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Abstract: We study the communication complexity of the disjointness function, in which
each of two players holds ak-subset of a universe of sizen and the goal is to determine
whether the sets are disjoint. In the model of a common random string we prove thatO(k)
communication bits are sufficient, regardless ofn. In the model of private random coins
O(k+ log logn) bits suffice. Both results are asymptotically tight.

1 Introduction

Communication complexity, introduced by Yao [13], is an extremely basic and useful model which has
been widely studied [6]. Set disjointness is perhaps the most studied problem in this model, and its
complexity has been used for such diverse applications as circuit complexity (e. g. [11]) and auction
theory (e. g. [9]).

Here we give a simple protocol, showing that, in the model of common random coins, the proba-
bilistic communication complexity of disjointness depends only on the sizes of the sets, and not on the
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size of the universe from which they are taken. This contrasts with the deterministic model, in which
dependence on the universe size cannot be avoided.

We now briefly define the model; more details can be found in the excellent book [6].
Let f : {0,1}n×{0,1}n → {0,1}. Alice and Bob are given respectivelyx andy from {0,1}n, and

need jointly to computef (x,y). They alternate sending bits to each other according to a pre-specified
protocol and then announce a bit. In a deterministic protocol, their answer must always be correct,
i. e., equal tof (x,y) for every input pairx,y. The deterministic communication complexityD( f ) is the
minimum number of bits the players exchange on the worst case input in the best deterministic protocol
for f .

In a probabilistic protocol we have the common randomness model where Alice and Bob share an
infinite string of independent, unbiased coin tosses, and are required to give the correct answer with
a probability bounded away from 1/2 oneveryinput. As we mostly ignore constant factors, the exact
probability of being correct is not important but for concreteness let us assume that the probability of
being correct is at least 2/3. The probabilistic communication complexityR( f ) is the minimum number
of coin tosses used plus bits exchanged by the players on the worst case input and coin tosses in the best
probabilistic protocol forf .

In the possibly more realistic private coins model each player can generate his/her own randomness.
By a result of Newman [7], any problem withT different inputs can also be solved in this model, adding
only O(log logT) communication bits to that of the common randomness model. In view of this result
we do our analysis in the model of common randomness.

We are also interested in what is commonly called the “Las Vegas”-type probabilistic algorithms
where the answer is required always to be correct but the complexity measure is the expected number of
bits exchanged. We denote this complexity byR0( f ).

Let DISJn denote the disjointness function, namelyDISJn(S,T) = 1 iff S∩T = /0 (the inputsS,T are
given by their characteristic vectors). LetDISJnk denote the restriction of this functions to inputs setsS,T
which are both of sizek.

It is not difficult to see that the deterministic complexity is lower bounded by the logarithm of the
rank of corresponding game matrix [6] and the following lower bounds follow from lower bounds on
the rank of the disjointness matrix. For a proof of the rank lower bound, see [4], page 175.

Theorem 1.1.

1. D(DISJn) = Θ(n).

2. D(DISJnk) = Θ(log
(n

k

)
) for every k≤ n/2.

The probabilistic complexity is far more subtle. A first lower bound ofΩ(
√

n) whenk = n/3 was
proved by Babai et al. [1]. This bound was strengthened by Kalyanasundaram and Schnitger [5], simpli-
fied by Razborov [12], and further simplified by Bar-Yossef et al. [3], yielding the following theorem.

Theorem 1.2. [5, 12, 3]

1. R(DISJn) = Θ(n).

2. For any c< 1/2, R(DISJnk) = Ω(k) for every k≤ cn.
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Proof. (Sketch) The lower boundΩ(n) for the first part is given in the quoted papers. The upper bound
is trivial as either party can just send its input. For the same reason the lower bound happens fork0 = c0n
for somen.

The lower bound for the second part is obtained fork≤ k0 by settingn0 = k/c0 and studying the
problem when only the firstn0 elements are allowed to be in the set. For larger values ofk we fix a
valued and let the firstd elements be in the first set and not in the second set while the followingd
elements are in the second set but not in the first. This reduces the original problem to a problem with
(k−d)-element sets and a universe size ofn−2d. Selectingd suchk−d = c0(n−2d) makes it possible
to apply the first lower bound.

The gap between the deterministic (and thus probabilistic) upper bound ofTheorem 1.1and prob-
abilistic lower bound ofTheorem 1.2for DISJnk naturally raises the question what is the probabilistic
complexity fork = o(n).

