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Abstract: Let p be a fixed prime number and N be a large integer. The “Inverse Conjecture
for the Gowers norm” states that if the “d-th Gowers norm” of a function f : FN

p → Fp

is non-negligible, that is, larger than a constant independent of N, then f is non-trivially
correlated to a degree-(d− 1) polynomial. The conjecture is known to hold for d = 2,3
and for any prime p. In this paper we show the conjecture to be false for p = 2 and d = 4,
by presenting an explicit function whose 4-th Gowers norm is non-negligible, but whose
correlation to any polynomial of degree 3 is exponentially small. Essentially the same result
(with different correlation bounds) was independently obtained by Green and Tao (2009).
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1 Introduction

We consider multivariate functions over finite fields. The main question of interest here is whether these
functions can be non-trivially approximated by a low-degree polynomial. Fix a prime p. Let F = Fp

denote the finite field with p elements. Let ω = e2πi/p be the primitive p-th root of unity. Denote by e(x)
the exponential function taking x ∈ F to ωx ∈ C. For two functions f ,g : FN → F, let

〈 f ,g〉 := Ex [e( f (x)−g(x))] .
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A function f is non-trivially approximable by a degree-d polynomial if

|〈 f ,g〉|> ε

for some polynomial g(x) of degree at most d over F. More precisely, in this paper we are looking at
a sequence fN of functions and of approximating low-degree polynomials gN in N variables, and let N
grow to infinity, where the remaining parameters, that is the field size p, the degree d and the offset ε are
fixed, independent of N.

Definition 1.1. Fix a finite field F = Fp. A sequence of functions { fN : FN → F} is non-trivially
approximable by degree-d polynomials if there exists a sequence of degree-d polynomials {gN : FN→ F}
and an offset ε > 0 such that for all N,

|〈 fN ,gN〉|> ε .

A counting argument shows that a generic function cannot be approximated by a polynomial of
low degree. The problem of showing a specific given function to have no non-trivial approximation by
low-degree polynomials has been extensively investigated, since solutions to this problem have many
applications in complexity (cf. discussion and references in [1, 3, 16], as well as an excellent survey by
Viola on correlation bounds [15]).

This paper studies a technical tool that measures distance from low-degree polynomials. This is the
Gowers norm, introduced in [4]. For a function f : FN → F and a vector y ∈ FN , we take fy to be the
directional derivative of f in direction y by setting

fy(x) := f (x+ y)− f (x) .

For a k-tuple of vectors y1, . . . ,yk ∈ Fn we take the iterated derivative in these directions to be

fy1,...,yk :=
(

fy1,...,yk−1

)
yk
.

It is easy to see that this definition does not depend on the ordering of y1, . . . ,yk. The “k-th Gowers norm”
‖ f‖Uk of f is

‖ f‖Uk = (Ex,y1,...,yk [e( fy1,...,yk(x))])
1/2k

.

More accurately, as shown in [4], this is indeed a norm of the associated complex-valued function e( f )
(for k ≥ 2).

It is easy to see that ‖ f‖Ud+1 is 1 iff f is a polynomial of degree at most d. This is just another way of
saying that all order-(d +1) iterative derivatives of f are zero if and only if f is a polynomial of degree
at most d. It is also possible to see that |〈 f ,g〉|> ε for g of degree at most d, implies ‖ f‖Ud+1 > ε [5].
That is to say, if f is non-trivially close to a degree-d polynomial, this can be detected via an appropriate
Gowers norm.

This discussion naturally leads to the inverse conjecture [5, 9, 11], that is, if the (d +1)-th Gowers
norm of f is non-trivial, then f is non-trivially approximable by a degree-d polynomial. This conjecture
is referred to as the Inverse Conjecture for the Gowers Norm (ICGN). This conjecture is easily seen to
hold for d = 1 and has been proved also for d = 2 [5, 9]. It is of interest to prove this conjecture for
higher values of d. As the conjecture remained open, special cases of the inverse conjecture were also
studied (i. e., the d-vs-(d−1) conjecture [3], and the inverse conjecture for low-degree polynomials [6]).
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Our main result is that ICGN is false. This note is aimed at providing a self-contained proof for the
case of p = 2. The result for general p can be found in the conference version [7], where the bounds
obtained are much weaker than the ones presented in this note.

