
THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189
www.theoryofcomputing.org

All Pairs Bottleneck Paths and Max-Min
Matrix Products in Truly Subcubic Time∗†

Virginia Vassilevska Ryan Williams Raphael Yuster

Received: July 25, 2008; published: September 13, 2009.

Abstract: In the all pairs bottleneck paths (APBP) problem, one is given a directed graph
with real weights on its edges. Viewing the weights as capacities, one is asked to determine,
for all pairs (s, t) of vertices, the maximum amount of flow that can be routed along a single
path from s to t. The APBP problem was first studied in operations research, shortly after
the introduction of maximum flows and all pairs shortest paths.

We present the first truly subcubic algorithm for APBP in general dense graphs. In par-
ticular, we give a procedure for computing the (max,min)-product of two arbitrary matrices
over R ∪ {∞,−∞} in O(n2+ω/3) ≤ O(n2.792) time, where n is the number of vertices and
ω is the exponent for matrix multiplication over rings. Max-min products can be used to
compute the maximum bottleneck values for all pairs of vertices together with a “successor
matrix” from which one can extract an explicit maximum bottleneck path for any pair of
vertices in time linear in the length of the path.

ACM Classification: G.2.2, F.2.2

AMS Classification: 05C85, 68R10

Key words and phrases: bottleneck path, maximum capacity path, matrix multiplication, subcubic time

∗This paper is based upon a preliminary version [29] appearing in the Proceedings of the 39th Annual ACM Symposium on
Theory of Computing (STOC), San Diego, California, 2007. The work was done while the first two authors were at Carnegie
Mellon University.

†The first author was sponsored by the National Science Foundation under contracts no. CCR-0122581, no. CCR-0313148,
and no. IIS-0121641. While at the Institute for Advanced Study, the first and second authors were supported by the National
Science Foundation under grant no. CCF-0832797. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

2009 Virginia Vassilevska, Ryan Williams, and Raphael Yuster
Licensed under a Creative Commons Attribution License DOI: 10.4086/toc.2009.v005a009

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4086/toc.2009.v005a009

VIRGINIA VASSILEVSKA, RYAN WILLIAMS, AND RAPHAEL YUSTER

1 Introduction

In recent years, researchers have found surprisingly strong connections between the complexity of funda-
mental graph problems and the complexity of matrix multiplication over a ring. Much of the prominent
work in this area [22, 12, 24, 30] has developed fast algorithms for certain interesting cases of the all
pairs shortest paths (APSP) problem in truly subcubic time, i. e., O(n3−δ) for some constant δ > 0,
where n is the number of vertices in the graph. Still, it remains to be seen if the general APSP problem
can be solved in truly subcubic time. Several algorithms have been given for solving APSP in n3−o(1)

time; the most recent development is by Chan [2] and runs in O(n3 log log3 n/ log2 n) time.
While we are still unable to give a bona fide subcubic algorithm for APSP, we do present such an

algorithm for an intimately related problem, all pairs bottleneck paths (APBP). In this problem, one is
given a directed graph with (arbitrary) real edge weights representing capacities, and the problem is to
report, for all pairs (s, t) of vertices, the maximum amount of flow that can be routed from s to t along
any single path. (This amount is given by the smallest weight edge on the path, a. k. a. the bottleneck
edge.) Our algorithm for APBP runs in O(n2+ω/3)≤ O(n2.792) time, where ω is the exponent of matrix
multiplication over a ring. We can also obtain explicit maximum bottleneck paths: after Õ(n2+ω/3)
preprocessing, we can return an explicit simple maximum bottleneck path between any pair of vertices
s, t in O(`) time, where ` is number of edges in the returned path. That is, the algorithm can be used to
efficiently find maximum bottleneck paths as well.

The APBP problem has been studied alongside APSP in several contexts. Pollack [21] introduced
APBP (calling it the maximum capacity route problem), and showed how the cubic APSP algorithms
of that time could be modified to solve it. Hu [13] proved that in undirected graphs, APBP can be
solved in O(n2) time by simply taking the paths in a maximum spanning tree. Therefore the problem
on undirected graphs can actually be solved in O(n2) time, which is optimal. The directed case of the
problem has remained open until now, and recently appeared as an explicit goal in Shapira et al. [23].
Prior to our work, the fastest algorithm for general APBP used Fredman and Tarjan’s implementation of
Dijkstra’s algorithm [9] on all nodes, in O(mn +n2 logn) time, where m and n are the number of edges
and nodes in the graph, respectively.

A problem related both to APSP and APBP is the all pairs bottleneck shortest paths problem
(APBSP), first considered by [23]. Consider a scenario in which we want to get from location u to
location v in as few hops as possible, and subject to this, we wish to maximize the flow that we can route
from u to v. In other words, we want to compute for each pair of vertices, the shortest (unweighted)
distance d(u,v) and the maximum bottleneck weight b(u,v) of a path of length d(u,v) from u to v.
Shapira et al. [23] gave a truly subcubic algorithm for APBSP in the node-weighted case. We show
that the more general edge-weighted case can also be solved in subcubic time. Our solution runs in
Õ(n

15+ω

6)≤ O(n2.896) time.
Our method for APBP and APBSP is based on a new O(n2+ω/3) algorithm for computing the

(max,min)-product of two n×n matrices with arbitrary entries from R∪{∞,−∞}.

Definition 1.1. The (max,min)-product of an n× ` matrix A and an `×m matrix B is the n×m matrix
C = A�B such that

C[i, j] = max
k=1,...,`

min
{

A[i,k],B[k, j]
}

for all i = 1, . . . ,n and j = 1, . . . ,m.

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 174

http://dx.doi.org/10.4086/toc

ALL PAIRS BOTTLENECK PATHS AND MAX-MIN MATRIX PRODUCTS IN TRULY SUBCUBIC TIME

This is the ordinary matrix product over the (max,min) semiring with entries from R∪{∞,−∞},
and it is the natural generalization of the Boolean matrix product to totally ordered sets of arbitrary size.
Besides its importance in flow problems, the (max,min)-product is also an important operation in fuzzy
logic, where it is known as the composition of relations ([7], pg. 73). The ideas behind our (max,min)-
product algorithm use ingredients from the dominance approaches of prior work; for more details, see
Section 3.

Throughout this paper we use the standard addition-comparison computational model, along with
random access to registers. In the algorithms of this paper, the only operations we actually use on real
numbers are comparisons between them.