In this paper we prove that the lower bound is tight for allk, and in particular the probabilistic
complexity is independent of the universe sizen.

Theorem 1.3. In the model of common randomness, R(DISJnk) = O(k) for all k.

In the next section we prove this theorem for the very special case of constant size sets, i. e.,k= O(1).
This will both give some motivation as well as the “base case” to the protocol and proof for generalk,
which we give inSection4.

By applying the procedure of Newman [7] we get a result for the private coin model.

Theorem 1.4. In the model of private randomness, R(DISJnk) = O(k+ log logn) for all k.

In Section6 we establish that the additive term loglogn is needed.
Finally, looking at Las Vegas protocols, it turns out that the complexity is different for positive and

for negative instances. Informally what happens is that to be certain that two sets intersect, we need to
know a point in the intersection and this gives an added complexity of logn. The need for this extra term
is formally argued inSection5.

Theorem 1.5. In the model of common randomness, R0(DISJnk) = O(k) for instances of disjoint sets and
R0(DISJnk) = O(k+ logn) for non-disjoint sets.

This protocol can also be transformed to the model of private randomness, adding a termO(log logn).
As a side remark let us note that these results were proved over 10 years ago, and were since used

and referred to in several papers (e. g. [10]). Writing them up was long overdue, but better late than
never.

2 Notation

We use standard notation throughout the paper with the exception of the notation exp(k) which is a
function of the formck for some constantc > 1 which is not specified and might change.

THEORY OFCOMPUTING, Volume 3 (2007), pp. 211–219 213

http://dx.doi.org/10.4086/toc
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3 Simultaneous protocol for constantk

In this section we prove the following theorem, which holds for allk but will be used later only for a
large constant value ofk.

Theorem 3.1. In the model of common randomness, R(DISJnk) = O(22k) for all k.

Proof. We actually prove a stronger theorem, namely, we give asimultaneousprotocol [13, 8, 2] for
DISJnk. In such protocols each player sends only one message to a referee, who (even without access to
the random string or any of the inputs) can determine the function value with high probability.

The players regard their shared random string as a sequence oft = c22k vectors of lengthn, repre-
senting the random subsetsZ1,Z2, · · · ,Zt of [n]. We describe Alice’s message first. Assume her input is
the subsetS⊆ [n]. Alice sends the bitsa1, · · · ,at , with ai = 1 iff S⊆ Zi . Bob behaves similarly, only
with respect to the complements of theZi . If his input isT ⊆ [n], he sends the sequence of bitsb1, · · · ,bt ,
with bi = 1 iff T ∩Zi = /0. Now the referee answers 1 if for somei we haveai = bi = 1 and answers 0
otherwise.

It is clear that ifDISJnk(S,T) = 0, i. e., S andT intersect, no such indexi exists regardless of the
random string, and the referee will always give the correct answer. On the other hand, ifDISJnk(S,T) = 1,
i. e.,SandT are disjoint, we will see that the probability that no such indexi exists is small.

First note that for a random setZ, the eventsS⊆ Z andT∩Z = /0 are independent, sinceSandT are
disjoint, and membership inZ is decided by independent coin tosses for every element in[n]. Moreover,
the two probabilities are exactly 2−k each. We conclude that the probability thatZ does not satisfy both
events is 1−2−2k. Thus the probability that allt = c22k independently chosen subsetsZi fail to prove
the disjointness ofSandT is (1−2−2k)t < exp(−c) which we can make arbitrarily small by choosing
the constantc sufficiently large.

4 Proof of Theorem 1.3

First, let us give an intuitive overview of the proof. Assume Alice and Bob are holding, respectively,
the setsS,T ∈ [n], each of sizek. They will attempt to construct a proof that their sets are disjoint, in
the form of a subsetZ ⊆ [n] with S⊆ Z andT ⊆ Z̄. Clearly if they find such a setZ then their inputs
are indeed disjoint. We will need to show that if they fail, then with high probability their sets intersect.
Later inSection5 we will modify the protocol never to make mistakes and where randomness is only
used to bound the expected number of bits exchanged.

The protocol will proceed in phases, which can be viewed as a series of downward self-reductions
of the problem, to the same problem on smaller size sets. More precisely, letS0 = SandT0 = T be the
inputs to the first phase. Then after phasei the players will hold setsSi andTi , respectively, of total size
ki = |Si |+ |Ti |, which, unless the protocol has already halted, have the following properties for every
i ≥ 1:

1. Si andTi are disjoint iffSi−1 andTi−1 are;

2. ki ≤ 7ki−1/8;
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3. The communication used by the two players in phasei is O(ki).

