
THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224
http://theoryofcomputing.org

Embedding the Ulam metric intò1
Moses Charikar∗ Robert Krauthgamer

Received: December 8, 2005; revised: September 18, 2006; published: September 29, 2006.

Abstract: Edit distance is a fundamental measure of distance between strings, the ex-
tensive study of which has recently focused on computational problems such as nearest
neighbor search, sketching and fast approximation. A very powerful paradigm is to map
the metric space induced by the edit distance into a normed space (e. g.,`1) with small dis-
tortion, and then use the rich algorithmic toolkit known for normed spaces. Although the
minimum distortion required to embed edit distance into`1 has received a lot of attention
lately, there is a large gap between known upper and lower bounds. We make progress on
this question by considering large, well-structured submetrics of the edit distance metric
space.

Our main technical result is that the Ulam metric, namely, the edit distance on permu-
tations of length at mostn, embeds intò1 with distortionO(logn). This immediately leads
to sketching algorithms with constant size sketches, and to efficient approximate nearest
neighbor search algorithms, with approximation factorO(logn). The embedding and its
algorithmic consequences present a big improvement over those previously known for the
Ulam metric, and they are significantly better than the state of the art for edit distance in
general. Further, we extend these results for the Ulam metric to edit distance on strings that
are (locally) non-repetitive, i. e., strings where (close by) substrings are distinct.

ACM Classification: F.2.2, G.2.1, G.3

AMS Classification: 68P05, 68W20, 68W25

Key words and phrases: edit distance, metric embedding, Ulam metric, low distortion, sketching,
permutation edit distance

∗Supported by NSF ITR grant CCR-0205594, DOE Early Career Principal Investigator award DE-FG02-02ER25540, NSF
CAREER award CCR-0237113, MSPA-MCS award 0528414, and an Alfred P. Sloan Fellowship

Authors retain copyright to their work and grant Theory of Computing unlimited rights
to publish the work electronically and in hard copy. Use of the work is permitted as
long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, seehttp://theoryofcomputing.org/copyright.html.

c© 2006 Moses Charikar and Robert Krauthgamer DOI: 10.4086/toc.2006.v002a011

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright.html
http://dx.doi.org/10.4086/toc.2006.v002a011

M. CHARIKAR AND R. KRAUTHGAMER

1 Introduction

Theedit distance(akaLevenshtein distance) between two strings is the least number of character inser-
tions, deletions or substitutions required to transform one string to the other. The edit distance arises
naturally in several application areas, often involving large amounts of data, ranging from a moderate
number of extremely long strings (as in computational biology) to a large number of moderately long
strings (as in text processing and web search). Therefore, efficient algorithms for edit distance, even
with modest approximation guarantees, are highly desirable.

The edit distance is a fundamental measure of (dis)similarity, because it is a very simple model that
exhibits nontrivial alignment (i. e., a single elementary modification may cause numerous characters to
change their position in the string). Popular metrics such as the Hamming distance do not adequately
capture this phenomenon, and thus for data analysis purposes, edit distance often offers a much better
model (up to minor variations such as weighting).

Let ED(x,y) denote the edit distance between stringsx andy. Fixing an alphabetΣ, the edit distance
function ED(·, ·) defines a metric space, called theedit distance metric, whose point set contains all
the strings overΣ. Every collectionX of strings over this alphabet (e. g.,X = {0,1}n) can therefore be
associated with the submetric(X,ED). A significant obstacle in dealing with the edit distance metric is
that it lacks many of the useful properties of normed spaces. We restrict our attention to collectionsX of
strings that have limited repetitions. While these collections of strings are rather large and give rise to
submetrics(X,ED) of a rich structure, we will be able to obtain results that are significantly better than
those known for the general caseX = Σn (or even{0,1}n). Our main focus is the Ulam metric, which
we define next.

The Ulam Metric Following [7, 5], a string (over the alphabetΣ) is called apermutationif its charac-
ters are all distinct. (This notion, sometimes called a variation, extends the usual notion of permutation
to cases where|Σ| > n, but this slightly more general setting is more convenient for our purposes and
potentially more useful in applications.) Throughout this paper, theUlam metricof dimensionn (called
permutation edit distance in [7]) is the metric space(Pn,ED), wherePn contains all permutations of
lengthn overΣ.

Remark: The standard definition of the Ulam metric for permutations (see e. g. [1]) uses the distance
function UL(x,y), defined as the least number of character moves needed to transformx into y. This dis-
tance function is obviously limited to the casen = |Σ| (i. e. to the usual notion of permutations), while it
is easily seen to be nearly equivalent to the edit distance, namely UL(x,y)≤ED(x,y)≤ 2UL(x,y). Thus,
our non-standard definition of the Ulam metric to be(Pn,ED) is merely a slight abuse of terminology to
gain additional generality.

Embeddings An embeddingof a metric space(X,dX) into a target metric space(Y,dY) is a mapping
f : X → Y. Thedistortion of the embeddingf is defined as the smallestK ≥ 1 for which there is (a
scaling factor)s> 0 such that

dX(x1,x2)≤ s·dY(f (x1), f (x2))≤ K ·dX(x1,x2) for all x1,x2 ∈ X .

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 208

http://dx.doi.org/10.4086/toc

EMBEDDING THE ULAM METRIC INTO `1

Low-distortion embeddings are a very powerful paradigm for reducing a host of problems (such as Near-
est Neighbor Search, seeSection3) from a given metric space to a more structured or computationally
easier metric space, at the cost of a small loss in the approximation guarantee. It is easy to see that the
Ulam metric contains thebn/2c-dimensional hypercube as a submetric (up to scaling),1 and hence, by
Enflo’s Theorem [9], embedding the Ulam metric intò2 requires distortionΩ(

√
n). But an`1 embed-

ding is usually sufficient for algorithmic applications such as sketching algorithms and Nearest Neighbor
Search (seeSection3.3 for definitions), which raises the question of embedding the Ulam metric, and
more generally the edit distance metric, into`1.

There is a very large gap between the known upper and lower bounds on the distortion required to
embed the edit distance metric(Σn,ED) into `1. Ostrovsky and Rabani [20] showed an upper bound
of 2O(

√
lognlog logn) for embedding edit distance intò1. Very recently, Khot and Naor [16] obtained a

lower bound ofΩ(
√

logn/ log logn), and this was further improved toΩ(logn) by Krauthgamer and
Rabani [17]. For the Ulam metric, the same upper bound 2O(

√
lognlog logn) clearly holds and is still the

state of the art. On the other hand, Cormode [5, page 60] shows a lower bound of 4/3, using a 5-
point metric that is isomorphic to theK2,3 graph (up to scaling). Our embedding results make progress
towards resolving these intriguing questions by proving an exponentially smaller upper bound for the
Ulam metric, and extending it to several related edit distance submetrics.

1.1 Results

Our main result, appearing inSection2, is that then-dimensional Ulam metric embeds into`1 with
distortionO(logn).2 The previously known upper bound is 2O(

√
lognlog logn), using the embedding of [20]

for edit distance in general. Our embedding is surprisingly simple and easy to describe. In fact, this is
the complete description: we have a coordinate for every pair of symbolsa,b∈ Σ and the value of this
coordinate in the embedding of a string is simply the inverse of the distance betweena andb in the string
(or 0 if one ofa,b does not occur).

