
THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172
http://theoryofcomputing.org

On Learning Random DNF Formulas Under
the Uniform Distribution

Jeffrey C. Jackson Rocco A. Servedio

Received: March 21, 2006; published: September 19, 2006.

Abstract: We study the average-case learnability of DNF formulas in the model of learn-
ing from uniformly distributed random examples. We define a natural model of random
monotone DNF formulas and give an efficient algorithm which with high probability can
learn, for any fixed constantγ > 0, a randomt-term monotone DNF for anyt = O(n2−γ).
We also define a model of random non-monotone DNF and give an efficient algorithm
which with high probability can learn a randomt-term DNF for anyt = O(n3/2−γ). These
are the first known algorithms that can learn a broad class of polynomial-size DNF in a
reasonable average-case model of learning from random examples.

ACM Classification: I.2.6, F.2.2, G.1.2, G.3

AMS Classification: 68Q32, 68W20, 68W25, 60C05

Key words and phrases:computational learning theory, uniform-distribution learning, PAC learning,
DNF formulas, monotone DNF

1 Introduction

1.1 Motivation and background

A disjunctive normal formformula, or DNF, is an AND of ORs of Boolean literals. A question that has
been open since Valiant’s initial paper on computational learning theory [26] is whether or not efficient
algorithms exist for learning polynomial size DNF formulas in variants of the PAC (Probably Approx-
imately Correct) learning model introduced by Valiant. Roughly speaking, in these models a learning

Authors retain copyright to their work and grant Theory of Computing unlimited rights
to publish the work electronically and in hard copy. Use of the work is permitted as
long as the author(s) and the journal are properly acknowledged. For the detailed
copyright statement, seehttp://theoryofcomputing.org/copyright.html.

c© 2006 Jeffrey C. Jackson and Rocco A. Servedio DOI: 10.4086/toc.2006.v002a008

http://dx.doi.org/10.4086/toc
http://theoryofcomputing.org/copyright.html
http://dx.doi.org/10.4086/toc.2006.v002a008

J. JACKSON AND R. SERVEDIO

algorithm is required to generate a high-accuracy (error rate at mostε) hypothesis with high probabil-
ity (the algorithm must fail to generate such a hypothesis with probability at mostδ); we give a more
detailed explanation of our learning scenario inSection2. The only positive result for learning general
DNF formulas in such frameworks to date is the Harmonic Sieve [12]. The Sieve is a membership-query
algorithm (i.e. it requires black-box query access to the unknown functionf that is being learned) that
efficiently PAC learns DNF when the error rate is defined with respect to the uniform distribution over
the space of all possiblen-bit example strings (and certain related distributions). The approximating hy-
pothesis produced by the Sieve is not itself represented as a DNF; thus, the Sieve is animproperlearning
algorithm.

There has been little progress on polynomial-time algorithms for learning arbitrary DNF since the
discovery of the Sieve. There are two obvious relaxations of the uniform distribution membership query
model that can be pursued. The first is to learn with respect to arbitrary distributions using membership
queries; in this setting, the learning algorithm is given black-box (membership query) access to the
unknown function f , and also access to a source of random labeled examples(x, f (x)) where each
examplex is independently drawn from a fixed probability distribution which is arbitrary and not known
to the learning algorithm. The learner must generate a high-accuracy hypothesis with respect to this
unknown distribution. Given standard cryptographic assumptions, it is known that learning DNF in
this framework is essentially as difficult as learning DNF with respect to arbitrary distributions without
membership queries [4].

The second obvious relaxation is to learn with respect to the uniform distribution without member-
ship queries. However, there are substantial known obstacles to learning DNF in the model of uniform
distribution without membership queries. In particular, no algorithm which can be recast as a Statisti-
cal Query algorithm can learn arbitrary polynomial-size DNF under the uniform distribution inno(logn)

time [8]. (Roughly speaking, a Statistical Query algorithm is an algorithm which is only allowed to
obtain statistical estimates of properties of the distribution over labeled example pairs(x, f (x)); such an
algorithm does not have access to actual labeled examples(x, f (x)). See [17] for a detailed description
of the Statistical Query model.) Since nearly all non-membership learning algorithms can be recast as
Statistical Query algorithms [17], a major conceptual shift seems necessary to obtain an algorithm for
efficiently learning arbitrary DNF formulas from uniform examples alone.

An apparently simpler question is whethermonotoneDNF formulas, which contain only un-negated
variables, can be learned efficiently. Angluin showed that monotone DNF can be properly learned with
respect to arbitrary distributions using membership queries [3]. It has also long been known that with
respect to arbitrary distributions without membership queries, monotone DNF are no easier to learn than
arbitrary DNF [19]. This leaves the following enticing question (posed in [16, 7, 6]): are monotone DNF
efficiently learnable from uniform examples alone?

In 1990, Verbeurgt [27] gave an algorithm that can properly learn any poly(n)-size (arbitrary) DNF
from uniform examples in timenO(logn). More recently, the algorithm of [25] learns any 2

√
logn-term

monotone DNF in poly(n) time. However, despite significant interest in the problem, no algorithm faster
than that of [27] is known for learning arbitrary poly(n)-size monotone DNF from uniform examples,
and no known hardness result precludes such an algorithm (the Statistical Query result of [8] is at its
heart a hardness result for low-degree parity functions, and thus does not apply to monotone DNF).