From now on we consider functions f : FN
2 → F2. For x ∈ FN

2 let x(i) denote the i-th coordinate of x.
Let S4 denote the symmetric polynomial of degree 4 in N variables,

S4(x) = ∑
1≤i< j<k<`≤N

x(i)x( j)x(k)x(`) .

We prove two results, whose combination shows that ICGN is false over F2.

Theorem 1.2. There exists an absolute constant c > 0 such that

‖S4‖U4 ≥ c .

Theorem 1.3. There exists an absolute constant α < 1 such that for any cubic polynomial g(x) over F2

〈S4,g〉 ≤ α
N .

1.1 Related work

Our results have a large overlap with a recent work of Green and Tao [6].
The paper of Green and Tao has two parts. In the first part ICGN is shown to be true when f is itself

a polynomial of degree less than p. In the second part, the conjecture is shown to be false in general. In
particular, the symmetric polynomial S4 is shown to be a counterexample for p = 2 and d = 4.

The calculation of the 4-th Gowers norm of S4 in this paper as well as in [6] follows by a direct
calculation of the bias of the 4-th derivative polynomial of S4, where the analysis in [6] is somewhat
simpler and cleaner. In any case, this is the simpler and more direct part of the proof in both papers.

The proof of non-approximability of S4 by lower-degree polynomials in [6] uses a modification of a
Ramsey-type argument due to Alon and Beigel [1]. Very briefly, this argument shows that if a function
over F2 has a non-trivial correlation with a multilinear polynomial of degree d, then its restriction to
a subcube of smaller dimension has a non-trivial correlation with a symmetric polynomial of degree
d. The problem of inapproximability by symmetric polynomials turns out to be easier to analyze. This
analysis gives weaker bounds for non-inapproximability of S4, in that it shows 〈S4,g〉 < log−c(N) for
any degree-3 polynomial g and for an absolute constant c > 0. On the other hand, this argument is more
robust than our inapproximability argument, as it can be readily extended to the case of a general prime p.

1.2 The case of a general prime field

Let F= Fp. Let Sd denote the symmetric polynomial of degree d in N variables,

Sd(x) = ∑
S⊂[N],|S|=d

∏
i∈S

x(i) .

The polynomial Sp2 over Fp provides a counterexample for ICGN over Fp. One can prove the
following:
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1. For any d ≥ 2p, there exists an absolute constant εd > 0, such that for any N

‖Sd‖Ud ≥ εd .

2. For any polynomial g of degree at most p2−1,

〈
Sp2 ,g

〉
≤
(

log(p2) N
)−1

= oN(1)

where log(t) denotes the t-fold iteration of the logarithm function.

The proof of the first claim entails calculating and working with the iterated derivatives of Sd . It is
similar in the outline to the argument for S4 over F2, but requires some additional technicalities. The
proof of the second claim follows by an appropriate adaptation of the argument of Alon and Beigel.

1.3 Subsequent work

Subsequent to this work, Bergelson, Tao, and Ziegler [2, 13, 14] proved a refined version of ICGN. Let
F : FN

p → C be a function. The derivative of F in direction y ∈ FN
p is defined as Fy(x) = F(x+ y)F(x),

and iterated derivatives are defined analogously. Note that when F takes values which are p-roots of unity,
i. e., when F(x) = e f (x)2πi/p for some f : FN

p → Fp, then this definition of derivatives coincides with our
previous definition, i. e., Fy(x) = e fy(x)2πi/p.