Techniques Our methodology is inspired by the work of Cormode, Muthukrishnan and Sahinalp [7],
who designed a mapping from the Ulam metric to Set-Intersection.3 However, their mapping is not an
embedding intò1 (in fact, Set-Intersection is not even a metric space) and it does not yield a sketching
algorithm for the Ulam metric. The main difficulty in the analysis of our embedding is to prove that it
is not too contractive. To this end, we build on the framework of [7], in which a common subsequence
for two permutations is constructed recursively by partitioning each permutation into two subsequences.
The main novelty in our analysis is that we replace the deterministic recursive partitioning of [7] with a
carefully-crafted stochastic partitioning, resulting in a suitable averaging over all symbol pairs.

1Consider e. g. the permutationsP for which{P(2i−1),P(2i)}= {2i−1,2i} for all i = 1, . . . ,bn/2c.
2This metric space contains more than 2n points, and thus our distortion bound beats by far the one that follows from

Bourgain’s embedding theorem [4] for general finite metrics. Note that in the nearest neighbor search setting, one needs to
embed not onlyS into `1, but also the (yet unknown) query point.

3Namely, every permutation is mapped to a subset of some fixed ground setU , such that the edit distance between two
permutations is approximately the size of the intersection between the two respective subsets.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 209

http://dx.doi.org/10.4086/toc

M. CHARIKAR AND R. KRAUTHGAMER

Applications The Ulam metric is interesting in its own right, e. g. when considering the Ulam metric
as a measure of (dis)similarity between rankings for say aggregation purposes. But it is not clear a
priori that results on the Ulam metric would lend themselves to broader classes of strings; bit strings,
for instance, cannot have distinct characters unlessn≤ 2. Nevertheless, we show inSection3 several
applications of the above embedding result to edit distance on more general strings.

Let us mention one generalization of the above embedding here, leaving further discussion toSec-
tion 3. Following [2], we say that a string ist-non-repetitive, if all its t-substrings are distinct. For
example, a random bit string of lengthn is, with high probability, 2 logn-non-repetitive. We can easily
extend the above embedding tot-non-repetitive strings with a 2t factor loss in the distortion. For in-
stance, this embedding is applicable, with high probability, for two random, but correlated, bit strings
(e. g.,x is chosen uniformly at random andy is derived from it by deleting certain positions). Such
scenarios often arise in computational biology contexts due to background distributions.

All our embeddings (e. g. the one specified above) are efficiently computable, and are thus readily
applicable to computational problems. For instance, they immediately yield sketching algorithms and
Nearest Neighbor Search schemes, as stated inSection3. The algorithms that we obtain for restricted
families of strings all have significantly better approximation guarantees than the state of the art for
edit distance in general [14, 2, 20]. For one thing, restriction to strings with limited repetitions may be
reasonable in many specific scenarios, and may serve as a rigorous starting point for domain-specific
heuristics.

In addition, our results make partial progress on the general case; they identify algorithmic tools that
are provably useful (in certain cases), and they pinpoint some difficult aspects (of the general case). The
recent embedding result of Ostrovsky and Rabani [20] relies on a recursive construction. Our results on
the Ulam metric and its extensions suggest that it may be possible to achieve a polylogarithmic distortion
for embedding general edit distance. However, achieving this bound may require going beyond recursive
constructions and using a “magical” direct embedding along the lines of the one we construct.

1.2 Related work

Cormode, Muthukrishnan and Sahinalp [7] were the first to suggest embeddings of various distance
functions on permutations. For reversal distance and transposition distance they designed embeddings
into Hamming space with constant distortion. However, as mentioned earlier, for edit distance (on
permutations) they designed a mapping into Set-Intersection, which cannot be embedded into`1 or yield
a sketching algorithm. They also use this mapping into Set-Intersection to obtain a fast approximate
string matching for permutations (under edit distance).

Cormode and Muthukrishnan [6] show that a variant of edit distance called theblock edit distance,
where a block of characters can be moved in a single edit operation, embeds into`1 with distortion
O(lognlog∗n). See also [8, 19] for embeddings of similar distance function on strings.

Batu et al. [3] developed a sub-linear time algorithm that runs inO(nmax(α/2,2α−1)) time and solves
the O(nα) vs. Ω(n) edit distance gap problem. Their algorithm can be cast as a sketching algorithm,
although it would use a sketch whose size is far more than constant.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 210

http://dx.doi.org/10.4086/toc

EMBEDDING THE ULAM METRIC INTO `1

1.3 Notation

As usual, define[k] = {1, . . . ,k}. A string is a sequence of characters (i. e., symbols) taken from an
alphabetΣ. The jth character in a strings is denoted bys[j]. We writea∈ s to denote that a character
a ∈ Σ appears in the strings, anda /∈ s otherwise. At-substring(akat-gram) of a strings is a string
consisting oft consecutive characters ins, e. g.s[i],s[i +1], . . . ,s[i + t−1]. In contrast, asubsequenceof
s need not be contiguous ins.

A permutationis stringP whose characters are all distinct. For permutations, it will sometimes be
more convenient to work withP−1, i. e.,P−1(a) is the position at whicha∈ Σ appears in the stringP (if
at all).

Longest common subsequence and edit distanceFor two stringsx,y, let LCS(x,y) be the length
of the longest common subsequence ofx andy (i. e., the maximum length of a stringz that is both a
subsequence ofx and a subsequence ofy). It is well-known and easy to verify that for every two strings
(and in particular permutations)x,y of lengthn, we haven−LCS(x,y)≤ ED(x,y)≤ 2(n−LCS(x,y)).

2 Embedding the Ulam metric

In this section we present a low-distortion embedding of the Ulam metric (i. e., the edit distance metric
on permutations) intò1.

Theorem 2.1.For every n, the Ulam metric of dimension n can be embedded into`
O(|Σ|2)
1 with distortion

O(logn).

Fix an integern; we may assume thatn is a power of 2, e. g., by padding all strings using additional
characters. Letm= |Σ|, and assume without loss of generality thatΣ = {1, . . . ,m}.

Define an embeddingf : Pn→ `
(m

2)
1 as follows. First, associate every coordinate of the target space

with a distinct pair{a,b} wherea,b∈ Σ anda 6= b. Now for every permutationP∈ Pn, the coordinates
of f (P) are given by

f (P){a,b} :=

{
1/(P−1(b)−P−1(a)) if a,b∈ P, a < b;

0 otherwise (i. e.,a /∈ P or b /∈ P).
(2.1)

The proof ofTheorem 2.1is completed below inLemma 2.2andLemma 2.3, which analyze the expan-
sion and contraction of this embeddingf , respectively.

Lemma 2.2 (Expansion).Let P and Q be permutations of length n. Then

‖ f (P)− f (Q)‖1≤O(logn) ·ED(P,Q) .