Since worst-case versions of several DNF learning problems have remained stubbornly open for a

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 148

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

decade or more, it is natural to ask about DNF learning from an average-case perspective, i.e., about
learning randomDNF formulas. In fact, this question has been considered before: Aizenstein and
Pitt [1] were the first to ask whether random DNF formulas are efficiently learnable. They proposed
a model of random DNF in which each of thet terms is selected independently at random from all
possible terms, and gave a membership and equivalence query algorithm which with high probability
learns a random DNF generated in this way. (See [1] or [3] for a description of the membership and
equivalence query learning framework.) However, as noted in [1], a limitation of this model is that with
very high probability all terms will have lengthΩ(n). The learning algorithm itself becomes quite simple
in this situation. Thus, while this is a “natural” average-case DNF model, from a learning perspective
it is not a particularly interesting model. To address this deficiency, they also proposed another natural
average-case model which is parameterized by the expected lengthk of each term as well as the number
of independent termst, but left open the question of whether or not random DNF can be efficiently
learned in such a model.

1.2 Our results

We consider an average-case DNF model very similar to the latter Aizenstein and Pitt model, although
we simplify slightly by assuming thatk represents a fixed term length rather than an expected length. We
show that, in the model of learning from uniform random examples only, random monotone DNF are
properly and efficiently learnable for many interesting values ofk andt. In particular, fort = O(n2−γ)
whereγ > 0, and fork = logt, our algorithm can achieve any error rateε > 0 in poly(n,1/ε) time with
high probability (over both the selection of the target DNF and the selection of examples). In addition,
we obtain slightly weaker results for arbitrary DNF: our algorithm can properly and efficiently learn
randomt-term DNF fort such thatt = O(n

3
2−γ). This algorithm cannot achieve arbitrarily small error

but can achieve errorε = o(1) for any t = ω(1). For detailed result statements see Theorems3.13
and4.11.

While our results would clearly be stronger if they held for anyt = poly(n) rather than the specific
polynomials given, they are a marked advance over the previous state of affairs for DNF learning. (Recall
that in the standard worst-case model, poly(n)-time uniform-distribution learning oft(n)-term DNF for
anyt(n) = ω(1) is an open problem with an associated cash prize [5].)

At this point a word or two is in order to clarify the relationship between the random DNF model we
consider and the models of random CNF formulas that are often studied in the context of the Boolean
satisfiability problem. In the study of randomk-CNF formulas,k is often taken to be a fixed constant
such as 3. In contrast with the satisfiability problem, in the learning arena takingk to be a fixed constant
such as 3 is not an interesting choice, since it is well known thatk-CNF (or equivalently, DNF formulas
in which every term is of length at mostk) can be easily learned with respect to any distribution in time
nO(k) [26]. Intuitively, the “interesting” values ofk are different for the satisfiability problem and the
learning problem because in the satisfiability problem the interesting cases occur when there are only a
small number of satisfying assignments, whereas in the learning framework the interesting cases occur
when the target DNFs are roughly balanced between satisfying and unsatisfying assignments. (From
a learning perspective balanced functions are generally more interesting than unbalanced functions,
since a constant function is trivially a good approximator to a highly unbalanced function.) Thus, for
the learning problem, takingk = logt is a natural choice when learning with respect to the uniform

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 149

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

distribution. (We actually allow a somewhat more general choice ofk, as is described in detail in the
paper.)

Our results shed some light on which cases arenot hard to learn in the worst-case uniform distri-
bution model. While “hard” cases were previously known for arbitrary DNF [5], our findings may be
particularly helpful in guiding future research on monotone DNF. In particular, our algorithm learns any
monotonet = O(n2−γ)-term DNF which (i) is near-balanced, (ii) has every term uniquely satisfied with
reasonably high probability, (iii) has every pair of terms jointly satisfied with much smaller probability,
and (iv) has no variable appearing in significantly more than a 1/

√
t fraction of thet terms (this is made

precise inLemma 3.9). So in order to be “hard,” a monotone DNF must violate one or more of these
criteria.

Our algorithms work in two stages: they first identify pairs of variables which co-occur in some
term of the target DNF, and then use these pairs to reconstruct terms via a specialized clique-finding
algorithm. (This is why our results do not extend to random DNF with more thann2−γ terms; for such
formulas the variable co-occurrence graph is with high probability dense or even complete, so we cannot
reconstruct terms from co-occurrence information.) For monotone DNF we can with high probability
determine for every pair of variables whether or not the pair co-occurs in some term. For non-monotone
DNF, with high probability we can identify most pairs of variables which co-occur in some term; as we
show, this enables us to learn to fairly (but not arbitrarily) high accuracy.

We give preliminaries inSection2. Sections3 and4 contain our results for monotone and non-
monotone DNF respectively.Section5 concludes.

A preliminary version of this work appeared in the proceedings of RANDOM 2005 [15]. The current
version of the paper gives a more thorough exposition and includes many proofs that were omitted from
the conference version due to space limitations.

2 Preliminaries

We first describe our models of random monotone and non-monotone DNF. LetMt,k
n be the probability

distribution over monotonet-term DNF induced by the following random process: each term is inde-
pendently and uniformly chosen at random from all

(n
k

)
monotone ANDs of size exactlyk over variables

v1, . . . ,vn. For non-monotone DNF, we writeDt,k
n to denote the following distribution overt-term DNF:

first a monotone DNF is selected fromMt,k
n , and then each occurrence of each variable in each term is

independently negated with probability 1/2. (Equivalently, a draw fromDt,k
n is done by independently

selectingt terms from the set of all terms of length exactlyk.)
Given a Boolean functionφ : {0,1}n→{0,1}, we write Pr[φ] to denote Prx∼Un[φ(x) = 1], whereUn

denotes the uniform distribution over{0,1}n. We write log to denote log2 and ln to denote natural log.