A function F :FN
p →C is said to be a non-classical polynomial of degree d if for any y1, . . . ,yd+1 ∈FN

p

we have Fy1,...,yd+1 ≡ 1. Clearly, if f : FN
p → Fp is a degree d polynomial, then F = e f (x)2πi/p is a non-

classical polynomial of degree d. However, there exist other examples of non-classical polynomials. Let
f (x) be a degree d− (p−1)(`−1) polynomial over Zp` . Then F(x) = e f (x)2πi/p` is also a non-classical
polynomial of degree d (note that F is still evaluated over FN

p ). In fact, this is a complete classification of
all non-classical polynomials [12].

Theorem 1.4 ([2, 13, 14]). Fix prime p, d ≥ 1 and ε > 0. Let F : FN
p → C be a function such that

‖F‖∞ ≤ 1 and ‖F‖Ud+1 ≥ ε . Then there exists a non-classical polynomial G : FN
p → C of degree d such

that
|〈F,G〉|=

∣∣∣Ex∈FN
p

[
F(x)G(x)

]∣∣∣≥ δ

where δ = δ (Fp,d,ε)> 0, i. e., δ does not depend on N.

Consider, in this framework, the counterexample of S4 over F2 discussed in this paper. For x ∈ Fn
2 and

f (x) = x(1)+ · · ·+ x(n) (mod 8), i. e., f is a linear polynomial over Z8, observe that S4(x) is the most
significant bit of f (x). Moreover, it can be easily checked that (−1)S4 is correlated to F(x) = e

2πi
8 f (x), a

non-classical polynomial of degree 3 (to verify, note that both functions depend only on the hamming
weight of x modulo 8). Thus, S4 has a noticeable 4-th Gowers norm, and is indeed correlated to a
non-classical cubic polynomial.
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2 S4 has high 4-Gowers norm

This section contains the proof of Theorem 1.2. We show that there exists a positive constant c > 0 such
that ‖S4‖U4 ≥ c, independent of the number of variables N.

We start by explicitly describing the 4-th iterative derivative of S4.

Claim 2.1. Let S(y1,y2,y3,y4) = ∑i1 6=i2 6=i3 6=i4 y1(i1)y2(i2)y3(i3)y4(i4), where the sum is over distinct
elements i1, i2, i3, i4 ∈ [N]. Then

(S4)y1,y2,y3,y4(x) = S(y1,y2,y3,y4) .

In particular,
‖S4‖16

U4 = Ey1,y2,y3,y4 [(−1)S(y1,y2,y3,y4)] .

Proof. Let i1, i2, i3, i4 be distinct elements of [N]. Consider a monomial m(x) = x(i1)x(i2)x(i3)x(i4). Its
4-th iterated derivative in directions y1, . . . ,y4 is, by definition,

my1,y2,y3,y4(x) = ∑
I⊆[4]

4

∏
j=1

(
x(i j)+∑

k∈I
yk(i j)

)
.

Expanding the right hand side as a sum of monimials, we observe that the only monomials appearing an
odd number of times are of the form ∏

4
j=1 y j(iπ( j)), where π is a permutation on 4 elements. Since we

are working in F2, we conclude

my1,y2,y3,y4(x) = ∑
π∈Sym4

4

∏
j=1

y j(iπ( j)) .

The claim now follows by summing over all monomials in S4.

Let M = M(y1,y2,y3,y4) denote the 4×N matrix over F2 whose rows are given by y1,y2,y3,y4. Let
Mi1,i2,i3,i4 denote the 4×4 minor of M restricted to columns i1, i2, i3, i4. Observe that S(y1,y2,y3,y4) can
be expressed as the sum over all permanents of 4×4 minors of M.

Claim 2.2. S(y1,y2,y3,y4) = ∑i1<i2<i3<i4 Per(Mi1,i2,i3,i4).

We recall the Binet-Cauchy formula.

Lemma 2.3. Let A be an m×n matrix with m≤ n over a field. For I ⊂ [n] such that |I|= m, let AI be
the m×m minor of A restricted to columns of I. Then

∑
I⊂[n],|I|=m

Det(AI)
2 = Det(AAt) .

Recall that x2 = x in F2, and also that determinants and permanents are identical in F2. Therefore we
may apply the Binet-Cauchy formula for M, using Claim 2.2, and conclude that

Corollary 2.4. S(y1,y2,y3,y4) = Det(MMt).
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Proof.