1.1 Related work

In addition to the work mentioned above, there are a few other interesting results on APBP that deserve
mention. Karger et al. [16] show that any “path comparison” algorithm (that only accesses edge weights
by comparing the weights of two different paths) requires Ω(n3) time to compute both APSP and APBP.
By way of fast matrix multiplication, our algorithm performs comparisons on rather unrelated pairs of
edges, circumventing the above lower bound. Subramanian [26] proved that on random (Erdős-Rényi)
graphs, both APBP and APSP can be solved in O(n2 logn) time.

Very recently, Shapira et al. [23] have given algorithms for APBP in the special case where the
vertices have weights, but not the edges. Their algorithms run in O(n2.58) time and use fast rectangular
matrix multiplication [4, 14]. Note that if ω = 2, then their algorithms can be implemented to run in
roughly O(n2.5) time. Note that the vertex-weight case can be easily reduced to the edge-weight case,
by setting the weight of an edge to be the minimum weight of its two endpoints. Their algorithm relies
on the linearity of the number of weights. As the number of weights in the vertex-weight case is only
n, but the number in the edge-weight case can be Ω(n2), their techniques do not seem to apply to the
latter case. The authors of [23] also stated the goal of finding a truly subcubic algorithm for (max,min)
matrix product as an open problem, which we resolve in this paper.

2 Preliminaries

For every graph (V,E) in this paper we let n = |V | and m = |E|. We refer to the elements of V as nodes
and vertices interchangeably. We refer to the elements of E as edges. Without loss of generality, the
graphs in this paper are weakly connected, so that m≥ n−1.

For a positive integer k, we use [k] to denote {1, . . . ,k}.
We use MT to denote the transpose of a matrix M. As is common, we define ω ≥ 2 to be the infimum

of all real numbers s such that matrix multiplication over a ring is in O(ns) arithmetic operations. The
best known upper bound for ω is < 2.376, given by Coppersmith and Winograd [5].

We use a special matrix product in our algorithms, first defined by Matoušek [19].

Definition 2.1. Given two n× n matrices A and B over a totally ordered set, the dominance product is
the n×n matrix C = A4B defined by

C[i, j] =
∣∣{k | A[i,k]≤ B[k, j]}

∣∣.
THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 175

http://dx.doi.org/10.4086/toc

VIRGINIA VASSILEVSKA, RYAN WILLIAMS, AND RAPHAEL YUSTER

For technical reasons, we use the following definition of weight functions.

Definition 2.2. An edge-weighted graph G = (V,E,w) consists of a directed graph (V,E) and a weight
function w : V ×V → R∪{−∞,∞} with the following properties for all u,v ∈V :

• w(u,u) = ∞,

• if (u,v) ∈ E then w(u,v) < ∞,

• if u 6= v and (u,v) /∈ E then w(u,v) =−∞.

It is obvious that a standard weight function from E to R can be uniquely extended to a weight
function in the above sense.

Definition 2.3. Given an edge-weighted graph G = (V,E,w), a bottleneck edge of a path between ver-
tices u and v is a smallest weight edge on that path. A maximum bottleneck path between u and v is a
path whose bottleneck edge weight is equal to the maximum of the bottleneck edge weights of all paths
from u to v.

3 The dominance approach

We begin by revisiting an approach used by Chan [3] and Vassilevska and Williams [28] to find im-
proved algorithms for all pairs shortest paths and maximum node-weighted triangles, respectively. In
this approach, one reduces a weighted graph problem to the dominating pairs problem from computa-
tional geometry, then uses a fast algorithm for that problem. The dominating pairs problem gives a set X
of n points in k-dimensional space, and the task is to compute all pairs (x,y) where x,y∈ X and x[i]≤ y[i]
for all coordinates i.

Let MX be the n× k matrix whose rows are the points of X . One way to determine dominating pairs
is to compute the dominance product of MX and MT

X , as defined in Section 2. Then, (MX 4MT
X)[i, j] = k

if and only if (i, j) is a dominating pair. The best known algorithm in terms of n for the dominance
product of two n×n matrices is due to Matoušek [19].

Theorem 3.1 (Matoušek [19]). The dominance product of two n×n matrices A and B with entries from
a totally ordered set is computable in O(n

3+ω

2) time.

A nice advantage of the dominance approach is that sums of pairs of elements can be quickly com-
pared to a global constant, which is useful in some weighted graph problems. For example, suppose we
are given a constant K and an edge-weighted graph G = (V,E,w) where w : E → R, and we want to
compute for all pairs of vertices i, j whether there is a path of the form i→ k→ j of total sum at least
K. Then one can set up matrices A and B so that

A[i,k] :=
{

K−w(i,k) if (i,k) ∈ E
∞ otherwise,

B[k, j] :=
{

w(k, j) if (k, j) ∈ E
−∞ otherwise.

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 176

http://dx.doi.org/10.4086/toc

ALL PAIRS BOTTLENECK PATHS AND MAX-MIN MATRIX PRODUCTS IN TRULY SUBCUBIC TIME

Then (A4B)[i, j] 6= 0 if and only if there is a k for which (i,k),(k, j) ∈ E and K−w(i,k)≤ w(k, j),
i. e., w(i,k)+ w(k, j) ≥ K. In this paper, we find a new application of the dominance approach, culmi-
nating in a genuinely subcubic algorithm for APBP.

In our applications that use a dominance product, we shall only want to perform comparisons with
certain entries of the matrices. For example, suppose matrices A and B are over R∪{∞}, such that A has
mostly ∞ entries, while B has mostly finite entries. Then, in the computation of the dominance product
A 4 B, many of the comparisons (A[i,k] ≤ B[k, j]) are false; it only makes sense to compare the finite
entries of A with entries in B. To this end, we design a special algorithm for dominance product, in the
case where one wishes to ignore large portions of the matrix A.

Theorem 3.2 (Sparse Dominance Product). Let A and B be n× n matrices with entries from a totally
ordered set. Let S⊆ [n]× [n] such that |S|= m≥ nω−1. Let C be the matrix such that

C[i, j] =
∣∣{k | (i,k) ∈ S and A[i,k]≤ B[k, j]}

∣∣ .
There is an algorithm SD that, given A, B, and S, outputs C in O(

√
m ·n 1+ω

2) time.