2.1 Tail bounds

We use the following:

Chernoff bound (see [2, Theorem A.12]): LetB(t, p) denote the binomial distribution with parameter

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 150

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

p, i.e. a draw fromB(t, p) is a sum oft independentp-biased 0/1 Bernoulli trials. Then forβ > 1,

Pr
S∼B(t,p)

[S≥ β pt]≤
(

eβ−1
β
−β

)pt
< (e/β)β pt .

The following bound will also be useful:

McDiarmid bound [24]: Let X1, . . .Xm be independent random variables taking values in a setΩ. Let
F : Ωm→ R be such that for all i∈ [m] we have

|F(x1, . . . ,xm)−F(x1, . . . ,xi−1,x
′
i ,xi+1, . . . ,xm)| ≤ ci

for all x1, . . . ,xm and x′i in Ω. Let µ = E[F(X1, . . . ,Xm)]. Then for allτ > 0,

Pr[|F(X1, . . . ,Xm)−µ|> τ] < exp(−τ
2/(c2

1 + · · ·+c2
m)) .

2.2 The learning model

In the uniform distribution learning model which we consider, the learner is given a source of labeled
examples(x, f (x)) where eachx is uniformly drawn from{0,1}n and f is the unknown function to be
learned. The goal of the learner is to efficiently construct a hypothesish which with high probability
(over the choice of labeled examples used for learning) has low error relative tof under the uniform
distribution, i.e. Prx∼Un[h(x) 6= f (x)]≤ ε with probability 1−δ . This model has been intensively studied
in learning theory, see e.g. [11, 10, 13, 21, 22, 25, 27]. In our average case framework, the target function
f will be drawn randomly from eitherMt,k

n or D
t,k
n , and (as in [14]) our goal is to construct a low-error

hypothesish for f with high probability over both the random examples used for learning and the random
draw of f .

3 Learning random monotone DNF

3.1 Interesting parameter settings

Consider a random draw off from M
t,k
n . It is intuitively clear that ift is too large relative tok then a

randomf ∈M
t,k
n will likely have Pr[f]≈ 1; similarly if t is too small relative tok then a randomf ∈M

t,k
n

will likely have Pr[f]≈ 0. Such cases are not very interesting from a learning perspective since a trivial
algorithm can learn to high accuracy. We are thus led to the following definition:

Definition 3.1. A pair of values(k, t) is said to bemonotoneα-interestingif

α ≤ E f∈Mt,k
n

[Pr[f]]≤ 1−α .

Throughout the paper we will assume that 0< α ≤ .09 is a fixed constant independent ofn and that
t ≤ p(n), wherep(·) is a fixed polynomial (and we will also make assumptions about the degree ofp).
The following lemma gives necessary conditions for(k, t) to be monotoneα-interesting. (AsLemma 3.2
indicates, we may always think ofk as being roughly logt.)

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 151

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

Lemma 3.2. For n sufficiently large, if(k, t) is monotoneα-interesting thenα2k ≤ t ≤ 2k+1 ln 2
α

.

Proof. One side is easy: ift < α2k then each of thet terms off is satisfied by a uniform random example
with probability at mostα/t, and consequently Pr[f (x) = 1]≤ α. Note that by our assumptions ont and
α we thus have thatk = O(logn) for any monotoneα-interesting pair(k, t).

We now show that ift > 2k+1 log 2
α

, then

E f∈Mt,k
n

[Pr[f]] > 1−α .

Let us write|x| to denotex1 + · · ·+ xn for x ∈ {0,1}n. It is easy to see that Pr[f (x) = 1], viewed as a
random variable over the choice off ∈M

t,k
n , depends only on the value of|x|. We have

E f∈Mt,k
n

[Pr[f]] =
n

∑
r=0

E f∈Mt,k
n

[Pr[f (x) = 1 | |x|= r] ·Pr[|x|= r] .

A standard tail bound on the binomial distribution (which can be derived, e.g., from the results in [24])
implies that

Pr
x∈Un

[
|x| ≤ n/2−

√
nlog(2/α)

]
< α/2 .

Thus it suffices to show that for anyx with |x| ≥ n/2−
√

nlog(2/α), we have

Pr
f∈Mt,k

n

[f (x) = 1]≥ 1−α/2 .

Fix anx∈ {0,1}n with |x|= w≥ n/2−
√

nlog(2/α). Let T1 be a random monotone term of length
k. We have

Pr
T1

[T1(x) = 1] =
w(w−1) · · ·(w−k+1)
n(n−1) · · ·(n−k+1)

≥ 1
2k+1

where the inequality holds for sufficiently largen using the fact thatk = O(logn) andα = Θ(1). Since
the terms off are chosen independently, this implies that

Pr
f
[f (x) = 0]≤

(
1− 1

2k+1

)t

≤ exp

(
−t

2k+1

)
.

If t/2k+1 > ln 2
α

then this bound is at mostα/2.

DNF expressions with either a constant number of terms or a constant number of variables per term
have long been known to be efficiently learnable [26] (this holds for non-monotone as well as monotone
DNF, and in fact holds for learning with respect to arbitrary distributions, not only uniform). So we
will assume throughout that botht andk areω(1); many of our probability bounds are only meaningful
given such an assumption, and some of our lemmas explicitly depend ont and/ork being larger than a
certain (small) constant. While this assumption is sufficient for our purposes, we note briefly that in fact
a stronger assumption can be made concerningt. If t grows very slowly relative ton, say,t = O(n1/4),
then with high probability a randomf drawn fromM

t,k
n will have the property that every variable inf

appears in exactly one term. Such a read-once DNF, even if it is non-monotone, is learnable with respect
to the uniform distribution [18]. Thus, we can actually think oft as growing reasonably quickly withn.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 152

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

3.2 Properties of random monotone DNF

Throughout the rest ofSection3 we assume thatα > 0 is fixed and(k, t) is a monotoneα-interesting
pair wheret = O(n2−γ) for someγ > 0. In this section we develop some useful lemmas regardingM

t,k
n .