S(y1,y2,y3,y4) = ∑
I⊂[n],|I|=4

Per(MI) = ∑
I⊂[n],|I|=4

Det(MI) = ∑
I⊂[n],|I|=4

Det(MI)
2 = Det(MMt) .

The matrix MMt is a 4×4 symmetric matrix, whose (i, j) entry is given by 〈yi,y j〉. We next show that
the distribution of MMt where y1,y2,y3,y4 are chosen uniformly from FN

2 is very close to the distribution
of a uniformly chosen 4×4 symmetric matrix. Recall that the statistical distance between two random
variables X ,Y is given by

sd(X ,Y ) =
1
2 ∑

a
|Pr[X = a]−Pr[Y = a]| .

Claim 2.5. Let X denote a uniform 4×4 symmetric matrix over F2. Then the distribution of MMt for
uniformly chosen y1,y2,y3,y4 ∈ FN

2 is O(2−N) close to the distribution of X (in statistical distance). In
particular

Pr[Det(MMt) = 0]≥ Pr[Det(X) = 0]−O(2−N) .

The proof of the claim uses the following fact, which is easily verified using standard Fourier analysis
in FN

2 (see, e. g., [3]).

Claim 2.6. Let Y ∈ Fk
2 be a random variable, such that for all non-zero c ∈ Fk

2∣∣∣∣Pr[〈Y,c〉= 0]− 1
2

∣∣∣∣≤ α .

Then the distribution of Y is 2k ·α close (in statistical distance) to the uniform distribution over Fk
2.

Proof of Claim 2.5. We can consider the symmetric matrix MMt as a vector in F10
2 indexed by {(i, j) :

1≤ i≤ j ≤ 4}. Let c ∈ F10
2 be a non-zero vector. We will prove that∣∣∣∣Pr[〈MMt ,c〉= 0]− 1

2

∣∣∣∣≤ O
(
2−N) .

This will imply that the distribution of MMt is O(2−N) close to the uniform distribution over symmetric
4×4 matrices. To prove this, for a1,a2,a3,a4 ∈ F2 define the 4×4 symmetric matrix A(a1,a2,a3,a4)
whose (i, j) entry is aia j. Note that MMt = ∑

N
i=1 A(y1(i),y2(i),y3(i),y4(i)). Therefore,

2Pr[〈MMt ,c〉= 0]−1 = E
[
(−1)〈MMt ,c〉

]
=

N

∏
i=1

E
[
(−1)A(y1(i),y2(i),y3(i),y4(i))

]
.

Thus we have

2Pr[〈MMt ,c〉= 0]−1 =
(
Ea1,a2,a3,a4∈F2

[
(−1)〈A(a1,a2,a3,a4),c〉

])N
.
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To conclude, note that 〈A(a1,a2,a3,a4),c〉 is a nonzero quadratic polynomial over F2 in the variables
a1,a2,a3,a4. Standard bounds on the number of roots of polynomials over a field [10] imply

1
4
≤ Pr[〈A(a1,a2,a3,a4),c〉= 0]≤ 3

4
.

Therefore ∣∣2Pr
[
〈MMt ,c〉= 0

]
−1
∣∣≤ 2−N

which, by Claim 2.6, gives
sd(MMt ,X)≤ 1024 ·2−N .

To conclude the proof of Theorem 1.2, we use the following fact, which can be easily verified.

Claim 2.7. Let X be a uniformly chosen 4×4 symmetric matrix over F2. Then Pr[Det(X) = 0] = 9
16 .

We now conclude the proof of Theorem 1.2. Combining Claims 2.1, 2.4, 2.5 and 2.7,

‖S4‖16
U4 = E

[
(−1)S(y1,y2,y3,y4)

]
= E

[
(−1)Det(MMt)

]
≥ E

[
(−1)Det(X)

]
−O

(
2−N)≥ 1

8
−O

(
2−N) .