Proof. Extend f to permutations of length at mostn by using the same definition (2.1). Observe now
that it suffices to prove the claimed inequality‖ f (P)− f (Q)‖1≤O(logn) ·ED(P,Q) for the case where
ED(P,Q) = 1, the length ofP is n and the length ofQ is n−1. Indeed, the general case then follows by

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 211

http://dx.doi.org/10.4086/toc

M. CHARIKAR AND R. KRAUTHGAMER

the triangle inequality iǹ1. (In the process, we simulate a character substitution by a deletion followed
by an insertion, which increases the number of character operations at most by a factor of 2.)

Suppose then thatQ is obtained fromP by deleting some characterP[s]. Thus, we have (i)Q[i] = P[i]
for all i < s and (ii)Q[i] = P[i +1] for all i ≥ s. Clearly,

‖ f (P)− f (Q)‖1 = ∑
a,b∈Σ

∣∣ f (P){a,b}− f (Q){a,b}
∣∣ .

It suffices to consider only the terms in whicha ∈ P andb ∈ P, as every other term is 0. So suppose
a= P[i] andb= P[j] for i < j. In the case wherei = s, clearly f (Q){a,b} = 0; thus, the total contribution
of this case is∑n

j=s+1
1

j−s ≤ H(n) whereH(k) = ∑k
z=1

1
z is thekth harmonic number. The case where

j = s is similar, with f (Q){a,b} = 0 and thus total contribution∑s−1
i=1(1

s−i)≤ H(n). The case where both
i and j are smaller thans, as well as the case where bothi and j are larger thans, contribtes zero since
f (P){a,b} = f (Q){a,b} = 1

j−i . The last case wherei < s< j has total contribution at most

s−1

∑
i=1

∞

∑
j=s+1

∣∣∣∣ 1
j− i
− 1

j− i−1

∣∣∣∣ ;

for eachi, the summation overj is a telescopic sum bounded above by1
s−i , implying that the total

contribution of this case is at mostH(n). Hence,‖ f (P)− f (Q)‖1≤ 3H(n)≤ 3(1+ lnn) = O(logn).

Our proof method of the next lemma, which bounds the contraction off , is inspired by the work
of Cormode, Muthukrishnan and Sahinalp [7]. At a high level, we recursively construct a common
subsequence by first partitioning the alphabet, thereby partitioning each string into two subsequences,
and then merging the two common subsequences obtained by recursion. Our analysis is more involved
than that of [7]. In particular, we employ a carefully-crafted stochastic partitioning that “smooths” the
effect of any single pair of characters.

Lemma 2.3 (Contraction). Let P and Q be permutations of length n, and assume n is a power of2.
Then‖ f (P)− f (Q)‖1≥ 1

8 ED(P,Q).

Before proving this lemma, we introduce some definitions and a technical proposition. LetP be a
permutation of lengthk. Denote by LIS(P) the length of a longest increasing subsequence ofP. Define
a breakpointin P to be a positioni ∈ [k−1] whereP[i] > P[i + 1], and denote by b(P) the number of
breakpoints inP. Two subsequences ofP are called apartition of P if each character ofP appears in
exactly one of the two subsequences. Ablock is a pair of positions{2i−1,2i} wherei ∈ [bk/2c]. A
partition ofP into two subsequencesP0, P1 is calledblock-balancedif, at every block{2i−1,2i}, exactly
one of the two characters belongs toP0 (hence also exactly one of them belongs toP1). Note that if the
length ofP is even and a partition ofP is block-balanced, then the two corresponding subsequences have
equal length.

Proposition 2.4. Let P be a permutation of length k, and suppose k is even. Then for every block-
balanced partition of P into subsequences P0 and, P1,

LIS(P)≥ LIS(P0)+LIS(P1)−2b(P) .

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 212

http://dx.doi.org/10.4086/toc

EMBEDDING THE ULAM METRIC INTO `1

Proof. We will actually prove that

LIS(P)≥ 2LIS(P0)−2b(P) . (2.2)

A symmetric argument forP1 will imply similarly that LIS(P)≥ 2LIS(P1)−2b(P), and the lemma will
follow by averaging the last two inequalities.

Let us then prove (2.2). Fix a longest increasing subsequence ofP0, and, with a slight abuse of no-
tation, let LIS(P0) denote both this subsequence and its length. We construct an increasing subsequence
of P, by augmenting LIS(P0) with certain characters fromP1. For each positionj ∈ [k] such thatP[j]
is in P0, let j ′ ∈ { j−1, j +1} be the position such that{ j, j ′} forms a block. Notice thatP[j ′] is in P1,
and call it acandidateif the correspondingP[j] is in LIS(P0). The number of candidates is thus exactly
LIS(P0). In particular, if augmenting LIS(P0) with all the candidates forms an increasing subsequence
of P, then the length of this increasing subsequence would be 2LIS(P0), and it would prove (2.2). We
show next that LIS(P0) can be always be augmented with LIS(P0)−2b(P) candidates.

Consider two consecutive characters of LIS(P0), sayP[j1] andP[j2] with j1 < j2. (Essentially the
same argument works in the two extremal cases wherej2 is the first character of LIS(P0) and wherej1 is
the last character of LIS(P0).) Let t be the number of candidates amongP[j1+1], . . . ,P[j2−1]. We claim
thatt ≤ 2; indeed, onlyj1+1 andj2−1 can possibly be candidates, because ifP[j ′] is a candidate forj ′ ∈
{ j1+1, . . . , j2−1} then for the correspondingP[j] in LIS(P0) we havej ∈ { j ′−1, j ′+1} ⊆ { j1, . . . , j2}
and thusj ∈ { j1, j2}. If the t candidates are themselves in increasing order and they are all between
P[j1] andP[j2], then augment LIS(P0) with theset candidates; clearly, the result is still an increasing
subsequence ofP. Otherwise,P must contain some breakpointĵ ∈ { j1, . . . , j2−1}, and this breakpoint
can be blamed for not augmenting LIS(P0) with theset ≤ 2 candidates. Applying this augmentation for
every two consecutive charactersP[j1] andP[j2] of LIS(P0), we see that every breakpoint is blamed only
for candidates that are in the same interval{ j1, . . . , j2−1} as the breakpoint, and thus every breakpoint
is blamed for a total of at most 2 candidates. It follows that we have augmented LIS(P0) with at least
LIS(P0)−2b(P) candidates. It is easy to see that this results in an increasing subsequence ofP (because
augmenting at one interval does not prevent augmenting at another interval) and this proves (2.2).

Proof ofLemma 2.3. Start with the two lengthn permutationsP andQ, and recall that we used padding
to maken be a power of 2. We may assume thatP andQ contain exactly the same characters, because
every charactera ∈ Σ that appears in exactly one of the two strings contributes 1 to ED(P,Q) and at
least 2 (actuallyΩ(logn)) to its “own” coordinates (all{a,b} whereb∈ Σ \a) in the difference vector
f (P)− f (Q). We can further assume (by renaming characters inΣ) thatQ is the identity permutation,
i. e.,Q[i] = i. Hence,

ED(P,Q)≤ 2(n−LCS(P,Q)) = 2(n−LIS(P)) .

