
THEORY OF COMPUTING, Volume 5 (2009), pp. 135–140
www.theoryofcomputing.org

NOTE

A Simple Proof of Toda’s Theorem∗

Lance Fortnow†

Received: January 21, 2009; published: July 3, 2009.

Abstract: Toda in his celebrated paper showed that the polynomial-time hierarchy is
contained in P#P. We give a short and simple proof of the first half of Toda’s Theorem that
the polynomial-time hierarchy is contained in BPP⊕P. Our proof uses easy consequences
of relativizable proofs of results that predate Toda.

For completeness we also include a proof of the second half of Toda’s Theorem.

ACM Classification: F.1.3

AMS Classification: 68Q15

Key words and phrases: Toda’s Theorem, Relativization

1 Introduction

In 1991, Toda proved his celebrated theorem [7].

Theorem 1.1 (Toda). PH⊆ P#P.

Here PH is the set of languages in the polynomial-time hierarchy.
The proof of Theorem 1.1 follows from the following two lemmas (since BPPA ⊆ PPA for all A).

Lemma 1.2 (Toda). PH⊆ BPP⊕P.

Lemma 1.3 (Toda). PP⊕P ⊆ P#P.

In this paper we give a short proof of Lemma 1.2 using relativizable versions of results that predate
Toda’s Theorem. For completeness we will give a proof of Lemma 1.3 as well.

∗This result first appeared in the Computational Complexity weblog [5].
†Supported in part by NSF grants CCF-0829754 and DMS-0652521.

2009 Lance Fortnow
Licensed under a Creative Commons Attribution License DOI: 10.486/toc.2009.v005a007

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright2009.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.486/toc.2009.v005a007

LANCE FORTNOW

2 Preliminaries

The Complexity Zoo [1] and the Arora-Barak textbook [2] are good sources for descriptions of the
complexity classes used in this note.

To relativize Satisfiability to an oracle A, we allow our CNF formulas to have predicates A0,A1,A2, . . .
where An is an n-ary predicate defined so An(x1, . . . ,xn) is true exactly when x1 . . .xn is in A. For every
A, SATA is NPA-complete.

If C and D are relativizable classes, CD = ∪A∈DCA. If D has a complete set D (such as D = ⊕P)
then CD = CD.

When we relativize a class like BPP⊕P to an oracle A, both the BPP and the ⊕P machines should
have access to the oracle A. The BPP machine can make its queries to A via the ⊕PA oracle so we have
(BPP⊕P)A = BPP(⊕PA) which we will write simply as BPP⊕PA

.
We define the polynomial-time hierarchy relative to A recursively:

• ΣA
0 = PA.

• ΣA
i+1 = NPΣA

i .

• PHA = ∪iΣ
A
i .

The class GapP is the set of #P functions closed under subtraction. In particular GapP functions may
take on negative values. Like #P, GapP functions are closed under uniform exponential-sized sums and
polynomial-sized products and unlike #P, GapP functions are also closed under subtraction [3].

3 Proof of Toda’s first lemma

We start with the following three results, all of which have proofs that easily relativize.

Theorem 3.1 (Valiant-Vazirani [8]). There is a probabilistic polynomial-time procedure that, given a
Boolean formula φ , will output formulas ψ1, . . . ,ψk such that

• if φ is not satisfiable then, for every i, ψi is not satisfiable;

• if φ is satisfiable then, with high probability, for some i, ψi has exactly one solution.

Theorem 3.2 (Papadimitriou-Zachos [6]). ⊕P⊕P =⊕P.

Theorem 3.3 (Zachos [9]). If NP⊆ BPP then PH⊆ BPP.

We first need the following easy consequence of Theorem 3.1 noted by Toda [7].

Lemma 3.4 (Valiant-Vazirani, Toda). NP⊆ BPP⊕P.

Proof Sketch. Given a Boolean formula φ , randomly choose ψ1, . . . ,ψk (as in Theorem 3.1) and accept if
any of the ψi have an odd number of satisfying assignments. Lemma 3.4 now follows from Theorem 3.1.

THEORY OF COMPUTING, Volume 5 (2009), pp. 135–140 136

http://dx.doi.org/10.4086/toc

A SIMPLE PROOF OF TODA’S THEOREM

Proof of Lemma 1.2.