Proof. Call the entries of A with coordinates in S the relevant entries of A. For every j = 1, . . . ,n, let L j

be the sorted list containing the relevant entries from A in column j, along with the entries from B in row
j. Let g j be the number of relevant entries of A in L j, for all j. Clearly, ∑ j g j = m. Pick a parameter r
and partition each L j into r consecutive buckets, such that every bucket contains at most dg j/re relevant
entries of A. Note that the bucket sizes are not necessarily uniform.

For every bucket number b = 1, . . . ,r, create Boolean matrices Ab and Bb:

Ab[i, j] :=
{

1 if A[i, j] is in bucket b of L j

0 otherwise,

Bb[j,k] :=
{

1 if B[j,k] is in bucket b′ of L j and b′ > b
0 otherwise.

For each bucket number b, compute Cb = Ab×Bb (where × is matrix multiplication over the integers).
This step takes O(rnω) time and computes for every pair i,k and bucket number b, the number of j such
that A[i, j]≤ B[j,k], where A[i, j] is in bucket b of L j, and B[j,k] is in a different bucket of L j.

Initialize an n×n matrix D to be all zeroes. In every bucket b of L j, there are at most dg j/re relevant
entries of A and some number t jb of entries from B. Compare every A-entry with every B-entry in bucket
b of L j in O(t jb ·dg j/re) time; in particular, for each A[i, j]≤ B[j,k] where A[i, j] and B[j,k] are in bucket
b, increment D[i,k]. Over all j and b, this takes time on the order of

∑
j
∑
b

t jb · dg j/re ≤∑
j
(1+g j/r)∑

b
t jb = ∑

j
(1+g j/r)n = n2 +∑

j
g jn/r = n2 +mn/r .

After all buckets of all lists are processed, D[i,k] contains the number of j such that A[i, j]≤ B[j,k],
where A[i, j], B[j,k] are in the same bucket of L j.

Finally, set C = ∑
r
b=1Cb + D. It is easy to verify from the above that the algorithm returns the

desired C. The overall runtime of the above procedure is O(n2 +mn/r + rnω). Choosing r =
√

m ·n 1−ω

2 ,
the runtime is minimized to O(

√
m ·n 1+ω

2).

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 177

http://dx.doi.org/10.4086/toc

VIRGINIA VASSILEVSKA, RYAN WILLIAMS, AND RAPHAEL YUSTER

We can give a slightly more general result using a lemma by Huang and Pan [14]. Fix r ∈ (0,1].
Define ωr to be the infimum of all real numbers s such that multiplication of an n× nr matrix and an
nr×n matrix over a ring can be done in O(ns) arithmetic operations. Observe that

ωr ≤ 2(1− r)+ rω ,

since the product of an n×nr and nr×n matrix can be computed with n2(1−r) products on pairs of nr×nr

matrices. Building on Coppersmith [4], Huang and Pan proved:

Lemma 3.3 (Huang and Pan [14]). Let α = sup{0 ≤ r ≤ 1 | ωr = 2 + o(1)} > 0.294. Then for all
d ≥ nα , one can multiply an n×d with a d×n matrix in time

O(d
ω−2
1−α ·n

2−ωα

1−α) = O(d0.533n1.844) ,

where ω is the n×n matrix multiplication exponent.

Corollary 3.4. There is an

O
(

min
{

n2 +(|SA| · |SB|)
ω−2

ω−α−1 n
2−αω

ω−α−1 ,nω +
√
|SA| · |SB| ·n

ω−1
2

})
algorithm for sparse dominance product, where SA and SB are subsets of [n]× [n], and the resulting
matrix has C[i, j] = |{k | A[i,k]≤ B[k, j],(i,k) ∈ SA,(k, j) ∈ SB}|.

Proof. Suppose A has m1 relevant entries and B has m2. Sort each column k of A and row k of B together.
For each k, let Lk be the sorted list for column/row k. Let D be a parameter to be chosen later. For every
column/row k, let m1k be the number of relevant entries of A in Lk, so that ∑k m1k = m1.

Bucket each list Lk into consecutive buckets, so that each bucket (except for the last one) has m1/D
relevant elements of A. Compare elements within bucket b of list k in

∑
b

gbkdm1/De

where gbk is the number of relevant B-elements in bucket b of Lk. Overall, the runtime is O(m2 + m1m2
D).

To handle comparisons between buckets we do the following. Create matrices C and C′ where C
is n×O(D) and C′ is O(D)× n. The columns of C and rows of C′ have indices (k,b) for bucket b of
Lk, provided Lk has at least 2 buckets. We set C[i,(k,b)] to be 1 if A[i,k] is in bucket b of Lk. We set
C′[(k,b′), j] to be 1 if B[k, j] is in some bucket b > b′ of Lk. Then clearly C[i,(k,b)] ·C′[(k,b), j] = 1 iff
there is some b′ > b such that B[k, j] is in bucket b′ of Lk but A[i,k] is in bucket b < b′ of Lk and when
we sum these we always count different comparisons. The number of coordinates (k,b) is at most

∑
k: Lk has ≥ 2 buckets

⌈
m1kD

m

⌉
≤ D∑

k

m1k

m1
+ ∑

k: Lk has ≥ 2 buckets
1≤ D+D = 2D .

We can compute the product of C and C′ in O(d(D
n)enω) time. If m1m2 ≥ nω+1, the best value for D is

m1m2/D = Dnω−1 =⇒ D =
√

m1m2/n
ω−1

2 ≥ n .

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 178

http://dx.doi.org/10.4086/toc

ALL PAIRS BOTTLENECK PATHS AND MAX-MIN MATRIX PRODUCTS IN TRULY SUBCUBIC TIME

The final runtime is then O(
√

m1m2n
ω−1

2).
If m1m2 < nω+1, then the product of C and C′ can be computed in O(nω) or O(D

ω−2
1−α n

2−αω

1−α) time by
Lemma 3.3, where the current best value for α is < 0.294. In the first case, we set D = n and the final
runtime is O(nω). In the second approach, the best value for D is

m2m1/D = D
ω−2
1−α n

2−αω

1−α =⇒ D =
(m1m2)

1−α

ω−α−1

n
2−αω

ω−α−1
.

The final runtime becomes asymptotically

(m1m2)
ω−2

ω−α−1 n
2−αω

ω−α−1 ≤ O
(
(m1m2)0.33n1.21) .

4 All Pairs Bottleneck Paths

Armed with the sparse dominance product algorithm, we now turn to the all pairs bottleneck paths
problem. We first show how to compute the (max,min)-product of matrices in truly subcubic time.
Just as the (min,+)-product (or distance product) can be used to find all pairs shortest paths [1], the
(max,min)-product gives a way to solve APBP.