3 S4 has no correlation with cubics

This section contains the proof of Theorem 1.3. We show there is an absolute constant α > 0 such, that
for any cubic polynomial g in N variables holds

〈S4,g〉< exp(−αN) .

A first step is to observe that there is a relation between the inner product of two functions and the
average inner product of their derivatives.

Lemma 3.1. For any two functions f and g holds

〈 f ,g〉4 ≤ Ey[〈 fy,gy〉2] .

Proof. This is an immediate corollary of a lemma in [9], but we give the elementary proof for complete-
ness. By the Cauchy-Schwarz inequality,

Ey[〈 fy,gy〉2]≥ Ey[〈 fy,gy〉]2 = Ex,y[(−1) f (x)+ f (x+y)+g(x)+g(x+y)]2 = E[(−1) f (x)+g(x)]4 = 〈 f ,g〉4 .

Corollary 3.2.
〈 f ,g〉8 ≤ Ey,z[〈 fy,z,gy,z〉2] .
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We will show that for any polynomial g of degree at most 3 it holds that

Ey,z

[〈
(S4)y,z ,gy,z

〉2
]
≤ exp(−αN) .

First, here is a brief overview of the argument.
The advantage in taking second derivatives is that a second derivative of g is a linear function, and

a second derivative of S4 is a quadratic. Fix y,z and let L(x) = gy,z(x) and Q(x) = (S4)y,z(x) be the
corresponding linear and quadratic function. The correlation between L and Q is the absolute value of the
Fourier coefficient of Q which corresponds to the character given by L. The Fourier spectrum of quadratic
functions is well understood using a theorem of Dixon. It turns out that given the choice of directions
y,z, the quadratic Q falls into one of two classes. For half of the choices for y,z, all Fourier coefficients
of Q are exponentially small, and hence in particular the correlation between Q and L is exponentially
small. For the remaining choices of y,z however, the quadratic function Q has only a constant number of
Fourier coefficients. However, they all lie in an explicitly given 3-dimensional affine subspace depending
on y,z. We then argue that for any fixed cubic polynomial g, the support of the character (−1)gy,z lies in
this affine subspace with exponentially small probability over y,z.

We proceed with computing the second derivatives of S4.

3.1 Second derivatives of S4

Fix directions y,z ∈ Fn
2, and let Q(x) = (S4)y,z (x). Write

Q(x) = ∑
i< j

qi, jx(i)x( j)+∑
i
`ix(i)+ c .

We start by computing the coefficients qi, j. Let S(y,z) = ∑k 6=` y(k)z(`) = 〈y,z〉+ 〈y,1〉 · 〈z,1〉, where
1 ∈ FN

2 denotes the all-1 vector.

Claim 3.3.

qi, j = S(y,z)+ 〈y,1〉 ·
(
z(i)+ z( j)

)
+ 〈z,1〉 ·

(
y(i)+ y( j)

)
+
(
y(i)z( j)+ y( j)z(i)

)
.

Proof. Direct computation gives
qi, j = ∑

k 6=`
k, 6̀∈{i, j}

y(k)z(`) .

Using the inclusion-exclusion formula yields

qi, j = ∑
k 6=`

y(k)z(`)− ∑
k∈{i, j}
6̀∈{i, j}

y(k)z(`)− ∑
`∈{i, j}
k 6∈{i, j}

y(k)z(`)+ ∑
{k,`}={i, j}

y(k)z(`)

= S(y,z)− (y(i)+ y( j))
(
〈z,1〉− z(i)− z( j)

)
− (z(i)+ z( j))

(
〈y,1〉− y(i)− y( j)

)
+
(
y(i)z( j)+ y( j)z(i)

)
.

Rearranging, and using the fact that the computation is over F2, we obtain the claim.
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At this point we invoke (a corollary of) a theorem of Dixon (see for example [8], Section 15, Theorem
5):

Theorem 3.4. Let Q(x) = ∑i< j qi, jx(i)x( j)+∑i `ix(i)+ c be a quadratic polynomial over F2. Consider
the symmetric matrix B with zeros on the diagonal and off-diagonal entries given by Bi, j = B j,i = qi, j.
Let the rank of B = 2h (it is always even). Then the function (−1)Q has exactly 22h non-zero Fourier
coefficients all of absolute value 2−h. Moreover, all these coefficients lie in an 2h-dimensional affine
subspace of Fn

2.