We first prove the following lemma, which will be useful in subsequent proofs. This lemma does
not require thatf be drawn fromM

t,k
n .

Lemma 3.3. Any monotone DNF f with t≥ 2 terms each of size k hasPr[f]≥ α3/4.

Proof. We writeT1,T2, . . . ,Tt to denote the terms off . We have

Pr[f] = Pr[T1∧T2∧·· ·∧Tt] = Pr[T1 | T2∧·· ·Tt]Pr[T2 | T3∧·· ·Tt] · · ·Pr[Tt−1 | Tt]Pr[Tt]

≥
t

∏
i=1

Pr[Ti] (3.1)

=
(

1− 1
2k

)t

≥
(

1− 1
2k

)2k+1 ln(2/α)

≥
(

1
4

)2ln 2
α

=
(

α

2

)2ln4
≥ α3

4
.

The first inequality (3.1) holds since Pr[f (x) = 1 | g(x) = 1] ≥ Pr[f (x) = 1] for any monotone Boolean
functionsf ,g on{0,1}n (see e.g. Corollary 7, p. 149 of [9]). The second inequality holds byLemma 3.2.
The third inequality holds since(1−1/x)x≥ 1/4 for all x≥ 2, and the fourth follows from the restriction
α ≤ .09.

Let f i denote the projected function obtained fromf by first removing termTi from the monotone
DNF for f and then restricting all of the variables which were present in termTi to 1. For` 6= i we
write T i

` to denote the term obtained by setting all variables inTi to 1 in T̀ , i.e. T i
` is the term in f i

corresponding toT̀ . Note that ifT i
` 6≡ T̀ thenT i

` is smaller thanT̀ .
The following lemma shows that each variable appears in a limited number of terms and that there-

fore not too many termsT i
` in f i are smaller than their corresponding termsT̀ in f . In this and later

lemmas, “n sufficiently large” means thatn is larger than a constant which depends onα but not onk or
t.

Lemma 3.4. Let

δmany:= n

(
ekt3/2 logt
n2k−1α2

)2k−1α2/(
√

t logt)

.

For n sufficiently large, with probability at least1− δmany over the draw of f fromM
t,k
n , both of the

following conditions hold:

• Every variable vj , 1≤ j ≤ n, appears in at most2k−1α2/(
√

t logt) terms of f ; and

• For all 1≤ i ≤ t at most k2k−1α2/(
√

t logt) terms Ti
` with ` 6= i in the projection fi are smaller

than the corresponding terms T` in f .

Note that since(k, t) is a monotoneα-interesting pair andt = O(n2−γ) for some fixedγ > 0, for
sufficiently largen this probability bound is non-trivial.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 153

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

Proof ofLemma 3.4. We first prove that with high probability every variable appears in a limited number
of terms. Fix any variablev j . For each termT̀ we have thatv j occurs inT̀ with probabilityk/n. Since
the terms are chosen independently, the number of occurrences ofv j is binomially distributed according
to B(t, p) with p = k/n. Takingβ = n2k−1α2/(kt3/2 logt) in the Chernoff bound (which is greater than
1 for sufficiently largen), the probability thatv j appears inβ pt = 2k−1α2/(

√
t logt) or more terms is at

most (
ekt3/2 logt
n2k−1α2

)2k−1α2/(
√

t logt)

.

The lemma follows by the union bound over then variablesv j .
For the bound on the number of terms inf i smaller than those inf , simply note that if every vari-

able appears in at most 2k−1α2/(
√

t logt) terms then, since there arek variables in termTi , at most
k2k−1α2/(

√
t logt) termsT i

` with ` 6= i in f i are smaller than the corresponding termsT̀ in f .

The next lemma shows that there is probably little overlap between any pair of terms inf :

Lemma 3.5. Let δshared:= t2(k2

n)log logt . With probability at least1−δsharedover the random draw of

f fromM
t,k
n , for all 1≤ i, j ≤ t no set oflog logt or more variables belongs to two distinct terms Ti and

Tj in f .

Proof. We are interested in upper bounding the probabilitypi that log logt or more of the variables in
a fixed termTi belonging to f also appear in some other termT̀ of f , for any ` 6= i. First, a simple
counting argument shows that the probability that a fixed set of log logt variables appears in a set ofk
variables randomly chosen from amongn variables is at most(k/n)log logt . Since there are

(k
log logt

)
ways

to choose a fixed set of log logt variables from termTi , we have

pi ≤
(

k
log logt

)(
k
n

)log logt

(t−1) .

The lemma follows by the union bound over thet probabilitiespi .

Using the preceding lemmas, we can show that forf drawn fromM
t,k
n , with high probability each

term is “uniquely satisfied” by a noticeable fraction of assignments. More precisely, we have:

Lemma 3.6. Let δusat:= δmany+ δshared. For n sufficiently large and k≥ 5, with probability at least

1−δusatover the random draw of f fromMt,k
n , f is such that for all i= 1, . . . , t we have

Pr
x
[Ti is satisfied by x but no other Tj is satisfied by x]≥ α3

2k+3 .

Proof. Given an f drawn according toMt,k
n and given any termTi in f , we are interested in the prob-

ability over uniformly drawn instances thatTi is satisfied andT̀ is not satisfied for all̀ 6= i. Let T̀ 6=i

represent the formula that is satisfied by an assignmentx if and only if all of theT̀ with ` 6= i are not
satisfied byx. We want a lower bound on

Pr[Ti ∧ T̀ 6=i] = Pr[T̀ 6=i | Ti] ·Pr[Ti] .