4.1 Max-Min Product

Recall that the (max,min)-product of two matrices A and B is defined to be the matrix C such that
C[i, j] = maxk min{A[i,k],B[k, j]}. Clearly, the (max,min)-product of two matrices A and B can be
modeled by an APBP computation on a three-layered graph, where the edge weights from the first
to the second layer come from A and the edge weights from the second to the third layer come from
B. Moreover, Corollary 4.2 states that APBP on an n-vertex graph can be solved in roughly the time
it takes to compute a (max,min)-product of n× n matrices. This result follows from a more general
result (Theorem 4.1) for closed semirings due to due to Fischer and Meyer [8], Furman [10, 11], and
Munro [20].

A closed semiring is an algebraic structure weaker than a ring, so that (R,⊕,�,0,1) is a closed
semiring if all of the following conditions hold:

(1) R is a set with 0,1 ∈ R which is closed under the binary operations ⊕ and �;

(2) ⊕ is commutative, associative, idempotent, and 0 is an identity under ⊕;

(3) � is associative, distributes over ⊕, and 1 is an identity under �;

(4) 0 is a multiplicative annihilator: ∀x ∈ R : x�0 = 0� x = 0;

(5) finally, there is a unary operation ∗ so that a∗ = 1⊕ (a�a∗) for all a ∈ R.

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 179

http://dx.doi.org/10.4086/toc

VIRGINIA VASSILEVSKA, RYAN WILLIAMS, AND RAPHAEL YUSTER

The transitive closure of a square matrix A over a closed semiring R is always well-defined as the
solution A∗ to A∗ = I⊕ (A�A∗), where I is the identity matrix over R, and the ⊕ and � operations on
two matrices X ,Y are given by (X ⊕Y)[i, j] = X [i, j]⊕Y [i, j], and (X �Y)[i, j] =

⊕
k(X [i,k]�Y [k, j]).

Under these operations, the set of n× n matrices over a closed semiring R is also a semiring, with the
identity and zero matrices playing the roles of 1 and 0.

Theorem 4.1 ([8, 10, 20], [1], pp. 204–206). If the product of two arbitrary n× n matrices over a
closed semiring R can be computed in M(n) time so that M(2n) ≥ 4M(n), then there exists a constant
c such that the time T (n) to compute the transitive closure of an arbitrary n×n matrix over R satisfies
T (n)≤ cM(n).

Since (R,min,max,∞,−∞) is a closed semiring (it is also known as the subtropical semiring), we
immediately obtain the following corollary.

Corollary 4.2. Let M(n) be such that M(2n)≥ 4M(n). If the (max,min)-product of two arbitrary real
n× n matrices is computable in M(n) time, then the all pairs bottleneck paths problem on an n-vertex
graph can be solved in O(M(n)) time.

We note that the condition M(2n) ≥ 4M(n) is not really restrictive. Since we need to write the
output, M(n) ≥ Ω(n2). If we assume that M(n) = f (n)n2 for some nondecreasing function f (n), then
M(2n) = f (2n)(2n)2 = 4 f (2n)n2 ≥ 4 f (n)n2 = 4M(n).

We now show how to compute the (max,min)-product in truly subcubic time, using the sparse
dominance algorithm combined with another idea.

Theorem 4.3 (Max-Min Product). Given two n×n matrices A and B, the matrix C with

C[i, j] = max
k

min{A[i,k],B[k, j]}

can be computed in O(n2+(ω/3)) time. Moreover, for each pair of indices i, j, the algorithm returns an
index k satisfying min{A[i,k],B[k, j]}= C[i, j].

Proof. We first compute for every pair i, j, the maximum A[i,k] (over all k) such that A[i,k] ≤ B[k, j],
storing the results in a matrix A′. Afterwards, we reverse the roles of A and B, computing for every pair
i, j, the maximum B[k, j] (over all k) such that B[k, j] ≤ A[i,k], storing the results in a matrix B′. Then
we take

C[i, j] = max{A′[i, j],B′[i, j]} .

Since the above two cases (of computing A′ and B′) are symmetric, it suffices to show how to com-
pute A′, where

A′[i, j] = max
k : A[i,k]≤B[k, j]

A[i,k] .

To do this, we employ a strategy similar to one used to obtain maximum witnesses for matrix multi-
plication [17]. In particular, for each i, j = 1, . . . ,n, we “narrow down” the possible choices for an A[i,k]
such that A[i,k] ≤ B[k, j], to one of g possible entries. This is done by a careful application of O(n/g)
sparse dominance products, in O(n2+(ω/2)/

√
g) time. Then for each i, j, we directly check which of the

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 180

http://dx.doi.org/10.4086/toc

ALL PAIRS BOTTLENECK PATHS AND MAX-MIN MATRIX PRODUCTS IN TRULY SUBCUBIC TIME

g possible entries are valid, if any. This takes O(n2g) time. Choosing g optimally results in a subcubic
time bound.

For every row i of matrix A, make a sorted list Ri of the entries in that row. Pick a parameter g.
Partition the entries of each sorted list Ri into buckets, so that for every Ri there are dn/ge buckets with
at most g entries in each bucket. For every bucket value b = 1, . . . ,dn/ge, compute Cb = SD(A,B,Sb),
where SD is the sparse dominance product from Theorem 3.2 and

Sb = {(i, j)| A[i, j] is in bucket b of Ri} .

Notice that for every bucket value b, we have |Sb| ≤ ng. By Theorem 3.2, all matrices Cb can be
computed in

O
(

n
g
·√ng ·n

1+ω

2

)
= O

(
n2+(ω/2)
√

g

)
time.

Now for every pair i, j, we determine the largest bucket bi, j in Ri for which there exists a k such that
A[i,k] ≤ B[k, j]. (This is obtained by taking the largest bi, j such that Cbi, j [i, j] 6= 0. Note we can easily
compute bi, j during the computation of the Cb.) For every i, j, we then examine the entries in bucket
bi, j of Ri to obtain the maximum A[i,k] (and hence the corresponding k) such that A[i,k]≤ B[k, j]. Since
there are at most g entries in a bucket, each pair i, j can be processed in O(g) time. Therefore, this last
step takes O(n2g) time. To pick a value for g that minimizes the runtime, we set n2g = n2+ω/2/

√
g,

obtaining g = nω/3. The running time is hence O(n2+(ω/3)).