Consider the matrix B in our case. Some notation: let J be the matrix with 0 on the diagonal and 1 off
the diagonal. Let u⊗ v denote the outer product uvt . Then

B = S(y,z) · J+ 〈y,1〉 ·
(
z⊗1+1⊗ z

)
+ 〈z,1〉 ·

(
y⊗1+1⊗ y

)
+
(
y⊗ z+ z⊗ y

)
.

Since the rank of J is at least N−1 and the rank of each of the remaining matrices is at most 2, the matrix
B is almost of full rank if S(y,z) = 1. In this case, by Theorem 3.4, the Fourier coefficients of (−1)Q are
exponentially small. In fact,

Corollary 3.5. If S(y,z) = 1 then, for any cubic polynomial g(x),〈
(S4)y,z,gy,z

〉
≤ 128 ·2−N .

Proof. The matrix B has rank at least N−7, since J has rank at least N−1 and each matrix of the form
u⊗ v is a rank one matrix. The claim now follows from Theorem 3.4.

Recall that we wish to show that for any polynomial g of degree at most 3, the average value of
〈(S4)y,z ,gy,z〉 for uniformly chosen y,z ∈ Fn

2 is exponentially small in n. Corollary 3.5 shows that this
holds for any y,z whenever S(y,z) = 1. We, therefore, may assume that S(y,z) = 0 from now on. In this
case the quadratic part of Q may be simplified as

Q(x) = ∑
i< j

qi, j x(i)x( j) = 〈y,1〉 · 〈x,1〉〈x,z〉+ 〈z,1〉 · 〈x,1〉〈x,y〉+
(
〈x,y〉〈x,z〉+ 〈x,yz〉

)
.

Here yz denotes the pointwise product of the vectors y and z, that is (yz)(i) = y(i)z(i).
Observe, that the above computation implies the non-zero Fourier coefficients of ∑i< j qi, j x(i)x( j) lie

in an affine subspace of Fn
2 of dimension at most 3, given by yz+Span(1,y,z).

Next, consider the linear part 〈`,x〉= ∑i `(i)x(i) of Q.

Claim 3.6. If S(y,z) = 0 then ` ∈ Span(y,z,1).

Proof. Straightforward calculation gives that

`(i)= ∑
j<k<l 6=i

(
y(k)y(l)z( j)+y( j)y(l)z(k)+y( j)y(k)z(l)

)
+
(
y( j)z(k)z(l)+y(k)z( j)z(l)+y(l)z( j)z(k)

)
.

This can be directly verified to be equal to(
S(y,z)+S(z,z)+ 〈z,1〉

)
· y(i)+

(
S(y,z)+S(y,y)+ 〈y,1〉

)
· z(i)

+
(
S(y,y) · 〈z,1〉+S(z,z) · 〈y,1〉+ 〈y,z〉 · 〈y+ z,1〉

)
.
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By assumption, S(y,z) = 〈y,1〉·〈z,1〉+〈y,z〉= 0. Note that this also implies 〈y,z〉·〈y+z,1〉= 0, implying

`(i) =
(
S(z,z)+ 〈z,1〉

)
· y(i)+

(
(S(y,y)+ 〈y,1〉

)
· z(i)+

(
S(y,y) · 〈z,1〉+S(z,z) · 〈y,1〉

)
.

Consequently, the linear part of Q may be written as

∑
i
`(i)x(i) =

(
S(z,z)+ 〈z,1〉

)
· 〈x,y〉+

(
(S(y,y)+ 〈y,1〉

)
· 〈x,z〉

+
(
S(y,y) · 〈z,1〉+S(z,z) · 〈y,1〉

)
· 〈x,1〉.