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 154

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

Since Pr[Ti] = 1/2k, what remains is to show that with very high probability over random draw off ,
Pr[T̀ 6=i | Ti] is bounded below byα3/8 for all Ti . That is, we need to show that Pr[f i]≥ α3/8 with very
high probability.

We have that all of the following statements hold with probability at least 1−δusatfor every 1≤ i≤ n
for a randomf from M

t,k
n :

1. Pr[f i]≥∏`: 6̀=i Pr[T i
`]: this follows from Equation (3.1) in the proof ofLemma 3.3.

2. ∏`:T i
`≡T̀ Pr[T i

`] > α3/4. This holds because the terms in this product are a subset of the terms in
Equation (3.1) (in the proof ofLemma 3.3).

3. At mostk2k−1α2/(
√

t logt) termsT̀ with ` 6= i are smaller inf i than they are inf (by Lemma 3.4).

4. No term in f i has fewer thank− log logt variables (byLemma 3.5).

These conditions together imply that

Pr[f i]≥
(

α3

4

)((
1− logt

2k

)2k/(logt)
)kα2/2

√
t

.

Note thatkα2/2
√

t ≤ 1/2 for all k≥ 5, since for suchk we havek2α4 ≤ αk2 < α2k ≤ t. Thus, since(
1− 1

x

)x≥ 1/4 for all x≥ 2, we have that Pr[f i]≥ α3/8.

On the other hand, we can upper bound the probability that two terms of a random DNFf will be
satisfied simultaneously:

Lemma 3.7. With probability at least1−δsharedover the random draw of f fromMt,k
n , for all 1≤ i <

j ≤ t we havePr[Ti ∧Tj]≤ logt
22k .

Proof. By Lemma 3.5, with probability at least 1−δsharedf is such that, for all 1≤ i < j ≤ n, termsTi

andTj share at most log logt variables. Thus for each pair of terms a specific set of at least 2k− log logt
variables must be simultaneously set to 1 in an instance in order for both terms to be satisfied.

3.3 Identifying co-occurring variables

We now show how to identify pairs of variables that co-occur in some term off . First, some notation.
Given a monotone DNFf over variablesv1, . . . ,vn, define DNF formulasg∗∗, g1∗, g∗1, andg11 over
variablesv3, . . . ,vn as follows:

• g∗∗ is the disjunction of the terms inf that contain neitherv1 norv2;

• g1∗ is the disjunction of the terms inf that containv1 but notv2 (but with v1 removed from each
of these terms);

• g∗1 is defined similarly as the disjunction of the terms inf that containv2 but notv1 (but with v2

removed from each of these terms);

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 155

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

• g11 is the disjunction of the terms inf that contain bothv1 andv2 (with both variables removed
from each term).

We thus havef = g∗∗∨(v1g1∗)∨(v2g∗1)∨(v1v2g11). Note that any ofg∗∗, g1∗, g∗1, g11 may be an empty
disjunction which is identically false.

We can empirically estimate each of the following using uniform random examples(x, f (x)):

p00 := Pr
x
[g∗∗] = Pr

x∈Un
[f (x) = 1 | x1 = x2 = 0]

p01 := Pr
x
[g∗∗∨g∗1] = Pr

x∈Un
[f (x) = 1 | x1 = 0,x2 = 1]

p10 := Pr
x
[g∗∗∨g1∗] = Pr

x∈Un
[f (x) = 1 | x1 = 1,x2 = 0]

p11 := Pr
x
[g∗∗∨g∗1∨g1∗∨g11] = Pr

x∈Un
[f (x) = 1 | x1 = 1,x2 = 1] .

It is clear thatg11 is nonempty if and only ifv1 andv2 co-occur in some term off ; thus we would
ideally like to obtain Prx∈Un[g11]. While we cannot obtain this probability fromp00, p01, p10, andp11,
the following lemma shows that we can estimate a related quantity:

Lemma 3.8. Let P denote p11− p10− p01+ p00. Then P= Pr[g11∧g1∗∧g∗1∧g∗∗]−Pr[g1∗∧g∗1∧g∗∗].

Proof. P gets a net contribution of 0 from thosex which belong tog∗,∗ (since each suchx is added twice
and subtracted twice inP). We proceed to analyze the contributions toP from the remaining 8 subsets
of the eventsg11, g1∗, andg∗1:

• P gets a net contribution of 0 from thosex which are ing1∗∧g∗1∧g∗∗ since each suchx is counted
in p11 andp10 but not inp01 or p00. Similarly P gets a net contribution of 0 from thosex which
are ing∗1∧g1∗∧g∗∗.

• P gets a net contribution of Pr[g11∧g1∗∧g∗1∧g∗∗] since each suchx is counted inp11.

• P gets a net contribution of−Pr[g1∗∧g∗1∧g∗∗] since each suchx is counted inp01, p10, andp11.

