/indyk/nndraft.ps
http://people.csail.mit.edu/indyk/emd.pdf
http://dx.doi.org/10.1007/BF02392350
http://dx.doi.org/10.1109/SFCS.1995.492663
http://dx.doi.org/10.1109/SFCS.2005.54
http://dx.doi.org/10.1007/s00208-005-0745-0
http://dx.doi.org/10.1007/s00208-005-0745-0
http://dx.doi.org/10.1145/258533.258653
http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

[43] EYAL KUSHILEVITZ, RAFAIL OSTROVSKY, AND YUVAL RABANI: Efficient search for approx-
imate nearest neighbor in high dimensional spaces. SIAM J. Comput., 30(2):457–474, 2000.
Preliminary version at STOC’98. [doi:10.1137/S0097539798347177] 325

[44] NATHAN LINIAL, ERAN LONDON, AND YURI RABINOVICH: The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15(2):215–245, 1995. Preliminary version in FOCS’94.
[doi:10.1007/BF01200757] 336

[45] RICHARD J. LIPTON AND ROBERT ENDRE TARJAN: Applications of a planar separator theorem.
SIAM J. Comput., 9(3):615–627, 1980. [doi:10.1137/0209046] 322

[46] STEFAN MEISER: Point location in arrangements of hyperplanes. Inform. and Comput., 106(2):286–
303, 1993. [doi:10.1006/inco.1993.1057] 322

[47] MARVIN MINSKY AND SEYMOUR PAPERT: Perceptrons. MIT Press, Cambridge, MA, 1969. 322

[48] RAJEEV MOTWANI, ASSAF NAOR, AND RINA PANIGRAHY: Lower bounds on locality sensi-
tive hashing. SIAM J. Discrete Math., 21(4):930–935, 2007. Preliminary version at SCG’06.
[doi:10.1137/050646858] 326

[49] S. MUTHUKRISHNAN AND SÜLEYMAN CENK SAHINALP: Approximate nearest neighbors and
sequence comparison with block operations. In Proc. 32nd STOC, pp. 416–424. ACM Press, 2000.
[doi:10.1145/335305.335353] 326

[50] RYAN O’DONNELL, YI WU, AND YUAN ZHOU: Optimal lower bounds for locality sensitive
hashing (except when q is tiny). In Proc. 2nd Symp. Innovations in Comput. Sci. (ICS’11), pp.
275–283, 2011. [ICS’11], [arXiv]. 326, 338

[51] RAFAIL OSTROVSKY AND YUVAL RABANI: Low distortion embeddings for edit distance. J. ACM,
54(5), 2007. Preliminary version in STOC’05. [doi:10.1145/1284320.1284322] 326

[52] RINA PANIGRAHY: Entropy based nearest neighbor search in high dimensions. In Proc. 17th
Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’06), pp. 1186–1195. ACM Press, 2006.
[doi:10.1145/1109557.1109688] 326

[53] RINA PANIGRAHY, KUNAL TALWAR, AND UDI WIEDER: Lower bounds on near neighbor
search via metric expansion. In Proc. 51st FOCS, pp. 805–814. IEEE Comp. Soc. Press, 2010.
[doi:10.1109/FOCS.2010.82] 326

[54] RAMAMOHAN PATURI, SANGUTHEVAR RAJASEKARAN, AND JOHN REIF: The light bulb
problem. Inform. and Comput., 117(2):187–192, 1995. Preliminary version in COLT’89.
[doi:10.1006/inco.1995.1038] 325

[55] GILLES PISIER: The volume of convex bodies and Banach space geometry. Cambridge University
Press, 1989. 341

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 348

http://dx.doi.org/10.1145/276698.276877
http://dx.doi.org/10.1137/S0097539798347177
http://dx.doi.org/10.1109/SFCS.1994.365733
http://dx.doi.org/10.1007/BF01200757
http://dx.doi.org/10.1137/0209046
http://dx.doi.org/10.1006/inco.1993.1057
http://dx.doi.org/10.1145/1137856.1137881
http://dx.doi.org/10.1137/050646858
http://dx.doi.org/10.1145/335305.335353
http://conference.itcs.tsinghua.edu.cn/ICS2011/content/papers/2.html
http://arxiv.org/abs/0912.0250
http://dx.doi.org/10.1145/1060590.1060623
http://dx.doi.org/10.1145/1284320.1284322
http://dx.doi.org/10.1145/1109557.1109688
http://dx.doi.org/10.1109/FOCS.2010.82
http://dl.acm.org/citation.cfm?id=93363
http://dx.doi.org/10.1006/inco.1995.1038
http://dx.doi.org/10.4086/toc