Pick a random block-balanced partition ofP into subsequencesP0 andP1, i. e., independently assign
eachP[2i] to eitherP0 or P1 uniformly at random, and assignP[2i− 1] to the other subsequence. By
Proposition 2.4, we have

LIS(P)≥ E[LIS(P0)+LIS(P1)]−2b(P) .

Now apply a similar partitioning to each subsequence using independent coins, e. g.,P0 is split intoP00

andP01. Continue recursively in a similar fashion until we get a singleton subsequencePσ for every
σ ∈ {0,1}logn. For convenience, letε denote the empty string, and definePε = P and{0,1}0 = {ε}.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 213

http://dx.doi.org/10.4086/toc

M. CHARIKAR AND R. KRAUTHGAMER

Applying Proposition 2.4recursively, we have

LIS(P)≥ ∑
σ∈{0,1}logn

E[LIS(Pσ)]−2
logn

∑
k=1

∑
σ∈{0,1}k−1

E[b(Pσ)] .

We rearrange this equation using the fact that ifPσ is a singleton sequence then LIS(Pσ) = 1, and obtain

n−LIS(P)≤ 2E

[
logn

∑
k=1

∑
σ∈{0,1}k−1

b(Pσ)

]
.

Notice that the sum∑k ∑σ b(Pσ) in the right-hand side gets a contribution of 1 every time two
charactersP[i],P[j] for which i < j andP[i] > P[j] become consecutive characters in a subsequencePσ .
Formally, for positionsi and j such thati < j andP[i] > P[j], let the random variableZi j be the number
of subsequencesPσ which containP[i],P[j] as consecutive characters. By linearity of expectation we
get that

1
2

ED(P,Q)≤ n−LIS(P)≤ 2 ∑
i< j;P[i]>P[j]

E[Zi j] . (2.3)

We claim thatE[Zi j] ≤ 4/(j− i). To prove the claim, notice thatE[Zi j] = ∑logn
z=1 Pr[Zi j ≥ z] because

Zi j takes only integral values between 0 and logn (asP[i] appears in logn subsequences). Therefore, it
suffices to show for every integerz≥ 1 the upper bound

Pr[Zi j ≥ z]≤ 22−z

j− i
.

Let us first show thatP[i],P[j] can become consecutive characters only afterblog(j− i)c iterations (par-
titions of P). Indeed, if j− i ≥ 2, then at the first iteration these two characters must belong to different
blocks; thus, with probability 1/2 the random partition ofP sends them to different subsequences, in
which case they will never form a consecutive pair of noPσ , and with probability 1/2 they are sent to the
same subsequence, in which case the difference between their positions in that common subsequence is
at leastb(j− i)/2c. Continuing similarly we see that if 2l ≤ j− i < 2l+1 then even afterl −1 partitions,
the difference between the positions of the two characters is at least 2, i. e., they can become consecutive
only afterl iterations. Since the different sequence partitions are independent, we get that

Pr[Zi j ≥ 1]≤
(

1
2

)blog(j−i)c
≤ 2

j− i
.

Similarly, if P[i],P[j] are consecutive in a subsequencePσ , they can be consecutive in a later iteration
only if they are sent to the same subsequence ofPσ , which happens with proability 1/2 or less. Fixing
an integerz≥ 1 we can apply this argumentz−1 times to get that Pr[Zi j ≥ z | Zi j ≥ 1]≤ (1/2)z−1. We
thus conclude that Pr[Zi j ≥ z]≤ 22−z/(j− i), which completes the proof of the claim.

Using (2.3) together with the above claim regardingE[Zi j], we get that

1
2

ED(P,Q)≤ 4 ∑
i< j;P[i]>P[j]

1
j− i

.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 214

http://dx.doi.org/10.4086/toc

EMBEDDING THE ULAM METRIC INTO `1

Notice that for everyi < j with P[i] > P[j], the respective coordinates off (P) and f (Q) are

f (P){P[i],P[j]} =
1

i− j
< 0 and f (Q){P[i],P[j]} =

1
P[i]−P[j]

> 0 ,

and hence
∣∣ f (P){P[i],P[j]}− f (Q){P[i],P[j]}

∣∣ > 1/(j− i). We conclude that

1
2

ED(P,Q)≤ 4‖ f (P)− f (Q)‖1 ,

which completes the proof ofLemma 2.3.

This completes the proof ofTheorem 2.1. We note that the bounds inLemma 2.2andLemma 2.3
are existentially tight, up to constant factors (for our embeddingf).

3 Applications

We present several applications of our`1-embedding of the Ulam metric fromSection2. Following [2],
we say that a string ist-non-repetitive, if all its t-substrings are distinct. We first extend the embedding
to strings that aret-non-repetitive (Section3.1). We also extend the above embedding to strings in which
every character appears a bounded number of times (Section3.2). Both extensions follow by showing
that the corresponding strings can be embedded in the Ulam metric with low distortion. We then discuss
the immediate applications of these embeddings to sketching algorithms (Section3.3) and to Nearest
Neighbor Search (Section3.4).

A technically more involved application of the above embedding is an improvement to a result of
Bar-Yossef et al. [2]. Call a string(t, r)-non-repetitiveif every r successivet-substrings of it are distinct.
We improve over the sketching algorithm of [2] for locally non-repetitive strings in two aspects: (i)
we achieve an embedding result, which is stronger than a sketching algorithm (namely, a sketching
algorithm follows quite easily); and (ii) we improve the approximation factor. SeeSection3.5 for more
details.

3.1 Embedding non-repetitive strings

Recall that a string ist-non-repetitive, if all its t-substrings are distinct. LetXn,t contain all thet-non-
repetitive strings of lengthn overΣ.

Theorem 3.1. The metric space(Xn,t ,ED) embeds with distortion2t into the Ulam metric of dimension
n− t +1 and alphabet size2t . Consequently, it embeds into`1 with distortion O(t logn).

The proof of the first part of the theorem is based on a simple observation, and that of the second
part is an immediate consequence ofTheorem 2.1.

Proof. We define an embeddingf of (Xn,t ,ED) into the aforementioned Ulam metric. First, we identify
the Ulam metric alphabet[2t] with {0,1}t (using an arbitrary bijection). Now for at-non-repetitive
stringx∈ {0,1}n, definef (x) to be a lengthn− t +1 string (over[2t]), whosejth coordinate is given by

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 215

http://dx.doi.org/10.4086/toc

M. CHARIKAR AND R. KRAUTHGAMER

f (x) j = b−1(x[j] . . .x[j +t−1]). To complete the proof, we will show that for every two stringsx,y∈ Σn,

ED(x,y)≤ ED(f (x), f (y))≤ t ED(x,y) . (3.1)

To prove the first inequality, consider a longest common subsequence betweenf (x) and f (y). Each
character in it corresponds to at-substring inx and iny. Taking the first character from each of these
t-substrings, except for the last sucht-substring, which is taken in its entirety, yields a subsequence that
is common tox andy, and hence LCS(x,y)≥ LCS(f (x), f (y))+ t−1. We obtain that

1
2

ED(x,y)≤ n−LCS(x,y)≤ n− t +1−LCS(f (x), f (y))≤ ED(f (x), f (y)) .