Consequently, we deduce

Corollary 3.7. If S(y,z) = 0 then the non-zero Fourier coefficients of the polynomial

Q = ∑
i< j

qi, jx(i)x( j)+∑
i
`(i)x(i)+ c

lie in the affine subspace AFy,z = yz+Span(y,z,1).

3.2 Second derivatives of a fixed polynomial of degree 3

Let
g(x) = ∑

i< j<k
ai, j,k x(i)x( j)x(k)

be a polynomial of degree 3. For directions y,z ∈ FN
2 , consider the second derivative gy,z = ∑i vy,z(i)x(i)+

cy,z. We need to show that the probability of the vector vy,z falling in the affine space AFy,z = yz+
Span(y,z,1) is exponentially small.

First, we fix some notation. For 1 ≤ i ≤ N, let Gi be a symmetric N ×N matrix over F2 with
(Gi) j,k = (Gi)k, j = ai, j,k for all j 6= k. (Here we think about {i, j,k} as an unordered subset of [N].) The
diagonal entries of Gi are set to 0. For future use note the important property (Gi) j,k = (G j)i,k = (Gk)i, j.

These matrices are relevant because they describe the vector vy,z.

Lemma 3.8.

• vy,z(i) = coefx(i) (gy,z(x)) = 〈y,Giz〉.

• An alternative representation of vy,z will be more convenient for us. For z ∈ FN
2 , let G(z) =

∑
N
i=1 z(i)Gi. Then

vy,z = G(z) · y .

Proof. For the first claim of the lemma, by linearity of the derivative, it suffices to consider the monomial
g(x) = x(i)x( j)x(k). This case can be easily verified directly.

For the second claim, note that

(G(z) · y)(l) =
N

∑
k=1

(G(z))k,l y(k) =
N

∑
k=1

y(k) ·
N

∑
i=1

z(i)(Gi)k,l =
N

∑
k=1

y(k) ·
N

∑
i=1

(Gl)k,i z(i) = 〈y,Glz〉.
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Consider the event {vy,z ∈ AFy,z}. This means vy,z = yz+ uy,z, for some vector uy,z ∈ Span(y,z,1).
There are only 8 possible choices for uy,z. For convenience, let us assume, without loss of generality (as
can be easily seen from the proof), that uy,z = y+ z+1 is the most popular one. By the lemma, the event
{vy,z = yz+uy,z} is the same as {G(z) ·y = yz+uy,z}. To simplify things some more, let Ai = Gi +ei⊗ei,
i = 1, . . . ,N. That is, Ai = Gi but for (Ai)i,i = 1. Let A(z) = ∑

N
i=1 z(i)Ai. Note that A(z) · y = G(z) · y+ yz.

Hence {G(z) · y = yz+uy,z} is the same as {A(z) · y = uy,z = y+ z+1}.
We conclude the proof by a technical claim.

Proposition 3.9. Let {Ai}, i = 1, . . . ,N be a family of symmetric N×N matrices over F2 with Ai(k,k) =
δik. Then, for y,z uniformly at random and independently from FN

2 ,

Pr
y,z
[A(z) · y = y+ z+1]≤

(
3
4

)N

.

The proof of the proposition is based on the claim that the rank of a matrix A(z) is typically large.

Lemma 3.10. Let matrices {Ai} be as in the proposition. Let C be any fixed symmetric N×N matrix.
Then

Pr
z
[rank(A(z)+C)≤ k−1]≤ 1

2N ·
k−1

∑
i=0

(
N
i

)
.

The proof of Lemma 3.10 uses the following estimate on the number of common zeros of a set of
polynomials.

Lemma 3.11. Let { fI} be a set of K =
(N

k

)
polynomials over F2, indexed by k-subsets I of [N]. Assume

that for any such subset I holds

deg

(
fI(x)−∏

i∈I
xi

)
≤ k−1.

Then,

Pr
x∈Fn

2

[ f1(x) = · · ·= fK(x) = 0]≤ 1
2N

k−1

∑
j=0

(
N
j

)
.

We defer the proof of Lemma 3.11 to Subsection 3.3.