More generally, letPi j be defined asP but with vi , xi , v j , andx j substituted forv1, x1, v2, and
x2, respectively, throughout the definitions of theg’s and p’s above. The reader familiar with Boolean
Fourier analysis will readily recognize thatPi j is a scaled (by a factor of−2) version of the second-
order Fourier coefficient off corresponding to the pair of variables(vi ,v j). (This coefficient is equal to
2Prx∈Un[f (x) = xi ⊕ x j]−1; see [23] for a nice overview of Boolean Fourier analysis in the context of
uniform-distribution learning.) The following lemma shows that, for most random choices off , for all
1≤ i, j ≤ n, the value ofPi j is a good indicator of whether or notvi andv j co-occur in some term off :

Lemma 3.9. For n sufficiently large and t≥ 16, with probability at least1− δusat− δshared− δmany

over the random draw of f fromMt,k
n , we have that for all1≤ i, j ≤ n (i) if vi and vj do not co-occur in

some term of f then Pi j ≤ 0; (ii) if v i and vj do co-occur in some term of f then Pi j ≥ α4/16t.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 156

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

Proof. Part (i) holds for any monotone DNF byLemma 3.8. For (ii), we first note that with probability
at least 1−δusat−δshared−δmany, a randomly chosenf has all the following properties:

1. Each term inf is uniquely satisfied with probability at leastα3/2k+3 (by Lemma 3.6);

2. Each pair of termsTi and Tj in f are both satisfied with probability at most logt/22k (by
Lemma 3.7); and

3. Each variable inf appears in at most 2k−1α2/(
√

t logt) terms (byLemma 3.4).

We call such anf well-behaved. For the sequel, assume thatf is well-behaved and also assume without
loss of generality thati = 1 and j = 2. We consider separately the two probabilities

ρ1 = Pr[g11∧g1∗∧g∗1∧g∗∗] and ρ2 = Pr[g1∗∧g∗1∧g∗∗]

whose difference definesP12 = P. By property (1) above,ρ1 ≥ α3/2k+3, since each instancex that
uniquely satisfies a termTj in f containing bothv1 andv2 also satisfiesg11 while falsifying all of g1∗,
g∗1, andg∗∗. Since(k, t) is monotoneα-interesting, this implies thatρ1 ≥ α4/8t. On the other hand,
clearly ρ2 ≤ Pr[g1∗ ∧ g∗1]. By property (2) above, for any pair of terms consisting of one term from
g1∗ and the other fromg∗1, the probability that both terms are satisfied is at most logt/22k. Since each
of g1∗ andg∗1 contains at most 2k−1α2/(

√
t logt) terms by property (3), by a union bound we have

ρ2≤ α4/(4t logt), and the lemma follows:

ρ1−ρ2≥
α4

8t
− α4

4t logt
≥ α4

16t

given the assumption thatt ≥ 16.

Thus, our algorithm for finding all of the co-occurring pairs of a randomly chosen monotone DNF
consists of estimatingPi j for each of then(n− 1)/2 pairs(i, j) so that all of our estimates are—with
probability at least(1− δ)—within an additive factor ofα4/32t of their true values. Recalling that
eachPi j is a scaled version of the second-order Fourier coefficient, by the standard Hoeffding bound a
uniform random sample of sizeO(t2 ln(n2/δ)/α8) is sufficient to estimate all of thePi j ’s to the specified
tolerance with overall probability at least 1− δ . We thus have the following theorem for monotoneα-
interesting(k, t) with t = O(n2−γ):

Theorem 3.10. For n sufficiently large and anyδ > 0, with probability at least1− δusat− δshared−
δmany− δ over the choice of f fromMt,k

n and the choice of random examples, our algorithm runs in
O(n2t2 log(n/δ)) time and identifies exactly those pairs(vi ,v j) which co-occur in some term of f .

3.4 Forming a hypothesis from pairs of co-occurring variables

Here we show how to construct an accurate DNF hypothesis for a randomf drawn fromM
t,k
n .

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 157

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

Identifying k-cliques. By Theorem 3.10, with high probability we have complete information about
which pairs of variables(vi ,v j) co-occur in some term off . We thus may consider the graphG with
verticesv1, . . . ,vn and edges for precisely those pairs of variables(vi ,v j) which co-occur in some term
of f . This graph is a union oft randomly chosenk-cliques from{v1, . . . ,vn} which correspond to thet
terms in f ; we will call these thef -cliquesof G. Ideally, if we could identify exactly thet f -cliques of
G, then we could exactly reconstructf . While we do not know how to accomplish this, we do show how
to find a set ofk-cliques corresponding to a set of terms whose union closely approximatesf .

Specifically, we will show how to efficiently identify (with high probability over the choice off and
random examples off) a set ofk-cliques inG that contains as a subset the set of all of thef -cliques in
G. Once thesek-cliques have been identified, as we show later it is easy to construct an accurate DNF
hypothesis forf .

The following lemma shows that with high probability over the choice off , each pair(vi ,v j) co-
occurs in at most a constant number of terms:

Lemma 3.11. Let δC := (tk2

n2)C (δC is a function of C as well as of t, k, and n) and fix1≤ i < j ≤ n. For
any C≥ 0 and all sufficiently large n, we have

Pr
f∈Mt,k

n

[some pair of variables(vi ,v j) co-occur in more than C terms of f]≤ δC .

Proof. For any fixedr ∈ {1, . . . , t} we have that

Pr[vi andv j co-occur in termTr] =
k(k−1)
n(n−1)

≤ k2

n2 .

Since these events are independent for allr, the probability that there is any collection ofC terms such
thatvi andv j co-occur in allC of these terms is at most(

t
C

)
·
(k2

n2

)C
≤
(tk2

n2

)C
.

By Lemma 3.11we know that, for any given pair(vi ,v j) of variables, with probability at least 1−δC

there are at mostCk other variablesv` such that(vi ,v j ,v`) all co-occur in some term off . Suppose
that we can efficiently (with high probability) identify the setSi j of all such variablesv`. Then we can
perform an exhaustive search over all(k−2)-element subsetsS′ of Si j in at most

(Ck
k

)
≤ (eC)k = nO(logC)

time, and can identify all of the setsS′ such thatS′∪{vi ,v j} is a clique of sizek in G that includes both
vi andv j . Repeating this over all pairs of variables(vi ,v j), we can with high probability identify a set
Gk of k-cliques inG such thatGk contains all of thef -cliques.