To prove the second inequality, fix a longest common subsequence ofx andy, and with a slight abuse
of notation let LCS(x,y) denote both this sequence and its length. Consider all thet-substrings ofx and
of y that are entirely contained in LCS(x,y). Observe that the number of sucht-substrings is at least
n− t +1− t(n−LCS(x,y)), because each of then−LCS(x,y) characters that do not belong to LCS(x,y)
participates int or fewert-substrings. Theset-substrings inx and iny give rise to a subsequence that is
common tof (x) and f (y). Therefore, LCS(f (x), f (y))≥ n− t +1− t(n−LCS(x,y)), implying that

ED(f (x), f (y))≤ 2(n− t +1−LCS(f (x), f (y)))≤ t(n−LCS(x,y))≤ t ED(x,y) .

3.2 Embedding bounded-occurrence strings

We say that a stringP hast-bounded-occurrenceif every charactera∈ Σ appears at mostt times inP.
Let Bn,t ⊆ Σn contain all thet-bounded-occurrence strings of lengthn overΣ.

Theorem 3.2. The metric space(Bn,t ,ED) embeds with distortion t into the Ulam metric of dimension
n over an extended alphabet of size t|Σ|. Consequently, it embeds into`1 with distortion O(t logn).

The proof the first part of the theorem is based on a simple observation, and that of the second part
follows immediately fromTheorem 2.1.

Proof. Let Σ′ be an alphabet of sizet|Σ|, and associate every charactera∈ Σ with t distinct characters
a1, . . . ,at ∈ Σ′. Given a stringx, let f (x) be the string obtained fromx by replacing, for everyj ∈ [t] and
every charactera∈ Σ, the jth occurrence ofa in x with the charactera j ∈ Σ′. To complete the proof of
the first part, it would suffice to prove that for every two stringsx,y∈ Σn,

1
2

ED(x,y)≤ ED(f (x), f (y))≤ t ED(x,y) , (3.2)

and it is indeed straightforward to verify this inequality.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 216

http://dx.doi.org/10.4086/toc

EMBEDDING THE ULAM METRIC INTO `1

3.3 Sketching algorithms

A sketching algorithm for edit distance consists of two procedures that work in concert as follows.
The first procedures produce a fingerprint, calledsketch, from each of the input strings, and the second
procedure uses solely the sketches to approximate the edit distance between the two strings. In thek
vs. m gap version of the problem, there is a promise that the edit distance between the two strings is
either at mostk or more thanm, and we wish to decide which of the two cases holds. The key feature is
that the sketch of each string is constructed without knowledge of the other string. The procedures are
randomized and are allowed to share random coins, and the main measure of complexity is the size of
the sketches produced. For actual applications it is also desirable that both procedures are efficient (say
run in time that is polynomial in their input size).

In contrast to Hamming distance, whose sketching complexity is well-understood [15, 18, 10], rel-
atively little is known about sketching of edit distance. The result of Ostrovsky and Rabani [20] gives
a sketching algorithm that, for everyk = k(n), distinguishes between pairs of strings at edit distance at
mostk and at leastk ·2O(

√
lognlog logn) using sketches of sizeO(1).

For strings that aret-non-repetitive (including e. g. permutations), Bar-Yossef et al. [2] give a sketch-
ing algorithm that solves, for everyk = k(n), thek vs.Ω(tk2) gap edit distance problem using sketches
of sizeO(1). We improve over their algorithm as follows.

Theorem 3.3 (Sketchingt-non-repetitive strings). For every k= k(n) there exists a polynomial-time
sketching algorithm that solves the k vs.Ω(kt logn) gap edit distance problem on t-non-repetitive strings
of length n using sketches of size O(1).

The proof of the theorem is a simple consequence of the`1-embedding fromTheorem 3.1, First,
convert the`1-metric can be into a scaled Hamming metric. Observe that a scaling factor ofO(n2)
suffices: rounding each coordinate in the`1-embedding to multiples of 1/Cn2, for a sufficiently large
constantC > 0, increases the distortion by a factor 2, becausef (P){a,b}− f (Q){a,b} for f in (2.1) is
either zero or has absolute valueΩ(1/n2). (A different argument is thatf (P) has at mostn2 nonzero
coordinates, and thus the total error due to rounding is at most additive 1/C.) Then, use the sketching
algorithm stated below for Hamming spaces, which is implicit in [18], and can also be derived from the
locality-sensitive hashing algorithms of [15, 13] (using the fact that for binary strings there is a direct
correspondence between Hamming distance and`2 distance).

Theorem 3.4 (Sketching Hamming metric [18]). For everyε > 0 and k= k(n), there is a polynomial-
time sketching algorithm that solves the k vs.(1+ ε)k gap Hamming distance problem in binary strings
of length n, with a sketch of size O(1/ε2).

We note that besides being a very basic computational primitive for massive data sets (see e. g. [5,
Section 4.6]), sketching is also related to (i) Nearest Neighbor Search (see below), (ii) protocols that are
secure (i. e., leak no information), cf. [10], and (iii) the simultaneous messages communication model
with public coins [21].

3.4 Nearest Neighbor Search

One of the most extensively studied computational problems isNearest Neighbor Search(NN): Given a
setSof points in a metric spaceX, preprocessSso as to efficiently answer queries for finding the point

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 217

http://dx.doi.org/10.4086/toc

M. CHARIKAR AND R. KRAUTHGAMER

in S that is closest to a query pointq ∈ X. The last decade has seen the advent of data structures for
approximate NN in (high)n-dimensional normed spaces. In particular, algorithms with preprocessing
space (storage) polynomial inn and|S| and query time that is polynomial inn and log|S|, were designed
in [15, 18] for `n

1 and`n
2 (achieving approximation factor 1+ ε for every constantε > 0) and in [12]

for `n
∞ (achieving approximation factorO(log logn)). Other algorithms for̀ n

1 and`n
2, due to [15, 11],

achieve 1+ε approximation require preprocessing space that is more moderate (subquadratic in|S|) and
have query time that is sublinear in|S| (roughlyO(|S|1/(1+ε))).

In contrast, the known algorithmic guarantees for approximate NN in edit distance metrics(X,ED)
are much weaker. For the general case(Σn,ED), Indyk [14] designed, for every fixedα > 0, a con-
stant factor approximation (exponential in 1/α) with space requirement that is exponential innα . The
recent embedding result of Ostrovsky and Rabani [20] leads to a nearest neighbor data structure with
approximation factor 2O(

√
lognlog logn) and polynomial space requirement.

Combining our`1-embedding fromTheorem 3.2with these NN algorithms for̀1 (or Hamming
space or̀ 2, as discussed inSection3.3) immediately yields a nearest neighbor algorithm fort-non-
repetitive strings (including e. g. permutations) achieving approximation factorO(t logn), which im-
proves over the bound obtain in [2] for this case. In particular, using the algorithms of [15, 18] results
in query time(n+ log|S|)O(1), and space requirement that(n+ |S|)O(1). Similarly, using the algorithms
of [15, 11] results in query time that is sublinear in|S| and space requirement that is subquadratic in|S|.