The players will continue until a phasej for which k j < c, for a constantc which we choose to be
the same constantc as inSection3, at which point they will resort to the protocol ofTheorem 3.1on
Sj andTj . By property (1) it is indeed equivalent to disjointness of the originalSandT. If the protocol
halts before this happens it will halt with the output “not disjoint.” We maintain the property that if the
sets are disjoint then the probability of halting with output “not disjoint” in phasei is exp(−ki).

As the set sizes, by property (2), form a geometric progression, the probability of ever halting in an
early phase with the incorrect answer “not disjoint” is bounded by exp(−c). Moreover, by property (3),
the total communication isO(∑i ki), which is a geometric progression as well, bounded, up to constant
factor, by the first termk0 = 2k. Let us fill in the details.

We describe one phase. At the input to the phase, Alice holdsSof size|S| = s and Bob holdsT of
size|T|= t, with bothsandt known to both players. At the end of the phase they hold setsS′ andT ′ of
sizess′ andt ′ respectively. Assume thats≤ t, the other case being symmetric.

As before, we think of the random tape as a long sequence of random subsetsZ1,Z2, ... of [n]. Alice
finds the first indexa≤ 22s (if any) such thatS⊆ Za. If there is no such index the protocol halts with
answer “not disjoint.”

Bob checks if|T ∩Za| ≤ 3t/4, in which case he sends Alice the integer 1+ |T ∩Za| and otherwise
he sends 0. If he does not send 0, then the players setS′ = S= S∩Za andT ′ = T ∩Za, and proceed to
the next phase. If Bob sends 0, they halt and output thatSandT intersect.

Lemma 4.1. The following properties hold:

1. The communication complexity of a phase is O(s+ t);

2. S′ and T′ are disjoint iff S and T are;

3. If S and T are disjoint, then except with probability at mostexp(−t), t′ ≤ 3t/4.

Proof. Properties (1) and (2) clearly hold. Property (3) holds due to the independence ofZa∩T from
the event thatS⊆ Za and standard Chernoff bounds.

The proof of the theorem follows from the lemma by induction on the phases, exactly along the lines
of the overview.

5 Making the protocol Las Vegas

In this section we consider protocols that always output a correct answer and proveTheorem 1.5. Note
that when our original protocol outputs “disjoint” it is always correct and we mainly have to make sure
that there is no error in the case when we output “not disjoint.” Let us first establish that we cannot do
this maintaining the complexity atO(k) for small values ofk.

Lemma 5.1. For each Las Vegas protocol for the case k= 1 we have a communication complexity of at
leastΩ(logn).
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J. HÅSTAD AND A. W IGDERSON

Proof. For each singleton set{i} and fixed random string fix the shortest accepting conversation when
both players hold this set. If two of these conversations are equal then we can create a possible commu-
nication pattern with an incorrect output. Thus we have at leastn different communication patterns and
hence we useΩ(logn) bits of communication on the average.

We proceed to proveTheorem 1.5. We modify our original protocol to make sure that it always
produces a certificate for its answer. Let us first give some intuition for the modifications we make to
the protocol.

There are two places in the original protocol in which the players halt without a certificate. The first
is not very interesting and happens if the indexa of the first setZa containingS is greater than 22s. If we
measure the expected communication, we can afford always to senda as it is expected to be small.

The more interesting reason for halting is whent ′ > 3t/4. It is easy to see that in this case it is quite
likely that the sets have an intersection of sizeΩ(t) and thus if Bob chooses a random element from his
set and sends it to Alice, we have a constant probability of having found an element in the intersection
of the two sets and the protocol can safely terminate.

If the sets are disjoint, the caset ′ > 3t/4 happens with probability exp(−t) and since we need
logn bits to specify an element, we get a contribution exp(−t) logn to the expected communication
complexity. Fort � log logn the geometric decay ofki will ensure that the total contribution of these
terms isO(1). For smallerki we have to be more careful, and let Bob send an element only with a
probability that would still make the expected cost small.

When the sets are not disjoint, this probability introduces “delay” in sending an element. However
we will see that this does not affect the asymptotic complexity, since here we can afford a communication
costΩ(logn) bits anyway.

Let us now describe the protocol.
Each player holds setsSandT which are updated every round, with the sizessof Sandt of T known

to both players. We describe a round of the protocol assuming thats≤ t. If s> t the roles of Alice and
Bob are interchanged.