Thus, to identifyGk, it remains only to show that for every pair of variablesvi and v j , we can
determine the setSi j of those variablesv` that co-occur in at least one term with bothvi andv j . Assume
that f is such that all pairs of variables co-occur in at mostC terms, and letT be a set of variables of
cardinality at mostC having the following properties:

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 158

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

• In the projectionfT←0 of f in which all of the variables ofT are fixed to 0,vi andv j do not
co-occur in any term; and

• For every setT ′ ⊂ T such that|T ′|= |T|−1, vi andv j do co-occur infT ′←0.

ThenT is clearly a subset ofSi j . Furthermore, if we can identify all such setsT, then their union will be
Si j . There are onlyO(nC) possible sets to consider, so our problem now reduces to the following: given
a setT of at mostC variables, determine whethervi andv j co-occur infT←0.

The proof ofLemma 3.9shows thatf is well-behaved with probability at least 1−δusat−δshared−
δmany over the choice off . Furthermore, iff is well-behaved then it is easy to see that for every
|T| ≤C, fT←0 is also well-behaved, sincefT←0 is just f with O(

√
t) terms removed (byLemma 3.4).

That is, removing terms fromf can only make it more likely that the remaining terms are uniquely
satisfied, does not change the bound on the probability of a pair of remaining terms being satisfied,
and can only decrease the bound on the number of remaining terms in which a remaining variable can
appear. Furthermore,Lemma 3.8holds for any monotone DNFf . Therefore, iff is well-behaved then
the proof ofLemma 3.9also shows that for every|T| ≤ C, the Pi j ’s of fT←0 can be used to identify
the co-occurring pairs of variables withinfT←0. It remains to show that we can efficiently simulate a
uniform example oracle forfT←0 so that thesePi j ’s can be accurately estimated.

In fact, for a given setT, we can simulate a uniform example oracle forfT←0 by filtering the ex-
amples from the uniform oracle forf so that only examples setting the variables inT to 0 are accepted.
Since|T| ≤C, the filter accepts with constant probability at least 1/2C. A Chernoff argument shows
that if all Pi j ’s are estimated using a single sample of size 2C+12t2 ln(2(C+2)nC/δ)/α8 (filtered appro-
priately when needed) then all of the estimates will have the desired accuracy with probability at least
1−δ .

In somewhat more detail, theGk-finding algorithm can be written as:

• Given: α, γ, C, δ

• (Note that f is well-behaved and has the “each pair occurs in at mostC terms” property with
probability at least 1−δusat−δshared−δmany−δC. So assume this off for the remainder of the
algorithm.)

• Draw setSof O(t2 log2(n/δ)) examples off

• For 1≤ i < j ≤ n (fewer thann2 times)

– EstimatePi j overS(O(|S|) time)

– Add (vi ,v j) to the set of co-occurring pairs if estimatedPi j exceeds the thresholdα4/(32t)

• For each|T| ≤C (at mostnC times)

– For each co-occurring pair(vi ,v j) disjoint fromT (less thantk2 times)

(1) EstimatePi j over (T← 0)-filteredS(O(|S|) time)

(2) For each subsetT ′ ⊂ T, |T ′|= |T|−1 (at mostC times)

(i) EstimatePi j over (T ′← 0)-filteredS(O(|S|) time)

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 159

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

∗ Add T to Si j if it passes all threshold tests, i.e. the estimate from (1) is at leastα4/(32t)
and each estimate from (2)(i) is at mostα4/(32t) (O(C) time)

• For each co-occurring pair(vi ,v j) (less thantk2 times)

– For each(k−2)-size subsetU of Si j (nO(logC) times)

∗ Test if the union of(vi ,v j) andU is a clique (O(k2) time)

The time bound for this algorithm is then

O(|S|+n2|S|+nCtk2C|S|+ tk2nO(logC)k2)

which is dominated by the third term ifC≥ 2.
The sample complexity|S| is derived as follows. We need a sample large enough to

• succeed for alln2 tests for co-occurring pairs (over the full sample), and

• succeed for allnC(C+1) tests over filtered examples.

The total number of tests ifC ≥ 2 is bounded byO((C + 2)nC). Recalling that our estimates need
to be accurate to within an additive factor ofα4/32t, we see that if all tests are run over samples of
sizem = 211t2 ln(2(C+ 2)nC/δ)/α8 then, by Hoeffding and the union bound, all tests succeed with
probability at least 1−δ/2.

We want|S| large enough so that all(C+ 1)nC filtered samples will be of sizem with probability
1−δ/2. If a filter accepts with probabilityp over a sample of size 2m/p, then the probability that fewer
thanmexamples are accepted is at moste−m/4 by Chernoff. Using themgiven in the previous paragraph
and the union bound, it can be seen that choosing|S|= 2m/p gives us the desired probability of success
over all tests.

Thus, since we are usingp = 1/2C in the filtering, the final time bound of the algorithm becomes
(for arbitraryC≥ 2) O((2n)Ct3k2 log(CnC/δ)). This gives us the following:

Theorem 3.12. For n sufficiently large, anyδ > 0, and any fixed C≥ 2, with probability at least
1− δusat− δshared− δmany− δC− δ over the random draw of f fromMt,k

n and the choice of random
examples, a set Gk containing all of the f -cliques of G can be identified in time nO(C)t3k2 log(n/δ).