Plugging in the best known value for ω by Coppersmith and Winograd [5], the runtime bound
becomes O(n2.792).

4.2 Computing explicit maximum bottleneck paths

By Corollary 4.2 we can obtain a matrix representing all pairs bottleneck path weights in an edge-
weighted graph in O(n2+(ω/3)) time. To be able to compute actual paths, a bit more work is necessary.
Since paths can have linear length in general, listing the optimal paths between all pairs of vertices
might require cubic time. To tackle this hurdle, we proceed as is common in the shortest paths literature:
instead of explicitly representing the optimal paths, we store an n×n matrix of successor nodes, so that
given this matrix, a maximum bottleneck path P between any pair of vertices can be recovered in time
linear in the length of P.

To build the successor matrix, we take an approach analogous to that used by Zwick [30] in solving
the APSP problem. First, we compute APBP by repeatedly squaring the original adjacency matrix via
(max,min)-product, instead of the approach in Aho et al. [1]. We also record, for every pair of nodes i, j,
the last iteration T [i, j] of the repeated squaring phase in which the bottleneck edge weight was changed,
together with a witness vertex wi j on a path from i to j, provided by the (max,min)-product computation
in that iteration.

Given an iteration matrix T and a witness matrix wi j (derived from a shortest path computation),
Zwick [30] gives a procedure which computes a matrix of successors in O(n2) time, and another proce-
dure that, given a matrix of successors and a pair of nodes, returns a simple shortest path between the
nodes. Applying his procedures to our setting, we get simple maximum bottleneck paths. The major

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 181

http://dx.doi.org/10.4086/toc

VIRGINIA VASSILEVSKA, RYAN WILLIAMS, AND RAPHAEL YUSTER

difference here is that our iteration values are obtained by repeated squaring, whereas Zwick’s iteration
values come from his random sampling algorithm for finding witnesses. We review Zwick’s algorithm
below.

ALGORITHM wit-to-suc(W,T):
S← 0
for ` = 0 to logn do T` = {(i, j) | T [i, j] = `}
for every (i, j) ∈ T0 do S[i, j] = j
for ` = 1 to logn do

for each (i, j) ∈ T` do
k = wi j

while S[i, j] = 0 do
S[i, j]← S[i,k], i← S[i, j]

return S

Theorem 4.4. The all pairs bottleneck paths problem can be solved in O(n2+(ω/3)) time. Furthermore,
in O(n2+(ω/3) logn) time algorithm wit-to-suc computes a successor matrix from which for any i, j a
simple maximum bottleneck path between i and j can be recovered in O(`) time, where ` is the length of
the returned path.

Proof. Let wi j and T [i, j] for all vertex pairs i, j be provided by repeated squaring of the adjacency
matrix using (max,min)-product.

Consider algorithm wit-to-suc. Let S be the matrix of successors that the algorithm computes. The
algorithm processes vertex pairs (i, j) in increasing order of their iteration numbers T [i, j]. The idea is
that if k is a witness for (i, j), then T [i,k] is an earlier iteration of the squaring than T [i, j], and hence
S[i,k] would be set before S[i, j] is processed.

We claim by induction that after a value S[i, j] is set, matrix S stores a simple maximum bottleneck
path from i to j which can be recovered by following successors one by one. Our argument is similar to
that of Zwick [30].

At iteration 0 of the algorithm, all pairs whose maximum bottleneck path is an edge are fixed.
Suppose that at the iteration in which vertex pair (i, j) is processed, the claim holds for all vertex pairs
(k, `) that have been processed before (i, j) (and hence which have a nonzero S[k, `] value). Now consider
the iteration in which (i, j) is processed. Let k = wi j. Since S[i,k] is set, we can use its successor value
to set S[i, j] since we know that a maximum bottleneck path goes through k. We then take S[i, j] and if
its successor on the path to j has not been set, we set it to match S[S[i, j],k]. We continue processing
consecutive successors similarly, until we encounter some i0 for which S[i0, j] is set (i0 exists as k is
such a vertex). Since it is set, and the path from i to k is simple (by induction), S[i0, j] must have been
set before (i, j) is processed. Hence by induction, the path from i0 to j is simple and all successors for
vertices on that path to j are set. But since no successors for vertices between i and i0 were set, then the
paths i to i0 and i0 to j are simple and nonoverlapping, and the overall path is simple and a maximum
bottleneck path. Furthermore, now the successors of all vertices on the simple path are set in the S
matrix.

The algorithm for determining successors from witnesses takes O(n2) time. Given a matrix of suc-
cessors, obtaining the actual path from i to j is straightforward: find S[i, j] and then recursively obtain

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 182

http://dx.doi.org/10.4086/toc

ALL PAIRS BOTTLENECK PATHS AND MAX-MIN MATRIX PRODUCTS IN TRULY SUBCUBIC TIME

the path from S[i, j] to j. This clearly takes time linear in the length of the path.

5 All Pairs Bottleneck Shortest Paths

We first recall the well-known short-path–long-path method [30, 12, 2]. This method is quite general
and is used to tackle various all pairs path problems.

5.1 The short-path–long-path method

All pairs path problems can often be viewed as problems of computing the transitive closure of a given
(adjacency) matrix over a given algebraic structure. The given algebraic structure consists of a set of
elements R and two binary operations ⊕ : R×R→ R and � : R×R→ R (where ⊕ is commutative) so
that the (⊕,�) product of two n×n matrices A and B is well-defined as

(A�B)[i, j] =
⊕
k∈[n]

A[i,k]�B[k, j] .

For instance, APSP is the problem of computing the transitive closure of a nonnegative real matrix
with 0s on the diagonal, over the (min,+)-semiring (also called tropical); APBP is the problem of
computing the transitive closure of a real matrix with ∞s on the diagonal over the (max,min)-semiring
(also called subtropical). The short-path–long-path method is particularly useful in cases when the �
operation in the underlying algebraic structure is not necessarily associative or commutative, or if it
does not fully distribute over ⊕ (see e. g. [27]). In such a case, computing the transitive closure of
an n× n matrix seems to require n iterations of the product (hence taking Ω(n3) operations), whereas
computing the transitive closure over a semiring, for instance, can be done in asymptotically the same
time as computing the matrix product [8]. The method also applies when the all pairs path problem
is not necessarily a transitive closure problem, but for which computing n (⊕,�) matrix products can
be used to solve the problem (see e. g. [2]). This is the case for the all pairs bottleneck shortest paths
problem.