The sketching algorithm can alternatively be used to speed up the naive algorithm that computes
the edit distance between the queryq and every data pointx ∈ S. Simply replace each edit distance
computation with an estimate derived from a sketch ofx (computed at the preprocessing stage) and a
sketch ofq. The number of iterations would still beO(|S|), but each iteration will be much faster–about
O(log|S|+ log logn) time.

3.5 Embedding locally non-repetitive strings

We can further generalizeTheorem 3.1and obtain an embedding of strings that are locally non-repetitive
(see the definition below). The guarantee of this embedding is slightly weaker than a low distortion, since
it approximates well only distances that are sufficiently small. An interesting aspect of our embedding is
that it uses the sketching algorithm of [18] to obtain an embedding; this is opposite to the usual direction,
where an embedding is used to obtain a sketching algorithm.

Our results improve over [2] in several respects: (i) We give an embedding, which consequently
leads to a sketching algorithm, while [2] only give a sketching algorithm. An embedding result is
stronger (unless it is computationally inefficient) since it has to simultaneously handle exponentially
many strings, including pairsx,y with rather different distance ED(x,y), while a sketching algorithm is
only required to have a high success probability for every pair. (ii) Our approximation factor is smaller
since we rely on the Ulam metric embedding.

Definition 3.5 (Locally non-repetitive string). A string is called(t, r)-non-repetitive, or in shortlocally
non-repetitive, if every r successivet-substrings are distinct, i. e., for each interval{i, . . . , i + r−1}, the
r substrings of lengtht each that start in this interval are distinct.

Let Xn,t,r contain all the(t, r)-non-repetitive strings of lengthn over Σ. Notice that this family
containsXn,t since everyt-non-repetitive string is also(t, r)-non-repetitive.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 218

http://dx.doi.org/10.4086/toc

EMBEDDING THE ULAM METRIC INTO `1

Theorem 3.6 (Embedding).For every t= t(n) and every k= k(n), there exists an embedding f of the
(t,180tk)-non-repetitive strings intò1, such that for every two such strings x,y,

Ω(min{k,ED(x,y)/t log(tk)})≤ ‖ f (x)− f (y)‖ ≤ ED(x,y) .

This embedding builds on the iterative anchors technique used in the sketching algorithm of Bar-
Yossef et al. [2, Section 2]. The basic idea is to pick a set of non-overlapping substrings of lengtht in
a coordinated fashion. These substrings are referred to as anchors and partition the string into disjoint
substrings. The substrings between anchors are embedded into`1 and the embedding for the original
string is obtained by combining these embeddings in a suitable way. The key idea from [2] is a method to
pick these anchors in such a way that ifx andy are two strings with small edit distance, then the anchor
selection process picks the same anchors for bothx andy. One technical difference is that, between
successive anchors, we employ the`1-embedding fromSection2. Another difference is that as a final
step we apply thè1 sketching algorithm of [18], which effectively “thresholds” thè1 distance between
images. For clarity, we make no attempt to optimize constants.

Proof. We describe the embedding of a(t,180tk)-non-repetitive stringsx using a randomized procedure
that generates a bitf ′(x). The embeddingf into `1 will then be the concatenation off ′(x), ranging over
all possible outcomes for the coin tosses, with suitable scaling.

Fix W := 56tk. Augment the alphabetΣ with 2W + t new charactersa1, . . . ,a2W+t and append tox
the fixed stringa1 . . .a2W+t . Select a sequence of disjoint substringsα1, . . . ,αrx of x, called “anchors,”
iteratively as follows. Maintain a sliding window of length 2W + t over the stringx. The left endpoint
of the sliding window is denoted byc; initially, c is set to 1. At each step, say stepi, consider theW
substrings of lengtht whose starting position lies in the interval[c+W . . .c+ 2W−1], and denote the
jth such substring, forj ∈ [W], by

si, j = x[c+W+ j−1. . .c+W+ j + t−2] .

Select at random a permutationΠi of Σt , and set the anchorαi to be a substringsi,l that is minimal
according toΠi (breaking ties arbitrarily), i. e.,

Πi(si,l) = min
{

Πi(si,1)), . . . ,Πi(si,W)
}

.

Then slide the window by settingc to the position immediately following the anchor, i. e.,

c← c+W+ l + t−1 .

If this new value ofc is at mostn start a new iteration. Otherwise, stop, lettingrx ≤ O(n/tk) be the
number of anchors collected.

For i ∈ [rx], let φ i = φ i(x) be the substring ofx starting at the position immediately after the last
character of anchorαi−1 and ending at the last character ofαi . By convention,φ1 starts at position 1.

Now embed eachφ i into `
O(tk)
1 usingTheorem 3.1; notice thatφ i is a substring ofx of length at most

2W+ t ≤ 180tk, and is thust-non-repetitive. Next concatenate the resultingrx = O(n/tk) images into a

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 219

http://dx.doi.org/10.4086/toc

M. CHARIKAR AND R. KRAUTHGAMER

vectorϕ(x) ∈ `
O(n)
1 (appending 0’s as necessary). Finally, choose a random bit stringr ∈ {0,1}O(n) of

the same length, such that for alli, r i = 1 independently with probability 1/kt log(kt), and let

f ′(x) = ∑
i

r i ·ϕi(x) mod 2 .

(This step is similar to [18], though the purpose of using it here is very different.)
The embedding’s correctness follows immediately from the next two lemmas, which we shall prove

shortly.

Lemma 3.7. If x and y are(t,180tk)-non-repetitive strings then

Pr[f ′(x) 6= f ′(y)]≤O(ED(x,y)/k) .

Lemma 3.8. If x and y are(t,180tk)-non-repetitive strings then

Pr[f ′(x) 6= f ′(y)]≥Ω(min{ED(x,y)/kt log(kt),1}) .

The proof ofTheorem 3.6is completed by observing that the concatenation of bitsf ′ with suitable
scaling yields an embeddingf which satisfies

‖ f (x)− f (y)‖1 = kE | f ′(x)− f ′(y)|= kPr[f ′(x) 6= f ′(y)] .

Proof ofLemma 3.7. The preliminary step of appendingx andy with the same string of length 2W + t
clearly does not change ED(x,y). Now fix a sequence of edit operationsτ that transforms this newx
into the newy and uses ED(x,y) edit operations. Letαi be theith anchor chosen forx and letβi be
the ith anchor chosen fory. Let r = min{rx, ry}. As in the proof of Lemma 2.6 in [2], with probability
at least 1−ED(x,y)/7k, the following event happens: for alli ∈ [r], the tranformationτ (sequence of
edit operations) mapsαi to βi with no edit operations insideαi or βi .4 If this happens, we say that the
anchors match.

Assume for the moment that the anchors match. Using the fact that{φ i(x)}i∈[r] are disjoint substrings
of x and similarly{φ i(y)}i∈[r] for y, we get that

ED(x,y) = ∑
i∈[r]

ED(φ i(x),φ i(y)) .

Furthermore, at least one of the anchorsαr andβr is the last anchor in its string and thus contains one of
the unique 2W + t characters that were appended tox andy. But since the anchorsαr = βr , both must
be the last anchor in their string, and thusrx = ry. Using the guarantees ofTheorem 3.1, we get that

‖ϕ(x)−ϕ(y)‖1≤ ∑
i∈[r]

O(t log(2W+ tk))ED(φ i(x),φ i(y))≤O(t log(tk))ED(x,y) .