1. By relativizing Lemma 3.4, we have

NP⊕P ⊆ BPP⊕P⊕P
.

2. Now apply Theorem 3.2 to get
NP⊕P ⊆ BPP⊕P .

3. By relativizing Theorem 3.3, we have

NP⊕P ⊆ BPP⊕P ⇒ PH⊕P ⊆ BPP⊕P .

4. Combining (2) and (3) we have
PH⊆ PH⊕P ⊆ BPP⊕P .

If we had replaced the use of Theorem 3.3 with the relativizable proof of it, we would essentially
recover Toda’s original proof.

4 Proof of Toda’s second lemma

For completeness we include a proof of Lemma 1.3 in this section. We give a GapP-based variant of
Toda’s original proof [7] originally given in a survey paper by the author [4].

We will use the following GapP characterization of ⊕P [3].

Lemma 4.1 (Fenner-Fortnow-Kurtz). A language B is in ⊕P if and only if there is a GapP function f
such that

• if x ∈ B then f (x)≡ 1 (mod 2);

• if x 6∈ B then f (x)≡ 0 (mod 2).

We can define PPA using PA predicates.

Lemma 4.2. A language L is in PPA if and only if there is a language B ∈ PA and a polynomial q such
that

• if x ∈ L then ∣∣{y ∈ Σ
q(|x|) (x,y) ∈ B

}∣∣≥ ∣∣{y ∈ Σ
q(|x|) (x,y) 6∈ B

}∣∣.
• if x 6∈ L then ∣∣{y ∈ Σ

q(|x|) (x,y) ∈ B
}∣∣ <

∣∣{y ∈ Σ
q(|x|) (x,y) 6∈ B

}∣∣.
Combining Lemmas 4.1 and 4.2 with Theorem 3.2 (which implies P⊕P =⊕P) we have the following

characterization of PP⊕P.

THEORY OF COMPUTING, Volume 5 (2009), pp. 135–140 137

http://dx.doi.org/10.4086/toc

LANCE FORTNOW

Lemma 4.3. A language L is in PP⊕P if and only if there is a GapP function f (x,y) and a polynomial q
such that

• if x ∈ L then∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 1 (mod 2)

}∣∣≥ ∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 0 (mod 2)

}∣∣ .
• if x 6∈ L then∣∣{y ∈ Σ

q(|x|) f (x,y)≡ 1 (mod 2)
}∣∣ <

∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 0 (mod 2)

}∣∣ .
We give an FPGapP algorithm to compute∣∣{y ∈ Σ

q(|x|) f (x,y)≡ 1 (mod 2)
}∣∣

and ∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 0 (mod 2)

}∣∣ .
Lemma 1.3 follows since FPGapP = FP#P [3].

Consider the polynomial g(m) = 3m2−2m3. Let g(k)(m) =

k︷ ︸︸ ︷
g(g(. . .g(m) . . .)).

Lemma 4.4. For all m,

1. if m≡ 0 (mod 2 j) then g(m)≡ 0 (mod 22 j),

2. if m≡ 1 (mod 2 j) then g(m)≡ 1 (mod 22 j),

3. if m≡ 0 (mod 2) then g(k)(m)≡ 0 (mod 22k
), and

4. if m≡ 1 (mod 2) then g(k)(m)≡ 1 (mod 22k
).

Proof. Items (1) and (2) follow from simple algebra, items (3) and (4) by induction using (1) and (2).

Let h(x,y) = g(1+dlogq(|x|)e)(f (x,y)). Since GapP functions are closed under uniform exponential-
size sums and polynomial-size products, h(x,y) is itself a GapP function and by Lemma 4.4

• if f (x,y)≡ 1 (mod 2) then h(x,y)≡ 1 (mod 2q(|x|)+1), and

• if f (x,y)≡ 0 (mod 2) then h(x,y)≡ 0 (mod 2q(|x|)+1).