In the method one first chooses a parameter ` < n and iteratively computes the underlying (⊕,�)
matrix product on ` pairs of matrices, obtaining each consecutive pair from the previously computed
products. This computation allows one to obtain best paths of length at most ` between all pairs of
vertices, possibly collecting other information to be used later. A common instance of the product
iteration phase is just computing the `-th power of the adjacency matrix. This first phase of the method
takes O(M(n)`) time, where M(n) is the time to compute the particular matrix product.

After this the following lemma is used to obtain in O(n2`) time a set of O((n logn)/`) vertices hitting
all shortest paths between pairs of vertices at distance `. The lemma follows directly from the analysis
of the greedy algorithm for hitting set.

Lemma 5.1 ([18, 15, 25]). Given a collection of N subsets of {1, . . . ,n}, each of size `, one can find in
O(N`) time a set of at most n(1+lnN)

` elements of {1, . . . ,n} hitting every one of the subsets.

An easy way to achieve the above performance bounds by a randomized algorithm is to sample a set
of (cn lnN)/` elements from {1, . . . ,n} independently, uniformly at random for a constant c > 1. By a

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 183

http://dx.doi.org/10.4086/toc

VIRGINIA VASSILEVSKA, RYAN WILLIAMS, AND RAPHAEL YUSTER

standard argument one can show that such a sample is a hitting set with probability at least 1−1/Nc−1

(cf. [30]).
After obtaining the hitting set, one argues that for any pair of vertices a best path of length ≥ ` (if

one exists) must contain a node from the hitting set. One designs an algorithm for the single source
version of the path problem, running in, say, T (n) time. Then one runs this algorithm from all nodes in
the hitting set in O((nT (n) logn)/`) time (possibly in both directions). Finally, one combines the results
in O((n3 logn)/`) time by considering every pair of nodes and every possible midpoint from the hitting
set.

Suppose T (n) = O(n2) as is with most problems to which Dijkstra’s algorithm applies. Then the
overall running time is minimized when

M(n)` =
n3 logn

`
, ` =

√
n3

M(n)
logn ,

and the runtime becomes
O
(

n1.5
√

M(n) logn
)

.

5.2 An algorithm for APBSP

We first give an algorithm for the single source version of the bottleneck shortest paths problem (SSBSP).

Lemma 5.2. SSBSP on a graph with m edges and n nodes can be solved in O(m+n) time.

Proof. The algorithm is an adaptation of breadth-first search. Let G = (V,E,w) be the given edge-
weighted graph and s the source node. We will maintain a set Qi which at each stage i will contain
nodes at (unweighted) distance i from s. The set needs to support insert, pop an element, go through the
elements one by one. A linked list suffices to support all of these operations in O(1) time.

Every node v in the graph has a bit visited(v) which is set if and only if an edge from an in-neighbor
of v to v has been traversed. Node v has values d(v) and b(v) associated with it. Value d(v) will be the
(unweighted) shortest distance from s to v and b(v) will be the maximum bottleneck edge on a shortest
path from s to the v. Originally, d(v) = ∞ for v 6= s and d(s) = 0, b(v) =−∞ for all v 6= s and b(s) = ∞,
visited(v) = 0 for all v 6= s, visited(s) = 1.

We begin by inserting each out-neighbor v of s into Q1. We set d(v) = 1, b(v) = w(s,v) and
visited(v) = 1. We then process Q1.

To process Qi, repeat: pop a node v from Qi; for all out-neighbors u of v:

• if u is not visited, insert u into Qi+1, set d(u) = i+1, b(u) = max{b(u),min{b(v),w(v,u)}}, and
visited(u) = 1.

• else if u is visited and if d(u) = i+1, set b(u) = max{b(u),min{b(v),w(v,u)}}.

When Qi is empty, process Qi+1 if Qi+1 is nonempty.
Correctness follows by induction: if the bottlenecks for nodes in Qi−1 are correct, then since every

path of length i from s to u must be of the form Psv followed by (v,u) where Psv is a path of length

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 184

http://dx.doi.org/10.4086/toc

ALL PAIRS BOTTLENECK PATHS AND MAX-MIN MATRIX PRODUCTS IN TRULY SUBCUBIC TIME

i−1 and (v,u) ∈ E, going through all nodes v ∈ Qi−1 and setting b(u) = max{b(u),min{b(v),w(v,u)}}
computes the correct bottleneck weight.

The running time of the algorithm is O(m + n) since we go through each edge at most once and a
node is only accessed via an incoming edge or when popping it from a set Qi.

Now we can apply the short-path–long-path method to prove:

Theorem 5.3. APBSP on an n-node graph can be solved in O(n
15+ω

6
√

logn)≤ O(n2.896) time.

Proof. In our application of the method, the matrix product we use is the (max,min)-product, taking
time M(n) = O(n2+(ω/3)) per iteration. Let G = (V,E,w) be the given edge-weighted graph. Its adja-
cency matrix A is defined as follows for j,k ∈ [n]:

A[j,k] =

∞ if j = k,
w(j,k) if (j,k) ∈ E,
−∞ otherwise.

For a parameter `, we iterate the (max,min)-product on the adjacency matrix ` times as follows. At each
iteration i = 1, . . . , ` we have a matrix Di containing the unweighted distance between any two nodes at
distance at most i, and a matrix Ai−1 which contains bottleneck values from iteration i−1. In iteration 1
we have A0 and D1 as follows: for j,k ∈ [n],

A0[j,k] =
{

∞ if j = k
−∞ otherwise,

and D1[i, j] =

1 if (i, j) ∈ E,
0 if i = j,
∞ otherwise.

At each iteration i, we compute Ci = Ai−1�A (where� is the (max,min)-product). After computing
Ci, we set for all j,k ∈ [n]

Di+1[j,k] =

Di[j,k] if Di[j,k] < ∞,
i if Ci[j,k] >−∞ and Di[j,k] = ∞,
∞ otherwise.

After Di+1 is computed, we create Ai by setting for all j,k ∈ [n]

Ai[j,k] =
{

Ci[j,k] if Di+1[j,k] = i,
−∞ otherwise.

Ai[j,k] is the maximum bottleneck edge weight on a path from j to k of length i if i is the shortest
distance between j and k. Over all i = 1, . . . , `, computing all Ai and Di+1 takes O(`n2+(ω/3)) time.