4The argument in [2] goes roughly as follows: at a single iteration, the probability that the anchor selection goes wrong is at
mostt times the number of edit operations inside the current window divided byW (since there areW choices for the anchor).
It can be verified that an edit operation can only affect one iteration, and a union bound over all iterations gives an upper bound
of ED(x,y)/7k.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 220

http://dx.doi.org/10.4086/toc

EMBEDDING THE ULAM METRIC INTO `1

Finally, the analysis in [18] of a random inner product modulo 2 shows that

Pr
[

f ′(x) 6= f ′(y) | ϕ(x),ϕ(y)
]
= Θ(min{‖ϕ(x)−ϕ(y)‖/kt log(kt),1}) . (3.3)

We can then bound Pr[f ′(x) 6= f ′(y)] from above by conditioning on whether the anchors match. If they
do match,f ′(x) 6= f ′(y) with probabilityO(ED(x,y)/k). Otherwise (which happens with probability at
most ED(x,y)/7k), f ′(x) 6= f ′(y) with probability at most 1. We thus conclude that

Pr[f ′(x) 6= f ′(y)]≤O(ED(x,y)/k) .

Proof ofLemma 3.8. The preliminary step of appendingx andy with the same string of length 2W + t
clearly does not change ED(x,y). Now similar to the proof of Lemma 2.8 in [2], let r = max{rx, ry} and
for i = rx +1, . . . , r let φ i(x) = ε be the empty string and similarly fori = ry +1, . . . , r let φ i(y) = ε. Let
g be thè 1-embedding fromTheorem 3.1. Then for alli ∈ [r] we have

‖g(φ i(x))−g(φ i(y))‖ ≥Ω(ED(φ i(x),φ i(y))) .

Since the substrings{φ i(x)}i∈[r] induce a partition of the stringx and similarly{φ i(y)}i∈[r] for y, we get
that

ED(x,y)≤ ∑
i∈[r]

ED(φ i(x),φ i(y))≤O(‖ϕ(x)−ϕ(y)‖) .

The lemma follows by applying the analysis of a random inner product modulo 2, as stated in (3.3).

Improved sketching algorithm The embedding ofTheorem 3.6leads to the following sketching re-
sult.

Theorem 3.9 (Sketching).For every t= t(n) and every k= k(n), there exists a polynomial-time effi-
cient sketching algorithm that solves the k vs.Ω(tk logk) gap edit distance problem for(t,180tk)-non-
repetitive strings using sketches of size O(1).

The proof follows in a straightforward way by “concatenating” the embedding ofTheorem 3.6with a
sketching algorithm for thek′ vs.k′(1+ε) gap Hamming distance (or`1) problem that is implicit in [15,
18]. We note that the embedding uses many dimensions (coordinates), but for the purpose of sketching
it suffices to generate onlyO(kt log(kt)) coordinatesf ′ at random, which can be done efficiently using
the shared random coins. It is also easy to verify that the random permutationΠ can be replaced by an
almost min-wise hash family that is efficiently computable using shared randomness, similar to [2].

Note that a permutation is(1, r)-non-repetitive for everyr ≥ 1, and so this theorem offers a somewhat
unexpected small improvement for the Ulam metric (overTheorem 3.3), reducing the gap fromO(logn)
to O(logk).

Acknowledgements We thank the anonymous reviewers for helpful comments.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 221

http://dx.doi.org/10.4086/toc

M. CHARIKAR AND R. KRAUTHGAMER

References

[1] * D. ALDOUS AND P. DIACONIS: Longest increasing subsequences: from patience sorting
to the Baik-Deift-Johansson theorem.Bull. Amer. Math. Soc. (N.S.), 36(4):413–432, 1999.
[BullAMS:1999-36-04/S0273-0979-99-00796-X]. 1

[2] * Z. BAR-YOSSEF, T. S. JAYRAM , R. KRAUTHGAMER, AND R. KUMAR: Approximating edit
distance efficiently. InProc. 45th FOCS, pp. 550–559. IEEE Computer Society Press, 2004.
[FOCS:10.1109/FOCS.2004.14]. 1.1, 3, 3.3, 3.4, 3.5, 3.5, 3.5, 4, 3.5, 3.5

[3] * T. BATU , F. ERGÜN, J. KILIAN , A. MAGEN, S. RASKHODNIKOVA , R. RUBINFELD, AND

R. SAMI : A sublinear algorithm for weakly approximating edit distance. InProc. 35th STOC, pp.
316–324. ACM Press, 2003. [STOC:10.1145/780542.780590]. 1.2

[4] * J. BOURGAIN: On Lipschitz embedding of finite metric spaces in Hilbert space.Israel J. Math.,
52(1-2):46–52, 1985.2

[5] * G. CORMODE: Sequence Distance Embeddings. PhD thesis, University of Warwick, 2003.1,
1, 3.3

[6] * G. CORMODE AND S. MUTHUKRISHNAN: The string edit distance matching problem with
moves. InProc. 13th Ann. ACM–SIAM Symp. on Discrete Algorithms (SODA’02), pp. 667–676,
2002. [SODA:545381.545470]. 1.2

[7] * G. CORMODE, S. MUTHUKRISHNAN, AND S. C. SAHINALP : Permutation editing and match-
ing via embeddings. InProc. 28th Internat. Coll. on Automata, Languages, and Programming
(ICALP’01), volume 2076 ofLecture Notes in Computer Science, pp. 481–492. Springer, 2001.
[ICALP:hf0vwuh0rcyujug1]. 1, 1.1, 1.2, 2

[8] * G. CORMODE, M. PATERSON, S. C. SAHINALP, AND U. V ISHKIN: Communication com-
plexity of document exchange. InProc. 11th Annual ACM–SIAM Symp. on Discrete Algorithms
(SODA’00), pp. 197–206, 2000. [SODA:338219.338252]. 1.2

[9] * P. ENFLO: On the nonexistence of uniform homeomorphisms betweenLp-spaces.Ark. Mat.,
8:103–105, 1969.1

[10] * J. FEIGENBAUM, Y. ISHAI, T. MALKIN , K. NISSIM, M. J. STRAUSS, AND R. N. WRIGHT:
Secure multiparty computation of approximations. InProceedings of 28th International Collo-
quium on Automata, Languages, and Programming, volume 2076 ofLecture Notes in Computer
Science, pp. 927–938. Springer, 2001. [ICALP:cpq5t97vrymq7q3n]. 3.3, 3.3

[11] * A. GIONIS, P. INDYK , AND R. MOTWANI: Similarity search in high dimensions via hashing. In
Proc. 25th Internat. Conf. on Very Large Data Bases, pp. 518–529. Morgan Kaufmann Publishers
Inc., 1999. [VLDB:645925.671516]. 3.4

[12] * P. INDYK : On approximate nearest neighbors in non-euclidean spaces. InProc. 39th FOCS, pp.
148–155. IEEE Computer Society Press, 1998. [FOCS:10.1109/SFCS.1998.743438]. 3.4