Proof of Lemma 3.10. Consider a family of
(N

k

)
polynomials fI on FN

2 . These polynomials are indexed
by k-subsets of [N]. For a k-subset I, let fI(z) be the determinant of the I× I minor of A(z)+C. Clearly,
rank of A(z)+C is smaller than k if and only if z is a joint zero of { fI}.

We now claim that the coefficient of ∏i∈I zi in fI(z) is 1. If this is true, deg( fI−∏i∈I zi)≤ k−1 and
the claim of the lemma will follow from Lemma 3.11.

Let B(z) = A(z)+C. Since we are working in characteristic two, the symmetry of B(z) implies that

Det(B(z)) = ∑
σ∈SN

σ=σ−1

N

∏
i=1

Biσ(i)(z) = ∑
σ∈SN

σ=σ−1

∏
{i :σ(i)=i}

(zi +Ci,i) · ∏
{i : i<σ(i)}

Biσ(i)(z)

=
n

∏
i∈I

zi + lower order terms
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where in the second equality we used the identity B2
iσ(i)(z) = Biσ(i)(z) in F.

We now prove Propostion 3.9.

Proof of Proposition 3.9. Let I denote the identity N×N matrix.
Let p(z) = Pry [A(z) · y = y+ z+1]. Clearly p(z)≤ 2− rank(A(z)+I). By Lemma 3.10,

Pr
y,z
[A(z) · y = y+ z+1] = Ez [pz]≤ Ez

[
2− rank(A(z)+I)

]
≤ 1

2N

N

∑
k=0

(
N
k

)
2−k =

(
3
4

)N

.

Summing up, for any cubic polynomial g(x),

• For any directions y,z ∈ Fn
2 such that S(y,z) = 1 we have 〈(S4)y,z,gy,z〉 ≤ O

(
2−N

)
.

• For all but exponentially few directions y,z ∈ Fn
2 such that S(y,z) = 0 we have 〈(S4)y,z,gy,z〉= 0.

Hence Ey,z[〈(S4)y,z,gy,z〉] = 2−Ω(n), and by Lemma 3.1 we have 〈S4,g〉 = 2−Ω(n). This concludes the
proof of Theorem 1.3.

3.3 Estimates on the number of common zeroes of some families of polynomials

The main claim of this subsection is the following proposition.

Proposition 3.12. Fix a prime p and let F= Fp. Let M be the ring of F-valued functions on FN , that is
M = F[x1, . . . ,xN ]/I, where I is the ideal

(
xp

1 − x1, . . . ,x
p
N− xN

)
. Let f1, . . . , fK be polynomials in M. Let

S be the set of common zeroes of f1, . . . , fK , that is

S =
{

u ∈ FN : f1(u) = · · ·= fK(u) = 0
}
.

Then
|S| ≤ dim(M/J)

where J is the ideal generated by { fi}, and dim(M/J) denotes the dimension of M/J, viewed as a vector
space over F.

Proof. For each u ∈ S, let qu ∈M be defined by qu(u) = 1 and qu(v) = 0 for all v 6= u. We will show that
the family {qu + J}u∈S is linearly independent in M/J. This will immediately imply the claim of the
proposition.

Consider a linear combination q = ∑u∈S λuqu such that q ∈ J. Let v ∈ S. We compute q(v) in two
ways. First, since q ∈ J, we have q(v) = 0. On the other hand, q(v) = ∑u∈S λuqu(v) = λv. This shows
λv = 0 for all v ∈ S, completing the proof.

We now prove Lemma 3.11.

Proof of Lemma 3.11. We will construct a generating subset of the vector space M/J of cardinality at
most ∑

k−1
j=0

(N
j

)
. We start from a trivial generating set {m+J}, where m runs through all the 2N multi-linear

monomials in N variables. Now, in the factor space M/J, we can replace any product of k variables,
∏i∈I xi, by a polynomial of degree smaller than k. Iterating this procedure, we arrive to a generating set
spanned by {s+ J}, where s now runs through ∑

k−1
j=0

(N
j

)
monomials of degree at most k−1.
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