The short-path–long-path method requires that we find a hitting set S in O(`n2) time and do SSBSP
from all nodes in S. By Lemma 5.2 this takes O(n3 logn/`) time. We obtain all distances and bottlenecks
by combining the results in O(n3 logn/`) time as given by the method. We set

` =

√
n3

M(n)
logn = n

3−ω

6
√

logn ,

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 185

http://dx.doi.org/10.4086/toc

VIRGINIA VASSILEVSKA, RYAN WILLIAMS, AND RAPHAEL YUSTER

and the runtime becomes

O
(

n1.5
√

M(n) logn
)

= O(n
15+ω

6
√

logn) = O(n2.896) .

6 Conclusion

We have provided the first truly subcubic algorithms for all pairs bottleneck paths and all pairs bottleneck
shortest paths in general dense graphs, with no restrictions on edge weights or edge directions. Our
approach combines several different ingredients from past work, along with a few new ideas, to reduce
the problem of computing the (max,min) matrix product to a small collection of 0-1 matrix products.
Timothy Chan (personal communication) has observed that the running time of our algorithm can be
slightly improved (from n2.792 to n2.781) by using fast rectangular matrix multiplication [4, 14]. More
recently, Duan and Pettie [6] have extended our techniques to show that the (max,min) matrix product
can be computed in O(n(3+ω)/2) = O(n2.688) time, the best known time for computing the dominance
product. It is still an open problem whether the dominance or (max,min)-products can be computed in
O(nω) time.

The most pressing question from our work is if the ideas from our (max,min) matrix product algo-
rithm can be extended further to obtain a O(n3−δ) algorithm for the (min,+) matrix product (that is,
the distance product). Note we already know that the dominance approach can be used to obtain the k
most significant bits of the distance product in O(2kn(3+ω)/2) time [28]. An affirmative answer would
immediately imply a truly subcubic APSP algorithm for general graphs, resolving a longstanding and
prominent open problem.

Acknowledgments. The authors would like to thank the anonymous referees for their valuable com-
ments.

References

[1] A. V. AHO, J. E. HOPCROFT, AND J. ULLMAN: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley Longman Publishing Co., Boston, MA, 1974. 179, 180, 181

[2] T. M. CHAN: More algorithms for all-pairs shortest paths in weighted graphs. In Proc. 39th STOC,
pp. 590–598. ACM Press, 2007. [STOC:1250790.1250877]. 174, 183

[3] T. M. CHAN: All-pairs shortest paths with real weights in O(n3/ logn) time. Algorithmica,
50(2):236–243, 2008. [Algorithmica:px2741688g4p4l18]. 176

[4] D. COPPERSMITH: Rectangular matrix multiplication revisited. J. Complexity, 13(1):42–49, 1997.
[doi:10.1006/jcom.1997.0438]. 175, 178, 186

[5] D. COPPERSMITH AND S. WINOGRAD: Matrix multiplication via arithmetic progressions. J.
Symbolic Comput., 9(3):251–280, 1990. [doi:10.1016/S0747-7171(08)80013-2]. 175, 181

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 186

http://portal.acm.org/citation.cfm?id=1250790.1250877
http://springerlink.metapress.com/link.asp?id=px2741688g4p4l18
http://dx.doi.org/10.1006/jcom.1997.0438
http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://dx.doi.org/10.4086/toc

ALL PAIRS BOTTLENECK PATHS AND MAX-MIN MATRIX PRODUCTS IN TRULY SUBCUBIC TIME

[6] R. DUAN AND S. PETTIE: Fast algorithms for (max,min)-matrix multiplication and bottleneck
shortest paths. In Proc. 19th SODA, pp. 384–391. ACM Press, 2009. [SODA:1496770.1496813].
186

[7] D. DUBOIS AND H. PRADE: Fuzzy Sets and Systems: Theory and Applications. Academic Press,
1980. 175

[8] M. J. FISCHER AND A. R. MEYER: Boolean matrix multiplication and transitive closure. In Proc.
12th FOCS, pp. 129–131. IEEE Comp. Soc. Press, 1971. 179, 180, 183

[9] M. L. FREDMAN AND R. E. TARJAN: Fibonacci heaps and their uses in improved network opti-
mization algorithms. J. ACM, 34(3):596–615, 1987. [JACM:28869.28874]. 174

[10] M. E. FURMAN: Applications of a method of fast multiplication of matrices in the problem of
finding the transitive closure of a graph. Dokl. Akad. Nauk SSSR (in Russian), 194:524, 1970. 179,
180

[11] M. E. FURMAN: Applications of a method of fast multiplication of matrices in the problem of
finding the transitive closure of a graph. Soviet Math. Dokl. (in English), 11(5):1252, 1970. 179

[12] Z. GALIL AND O. MARGALIT: All pairs shortest paths for graphs with small integer length edges.
J. Comput. System Sci., 54:243–254, 1997. [JCSS:10.1006/jcss.1997.1385]. 174, 183

[13] T. C. HU: The maximum capacity route problem. Oper. Res., 9(6):898–900, 1961. 174

[14] X. HUANG AND V. Y. PAN: Fast rectangular matrix multiplication and applications. J. Complexity,
14(2):257–299, 1998. [doi:10.1006/jcom.1998.0476]. 175, 178, 186

[15] D. S. JOHNSON: Approximation algorithms for combinatorial problems. J. Comput. System Sci.,
9:256–278, 1974. [JCSS:10.1016/S0022-0000(74)80044-9]. 183

[16] D. KARGER, D. KOLLER, AND S. PHILLIPS: Finding the hidden path: Time bounds for all-pairs
shortest paths. SIAM J. Comput., 22(6):1199–1217, 1993. [SICOMP:10.1137/0222071]. 175

[17] M. KOWALUK AND A. LINGAS: LCA queries in directed acyclic graphs. In Proc. 32nd Int.
Colloq. Autom Lang. Program. (ICALP), volume 3580, pp. 241–248. Springer-Verlag, 2005.
[ICALP:252dpgap58fdhchf]. 180

[18] L. LOVÁSZ: On the ratio of optimal integral and fractional covers. Discrete Math., 13:383–390,
1975. [doi:10.1016/0012-365X(75)90058-8]. 183

[19] J. MATOUŠEK: Computing dominances in En. Inform. Process. Lett., 38(5):277–278, 1991.
[IPL:10.1016/0020-0190(91)90071-O]. 175, 176