APPROXIMATE NEAREST NEIGHBOR: TOWARDS REMOVING THE CURSE OF DIMENSIONALITY

[56] DEEPAK RAVICHANDRAN, PATRICK PANTEL, AND EDUARD HOVY: Randomized algorithms and
NLP: Using locality sensitive hash functions for high speed noun clustering. In Proc. Conf. 43rd
Ann. Meeting of the Association for Computational Linguistics (ACL’05), 2005. [ACM:1219917]
326

[57] YOGISH SABHARWAL, NISHANT SHARMA, AND SANDEEP SEN: Nearest neighbors search using
point location in balls with applications to approximate Voronoi decompositions. J. Comput. System
Sci., 72(6):955–977, 2006. Preliminary version at FSTTCS’02. [doi:10.1016/j.jcss.2006.01.007]
326

[58] GREGORY SHAKHNAROVICH, TREVOR DARRELL, AND PIOTR INDYK, editors. Nearest Neighbor
Methods in Learning and Vision. Neural Processing Information Series, MIT Press, 2006. 326

[59] MICHAEL IAN SHAMOS AND DAN HOEY: Closest-point problems. In Proc. 16th FOCS, pp.
151–162. IEEE Comp. Soc. Press, 1975. [doi:10.1109/SFCS.1975.8] 322

[60] RICHARD WEBER, HANS-J. SCHEK, AND STEPHEN BLOTT: A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces. In Proc. 24th Internat. Conf.
on Very Large Data Bases (VLDB’98), pp. 194–205, 1998. [ACM:671192] 322

AUTHORS

Sariel Har-Peled
Associate Professor
Department of Computer Science, University of Illinois
sariel cs uiuc edu
http://www.uiuc.edu/~sariel/

Piotr Indyk
Professor
Department of Electrical Engineering and Computer Science, MIT
indyk mit edu
http://people.csail.mit.edu/indyk/

Rajeev Motwani
Former Professor
Department of Computer Science, Stanford University
http://cs.stanford.edu/~rajeev/

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 349

http://portal.acm.org/citation.cfm?id=1219917
http://dx.doi.org/10.1007/3-540-36206-1_28
http://dx.doi.org/10.1016/j.jcss.2006.01.007
http://dx.doi.org/10.1109/SFCS.1975.8
http://portal.acm.org/citation.cfm?id=671192
http://www.uiuc.edu/~sariel/
http://people.csail.mit.edu/indyk/
http://cs.stanford.edu/~rajeev/
http://dx.doi.org/10.4086/toc

SARIEL HAR-PELED, PIOTR INDYK, AND RAJEEV MOTWANI

ABOUT THE AUTHORS

SARIEL HAR-PELED graduated from Tel-Aviv University in 1999, under the supervision
of Micha Sharir. He works mainly on geometric approximation algorithms. He often
teaches the “Randomized Algorithms" course based on the book by Rajeev Motwani and
Prabhakar Raghavan.

PIOTR INDYK received his Ph. D. from Stanford University in 2000, under the supervision
of Rajeev Motwani. His research interests include high-dimensional computational
geometry, sketching and streaming algorithms, sparse recovery, and compressive sensing.

RAJEEV MOTWANI was born on March 24, 1962 in Jammu, India. He died on June 5, 2009.
He received a B. Tech degree in Computer Science from IIT Kanpur in 1983 and a Ph. D.
degree in Computer Science from University of California at Berkeley in 1988 under
the supervision of Richard Karp. The list of his research interests is long and eclectic,
and includes graph theory, approximation algorithms, randomized algorithms, on-line
algorithms, complexity theory, web search and information retrieval, databases, data
mining, computational drug design, robotics, streaming algorithms, and data privacy. He
received the Gödel Prize in 2001 for his research on probabilistically checkable proofs
and hardness of approximation.

THEORY OF COMPUTING, Volume 8 (2012), pp. 321–350 350

http://international.tau.ac.il/
http://www.cs.tau.ac.il/~michas/
http://www.stanford.edu/
http://www.iitk.ac.in/
http://berkeley.edu/
http://dx.doi.org/10.4086/toc

	Introduction
	Related work
	Notation

	Reduction from the approximate nearest to near neighbor
	Outline
	Subroutines
	The reduction
	The result

	Approximate near neighbor
	Reductions
	Locality-sensitive hashing
	Hamming metric
	Extension to normed spaces

	Bucketing
	Approximate Voronoi diagram

	Minimum Spanning Tree
	References