As before, the random tape is interpreted as a long sequence of random subsetsZ1,Z2, ... of [n].

1. Alice finds the first index,a, such thatS⊆ Za.

2. Bob setst ′ = |T ∩Za| and sends it to Alice. Ift ′ = 0 they halt with the output “disjoint.”

3. If t ′ ≤ 3t/4 they both updateS,T accordingly and proceed to the next round.

4. If t ′ > 3t/4 then Bob flips a coin, whose probability of Heads is min(1, t/ logn). If it comes up
Tails, Bob tells Alice, and they repeat the round again with the sameS,T. If it comes up Heads,
Bob picks a random elementj of T, and sends it to Alice. Ifj ∈ SAlice outputs “Not disjoint.”
Otherwise, they repeat the round with the sameS,T.

Let us analyze the complexity of this protocol. Letm denote the size of the intersection of the
initial inputs. The same analysis as in the previous section shows that in any round witht > 16m, the
eventt ′ > 3t/4 happens with probability at most exp(−t). Thus we expect again theki to decrease
geometrically till that point.
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Let us first analyze the communication used till the first round wheret < 16m. Alice’s mes-
sage is in expectationO(ki). Bob’s message is of lengthO(logki) for sendingt ′, and with probabil-
ity t exp(−t)/ logn it increases by an additional logn bits for the item j. The latter part is at most
t exp(−t) ≤ O(1) bits in expectation and thus the total expected cost of each round isO(ki). The ex-
pected geometric decrease ofki guarantees that in expectation the communication isO(k) up to the point
thatt < 16m. In particular, ifm= 0, this means that the total communication isO(k) in expectation.

Now let us analyze the cost aftert gets below 16m (which happens only if the inputs intersect).
Note that now, there can be at most a constant number of rounds before which we havet ′ > 3t/4.
Moreover, when this happens, we have a constant probability that the randomj ∈ T also satisfiesj ∈ S,
and the protocol halts. Note that Bob chooses to pick suchj with probability at least min(1,m/ logn).
So we expectO(1+ (logn)/m) repetitions of this round, before Bob choosesj. But each repetition
costs onlyO(m) bits, so in expectation, this part, as well as the cost of sendingj, amount to a total of
O(m+ logn)≤O(k+ logn) bits, as promised.

Finally, we note that the protocol always halts with a certificate for the answer given.

6 Private randomness

As stated in the Introduction, the general transformation of Newman [7] gives a protocol forDISJnk in the
private coins model with complexityO(k+ log log(nk)) = O(k+ log logn). Let us show that the additive
term is needed in the case whenk = 1. This turns out to follow from a general lower bounds of Yao [13].
Let us assume that for anyx,x′ such thatx 6= x′ there is ay such thatf (x,y) 6= f (x′,y) and a similar
property holds fory. We call such a functionnon-redundant. This is a natural assumption since if for
x 6= x′ there is no suchy we can considerx andx′ to be the same input and reduce the set of possible
inputs. Now we have the following lower bound [13, Theorem 5].

Theorem 6.1 ([13]). For every non-redundant communication problem f: X×Y → {0,1}, the prob-
abilistic communication complexity of f in the private coins model requiresΩ(log log|X|+ log log|Y|)
bits.

This proves thatTheorem 1.4is optimal up to constant factors asDISJn1 is the identity function on
[n]. As Yao’s paper does not contain a proof of this theorem, we give here a sketch of the proof (which
probably exists somewhere in the literature).

Proof. (Sketch) Assume that at mostd bits are exchanged in a probabilistic protocolP for f and, in-
creasing the complexity by at most a factor of two, we assume that Alice and Bob each send every other
bit. For everyx ∈ X, let v(x) denote the real vector of lengtht ≤ 2d+1 whose entries are labeled by
Boolean stringsσ of even length at mostd, such thatv(x)σ is the probability that Alice sends 0 when
holding inputx given thatσ describes the communication so far. It is not difficult to see that for every
two inputsx,x′ for Alice, and every inputy for Bob, the probability thatP accepts(x,y) and the proba-
bility that it accepts(x′,y) differ at most by theL1 distance ofv(x) andv(x′). But given thatf (x,y) and
f (x′,y) differ for at least somey, the vectorsv(x) for all x∈ X must be at least 1/3 apart inL1-distance.
A standard volume argument shows that in dimensiont there are at most exp(t) such vectors. It follows
thatd = Ω(log log|X|).
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