[20] J. I. MUNRO: Efficient determination of the transitive closure of a directed graph. Inform. Process.
Lett., 1(2):56–58, 1971. [IPL:10.1016/0020-0190(71)90006-8]. 179, 180

[21] M. POLLACK: The maximum capacity through a network. Oper. Res., 8(5):733–736, 1960. 174

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 187

http://portal.acm.org/citation.cfm?id=1496770.1496813
http://portal.acm.org/citation.cfm?id=28869.28874
http://dx.doi.org/10.1006/jcss.1997.1385
http://dx.doi.org/10.1006/jcom.1998.0476
http://dx.doi.org/10.1016/S0022-0000(74)80044-9
http://dx.doi.org/10.1137/0222071
http://springerlink.metapress.com/link.asp?id=252dpgap58fdhchf
http://dx.doi.org/10.1016/0012-365X(75)90058-8
http://dx.doi.org/10.1016/0020-0190(91)90071-O
http://dx.doi.org/10.1016/0020-0190(71)90006-8
http://dx.doi.org/10.4086/toc

VIRGINIA VASSILEVSKA, RYAN WILLIAMS, AND RAPHAEL YUSTER

[22] R. SEIDEL: On the all-pairs-shortest-path problem in unweighted undirected graphs. J. Comput.
System Sci., 51:400–403, 1995. [JCSS:10.1006/jcss.1995.1078]. 174

[23] A. SHAPIRA, R. YUSTER, AND U. ZWICK: All-pairs bottleneck paths in vertex weighted graphs.
In Proc. 17th SODA, pp. 978–985. ACM Press, 2007. [SODA:1283383.1283488]. 174, 175

[24] A. SHOSHAN AND U. ZWICK: All pairs shortest paths in undirected graphs with in-
teger weights. In Proc. 40th FOCS, pp. 605–614. IEEE Comp. Soc. Press, 1999.
[FOCS:10.1109/SFFCS.1999.814635]. 174

[25] S. K. STEIN: Two combinatorial covering theorems. J. Combin. Theory Ser. A, 16:391–397, 1974.
[JCombThA:10.1016/0097-3165(74)90062-4]. 183

[26] C. R. SUBRAMANIAN: A generalization of Janson inequalities and its application to finding short-
est paths. In Proc. 10th SODA, pp. 795–804. ACM Press, 1999. [SODA:314500.314917]. 175

[27] V. VASSILEVSKA: Nondecreasing paths in weighted graphs, or: How to optimally read a train
schedule. In Proc. 18th SODA, pp. 465–472. ACM Press, 2008. [SODA:1347082.1347133]. 183

[28] V. VASSILEVSKA AND R. WILLIAMS: Finding a maximum weight triangle in n3−δ time, with
applications. In Proc. 38th STOC, pp. 225–231. ACM Press, 2006. [STOC:1132516.1132550].
176, 186

[29] V. VASSILEVSKA, R. WILLIAMS, AND R. YUSTER: All-pairs bottleneck paths for gen-
eral graphs in truly sub-cubic time. In Proc. 39th STOC, pp. 585–589. ACM Press, 2007.
[STOC:1250790.1250876]. 173

[30] U. ZWICK: All pairs shortest paths using bridging sets and rectangular matrix multiplication. J.
ACM, 49(3):289–317, 2002. [JACM:567112.567114]. 174, 181, 182, 183, 184

AUTHORS

Virginia Vassilevska
School of Mathematics
Institute for Advanced Study1

virgi math ias edu
http://www.math.ias.edu/∼virgi

1At the time of submission, this author was at Carnegie Mellon University.

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 188

http://dx.doi.org/10.1006/jcss.1995.1078
http://portal.acm.org/citation.cfm?id=1283383.1283488
http://doi.ieeecomputersociety.org//10.1109/SFFCS.1999.814635
http://dx.doi.org/10.1016/0097-3165(74)90062-4
http://portal.acm.org/citation.cfm?id=314500.314917
http://portal.acm.org/citation.cfm?id=1347082.1347133
http://portal.acm.org/citation.cfm?id=1132516.1132550
http://portal.acm.org/citation.cfm?id=1250790.1250876
http://portal.acm.org/citation.cfm?id=567112.567114
http://www.math.ias.edu/~virgi
http://dx.doi.org/10.4086/toc

ALL PAIRS BOTTLENECK PATHS AND MAX-MIN MATRIX PRODUCTS IN TRULY SUBCUBIC TIME

Ryan Williams
School of Mathematics
Institute for Advanced Study2

ryanw math ias edu
http://www.math.ias.edu/∼ryanw

Raphael Yuster
Department of Mathematics
University of Haifa
raphy math haifa ac il
http://research.haifa.ac.il/∼raphy/

ABOUT THE AUTHORS

VIRGINIA VASSILEVSKA obtained her Ph. D. in 2008 from the computer science depart-
ment of Carnegie Mellon University under the supervision of Prof. Guy Blelloch. She is
currently a postdoctoral fellow at the Institute for Advanced Study. Besides working on
various theoretical problems, she enjoys some more practical exercises such as tennis.

RYAN WILLIAMS got his Ph. D. in computer science from Carnegie Mellon University in
2007. His advisor was Prof. Manuel Blum. Ryan is currently a postdoctoral fellow at
the Institute for Advanced Study. In his spare time he enjoys having coffee and watching
Auburn football.

RAPHAEL YUSTER is a professor at the mathematics department of the University of Haifa.
His research interests include combinatorics, graph theory, algorithms, and probabilistic
methods in combinatorics.

2At the time of submission, this author was at Carnegie Mellon University.

THEORY OF COMPUTING, Volume 5 (2009), pp. 173–189 189

http://www.math.ias.edu/~ryanw
http://research.haifa.ac.il/~raphy/
http://www.cmu.edu
http://www.cs.cmu.edu/~guyb
http://www.ias.edu
http://www.cmu.edu
http://www.cs.cmu.edu/~mblum
http://www.ias.edu
http://auburntigers.cstv.com/sports/m-footbl/aub-m-footbl-body.html
http://www.haifa.ac.il/index_eng.html
http://dx.doi.org/10.4086/toc

	Introduction
	Related work

	Preliminaries
	The dominance approach
	All Pairs Bottleneck Paths
	Max-Min Product
	Computing explicit maximum bottleneck paths

	All Pairs Bottleneck Shortest Paths
	The short-path--long-path method
	An algorithm for APBSP

	Conclusion
	References