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 222

http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#AD99
http://www.ams.org//bull/1999-36-04/S0273-0979-99-00796-X
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#BJKK04
http://doi.ieeecomputersociety.org//10.1109/FOCS.2004.14
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#BEKMRRS
http://doi.acm.org/10.1145/780542.780590
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Bourgain85
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Cormode:Thesis
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#CM02
http://portal.acm.org/citation.cfm?id=545381.545470
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#CMS01
http://springerlink.metapress.com/link.asp?id=hf0vwuh0rcyujug1
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#CPSV00
http://portal.acm.org/citation.cfm?id=338219.338252
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Enflo69
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#FIMNSW
http://springerlink.metapress.com/link.asp?id=cpq5t97vrymq7q3n
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#GIM99
http://portal.acm.org/citation.cfm?id=645925.671516
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Indyk98
http://doi.ieeecomputersociety.org//10.1109/SFCS.1998.743438
http://dx.doi.org/10.4086/toc

EMBEDDING THE ULAM METRIC INTO `1

[13] * P. INDYK : Dimensionality reduction techniques for proximity problems. InProc. 11th
Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA’00), pp. 371–378. SIAM, 2000.
[SODA:338219.338582]. 3.3

[14] * P. INDYK : Approximate nearest neighbor under edit distance via product metrics. In
Proc. 15th Ann. ACM–SIAM Symp. on Discrete Algorithms, pp. 646–650. SIAM, 2004.
[SODA:982792.982889]. 1.1, 3.4

[15] * P. INDYK AND R. MOTWANI: Approximate nearest neighbors: towards removing the curse of
dimensionality. In30th STOC, pp. 604–613. ACM Press, 1998. [STOC:10.1145/276698.276876].
3.3, 3.3, 3.4, 3.5

[16] * S. KHOT AND A. NAOR: Nonembeddability theorems via Fourier analysis.Mathematische
Annalen, 334(4):821–852, 2006. [Springer:n4671147n1684344]. 1

[17] * R. KRAUTHGAMER AND Y. RABANI : Improved lower bounds for embeddings intoL1.
In Proc. 16th Ann. ACM–SIAM Symp. on Discrete Algorithms, pp. 1010–1017. SIAM, 2006.
[SODA:1109557.1109669]. 1

[18] * E. KUSHILEVITZ , R. OSTROVSKY, AND Y. RABANI : Efficient search for approximate near-
est neighbor in high dimensional spaces.SIAM Journal on Computing, 30(2):457–474, 2000.
[SICOMP:30/34717]. 3.3, 3.3, 3.4, 3.4, 3.5, 3.5, 3.5, 3.5

[19] * S. MUTHUKRISHNAN AND S. C. SAHINALP : Approximate nearest neighbors and sequence
comparisons with block operations. InProc. 32nd STOC, pp. 416–424. ACM Press, 2000.
[STOC:10.1145/335305.335353]. 1.2

[20] * R. OSTROVSKY AND R. RABANI : Low distortion embeddings for edit distance. InProc. 37th
STOC, pp. 218–224. ACM Press, 2005. [STOC:1060590.1060623]. 1, 1.1, 1.1, 3.3, 3.4

[21] * A. C-C. YAO: Some complexity questions related to distributive computing. InProc. 11th
STOC, pp. 209–213. ACM Press, 1979. [STOC:10.1145/800135.804414]. 3.3

AUTHORS

Moses Charikar
Dept. of Computer Science
Princeton University
35 Olden Street
Princeton, NJ 08540, USA
moses cs princeton edu
http://www.cs.princeton.edu/~moses/

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 223

http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Indyk00
http://portal.acm.org/citation.cfm?id=338219.338582
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Indyk04
http://portal.acm.org/citation.cfm?id=982792.982889
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#IM98
http://doi.acm.org/10.1145/276698.276876
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#KN05
http://springerlink.metapress.com/link.asp?id=n4671147n1684344
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#KR06
http://portal.acm.org/citation.cfm?id=1109557.1109669
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#KOR00
http://locus.siam.org/SICOMP/volume-30/art_34717.html
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#MS00
http://doi.acm.org/10.1145/335305.335353
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#OR05
http://portal.acm.org/citation.cfm?id=1060590.1060623
http://theoryofcomputing.org/articles/main/v002/a011/bibliography.html#Yao79
http://doi.acm.org/10.1145/800135.804414
http://www.cs.princeton.edu/~moses/
http://dx.doi.org/10.4086/toc

M. CHARIKAR AND R. KRAUTHGAMER

Robert Krauthgamer
IBM Almaden Research Center
Department K53/B2
650 Harry Road
San Jose, CA 95120, USA
robi almaden ibm com
http://www.almaden.ibm.com/cs/people/robi/

ABOUT THE AUTHORS

MOSESCHARIKAR is an Assistant Professor in theComputer Science departmentatPrince-
ton University. He received his Ph. D. in 2000 fromStanford Universityunder the su-
pervision ofRajeev Motwani. Before that, he obtained his undergraduate degree from
theIndian Institute of Technology, Bombay. His research interests are in approximation
algorithms, metric embeddings, and algorithmic techniques for large data sets. His work
on dimension reduction iǹ1 won the Best Paper award at FOCS 2003. A one year stint
in the research group atGooglegave him an opportunity to apply his theoretical ideas in
the real world. He still reaps the benefits of that experience – he has successfully man-
aged to retain the top spot for a Google search on his last name, but has wisely given up
trying to compete with his well-known namesake for searches on his first name.

ROBERT KRAUTHGAMER is a Research Staff Member in thetheory groupat theIBM Al-
maden Research Centerin San Jose, CA. He received his Ph. D. in 2001 from theWeiz-
mann Institute of Sciencein Israel. A paper, coauthored (as part of his thesis) with his
advisor,Uri Feige, was awarded the 2005 SIAM Outstanding Paper Prize. Subsequently
he spent two years as a postdoc in thetheory group at Berkeley. His research interests
include combinatorial algorithms, finite metric spaces, high-dimensional geometry, data
analysis, and related areas. His favorite sport since youth has been swimming; once he
swam across theSea of Galileein a 10km competitive race, and was the last one to
arrive at the finish line.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 207–224 224

http://www.almaden.ibm.com/cs/people/robi/
http://www.cs.princeton.edu/
http://www.princeton.edu/
http://www.princeton.edu/
http://www.stanford.edu/
http://theory.stanford.edu/~rajeev/
http://www.cse.iitb.ac.in/
http://www.google.com/
http://www.almaden.ibm.com/software/disciplines/pm/
http://www.almaden.ibm.com/
http://www.almaden.ibm.com/
http://www.weizmann.ac.il/
http://www.weizmann.ac.il/
http://www.wisdom.weizmann.ac.il/~feige/
http://www.eecs.berkeley.edu/Research/Areas/CS/THY/
http://en.wikipedia.org/wiki/Sea_of_Galilee
http://dx.doi.org/10.4086/toc

	Introduction
	Results
	Related work
	Notation

	Embedding the Ulam metric
	Applications
	Embedding non-repetitive strings
	Embedding bounded-occurrence strings
	Sketching algorithms
	Nearest Neighbor Search
	Embedding locally non-repetitive strings

	References