Define r(x) as
r(x) = ∑

y∈Σq(|x|)

h(x,y) ,

also a GapP function. We then have

(r(x) mod 2q(|x|)+1) =
∣∣{y ∈ Σ

q(|x|) f (x,y)≡ 1 (mod 2)
}∣∣

and
2q(|x|)− (r(x) mod 2q(|x|)+1) =

∣∣{y ∈ Σ
q(|x|) f (x,y)≡ 0 (mod 2)

}∣∣,
completing the proof.

Remark 4.5. Toda uses #P functions and the polynomial g(m) = 4m3 + 3m4. Lemma 4.3 now holds
with each occurrence of “1” replaced by “−1.”

THEORY OF COMPUTING, Volume 5 (2009), pp. 135–140 138

http://dx.doi.org/10.4086/toc

A SIMPLE PROOF OF TODA’S THEOREM

References

[1] S. AARONSON: The complexity zoo. http://complexityzoo.com. 136

[2] S. ARORA AND B. BARAK: Complexity Theory: A Modern Approach. Cambridge University Press,
Cambridge, 2009. 136

[3] S. FENNER, L. FORTNOW, AND S. KURTZ: Gap-definable counting classes. J. Comput. System
Sci., 48(1):116–148, 1994. [doi:10.1016/S0022-0000(05)80024-8]. 136, 137, 138

[4] L. FORTNOW: Counting complexity. In L. HEMASPAANDRA AND A. SELMAN, editors, Complex-
ity Theory Retrospective II, pp. 81–107. Springer, 1997. 137

[5] L. FORTNOW: Making pigs fly. Computational Complexity Weblog, June 2006.
http://weblog.fortnow.com/2005/06/making-pigs-fly.html. 135

[6] C. PAPADIMITRIOU AND S. ZACHOS: Two remarks on the power of counting. In Proc.
6th GI-Conf. Theor. Comput. Sci., volume 145 of LNCS, pp. 269–276. Springer, Berlin, 1983.
[doi:10.1007/BFb0009651]. 136

[7] S. TODA: PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877, 1991.
[doi:10.1137/0220053]. 135, 136, 137

[8] L. VALIANT AND V. VAZIRANI: NP is as easy as detecting unique solutions. Theoret. Comput.
Sci., 47:85–93, 1986. [doi:10.1016/0304-3975(86)90135-0]. 136

[9] S. ZACHOS: Probabilistic quantifiers and games. J. Comput. System Sci., 36(3):433–451, 1988.
[doi:10.1016/0022-0000(88)90037-2]. 136

AUTHOR

Lance Fortnow
professor
Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, Illinois
fortnow@eecs.northwestern.edu
http://lance.fortnow.com

THEORY OF COMPUTING, Volume 5 (2009), pp. 135–140 139

http://dx.doi.org/10.1016/S0022-0000(05)80024-8
http://dx.doi.org/10.1007/BFb0009651
http://dx.doi.org/10.1137/0220053
http://dx.doi.org/10.1016/0304-3975(86)90135-0
http://dx.doi.org/10.1016/0022-0000(88)90037-2
mailto:fortnow@eecs.northwestern.edu
http://lance.fortnow.com
http://dx.doi.org/10.4086/toc

LANCE FORTNOW

ABOUT THE AUTHOR

LANCE FORTNOW received his Ph. D. under Michael Sipser in Applied Mathematics at
MIT in 1989. Before Northwestern he spent his academic career at the University of
Chicago with the exception of a senior research scientist position at the NEC Research
Institute from 1999 to 2003. In 1992 he received the NSF Presidential Faculty Fel-
lowship and was a Fulbright Scholar visiting CWI in Amsterdam 1996-97. Fortnow
studies computational complexity and its applications to electronic commerce, quan-
tum computation, bioinformatics, learning theory and cryptography. His early work
on interactive proofs precipitated the development of probabilistically checkable proofs
and inapproximability theory. Fortnow co-writes the popular scientific and academic
weblog Computational Complexity.

THEORY OF COMPUTING, Volume 5 (2009), pp. 135–140 140

http://www-math.mit.edu/~sipser/
http://www.cs.uchicago.edu
http://www.cs.uchicago.edu
http://blog.computationalcomplexity.org
http://dx.doi.org/10.4086/toc

	Introduction
	Preliminaries
	Proof of Toda's first lemma
	Proof of Toda's second lemma
	References