The main learning result for monotone DNF From Gk we construct in the obvious way a list
T ′1, . . . ,T

′
N (with N = |Gk|= O(nC)) of length-k monotone terms that contains allt true termsT1, . . . ,Tt of

f . Now note that the target functionf is simply an OR of some subset of theseN “variables”T1, . . . ,TN,
so the standard elimination algorithm for PAC learning disjunctions (under any distribution) can be used
to PAC learn the target function. The algorithm requiresO((1/ε) log(1/δ)+ N/ε) examples and runs
in time which is linear in its sample size; see e.g. Chapters 1 and 2 of [20].

Call the above described entire learning algorithmA. In summary, we have proved the following:

Theorem 3.13.Fix γ, α > 0and C≥ 2. Let(k, t) be a monotoneα-interesting pair. For anyε > 0, δ > 0,
and t= O(n2−γ), algorithm A will with probability at least1−δusat−δshared−δmany−δC−δ (over

the random choice of DNF fromMt,k
n and the randomness of the example oracle) produce a hypothesis

h that ε-approximates the target with respect to the uniform distribution. Algorithm A runs in time
polynomial in n,log(1/δ), and1/ε.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 160

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

4 Non-monotone DNF

4.1 Interesting parameter settings

As with M
t,k
n we are interested in pairs(k, t) for whichE f∈Dt,k

n
[Pr[f]] is betweenα and 1−α:

Definition 4.1. For α > 0, the pair(k, t) is said to beα-interestingif α ≤ E f∈Dt,k
n

[Pr[f]]≤ 1−α.

For any fixedx∈ {0,1}n we have

Pr
f∈Dt,k

n

[f (x) = 0] =
(
1− 1

2k

)t
, and thus E f∈Dt,k

n
[Pr[f]] = 1−

(
1− 1

2k

)t
by linearity of expectation; this formula will be useful later.

Throughout the rest ofSection4 we assume thatα > 0 is fixed and(k, t) is anα-interesting pair
wheret = O(n3/2−γ) for someγ > 0.

4.2 Properties of random DNF

In this section we develop analogues of Lemmas3.6and3.7 for D
t,k
n . TheD

t,k
n analogue ofLemma 3.7

follows directly from the proof ofLemma 3.7, and we have:

Lemma 4.2. With probability at least1−δsharedover the random draw of f fromDt,k
n , for all 1≤ i <

j ≤ n, Pr[Ti ∧Tj]≤ logt
22k .

In the following lemma we use McDiarmid’s bound to prove aD
t,k
n version ofLemma 3.6:

Lemma 4.3. Let

δ
′
usat:= t

(
(t−1)

(k2

n

)log logt
+exp

(
−α2t

16ln2(2/α) log2 t

))
.

With probability at least1−δ ′usat, a random f drawn fromDt,k
n is such that for each i= 1, . . . , t, we have

Pi ≡ Pr
x
[Ti is satisfied by x but no other Tj is satisfied by x]≥ α

2k+1 .

Proof. We show thatP1 ≥ α/2k+1 with probability at least 1− δ ′usat/t; the lemma follows by a union
bound. We first show thatE f∈Dt,k

n
[P1]≥ α/2k. For any fixedx∈ T1, we have

Pr[T2(x)∧·· · · · ·∧Tt(x)] = (1−2−k)t−1 > (1−2−k)t ≥ α

where the last inequality holds since(k, t) is α-interesting. Since a 2−k fraction of allx∈ {0,1}n belong
to T1, by linearity of expectation we haveE f∈Dt,k

n
[P1]≥ α/2k.

Now we show that with high probability the deviation ofP1 from its expected value is low. Given
any fixed length-k term T1, let Ω denote the set of all length-k termsT which satisfy Pr[T1∧ T] ≤
(logt)/22k. By reasoning as in the proof ofLemma 4.2, with probability at least 1− (t−1)(k2

n)log logt

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 161

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

each ofT2, . . . ,Tt belongs toΩ, so we henceforth assume that this is in fact the case, i.e. we condition on
the event{T2, . . . ,Tt} ⊂ Ω. Note that under this conditioning we have that each ofT2, . . . ,Tt is selected
uniformly and independently fromΩ. Note also that this conditioning can change the value ofP1 (a
probability) by at most(t−1)(k2

n)log logt < α

2k+2 , so under this conditioning we haveE[P1]≥ 3
4 ·

α

2k .
We now use McDiarmid’s inequality where the random variables are the randomly selected terms

T2, . . . ,Tt from Ω andF(T2, . . . ,Tt) denotesP1, i.e.

F(T2, . . . ,Tt) = Pr
x
[T1 is satisfied byx but noTj with j ≥ 2 is satisfied byx] .

Since eachTj belongs toΩ, we have

|F(T2, . . . ,Tt)−F(T2, . . . ,Tj−1,T
′
j ,Tj+1, . . . ,Tt)| ≤ ci =

logt
22k

for all j = 2, . . . , t. Takingτ = 1
4 ·

α

2k , McDiarmid’s inequality implies that Pr
[
P1 < α

2k+1

]
is at most

exp

(
−α2/(16·22k)

(t−1)(logt
22k)2

)
= exp

(
−α222k

16(t−1) log2 t

)
≤ exp

(
−α222k

16t log2 t

)
≤ exp

(
−α2t

16ln2(2/α) log2 t

)
where the last inequality holds since(k, t) is α-interesting. Combining all the failure probabilities, the
lemma is proved.

4.3 Identifying (most pairs of) co-occurring variables

Recall that inSection3.3 we partitioned the terms of our monotone DNF into four disjoint groups
depending on what subset of{v1,v2} was present in each term. In the non-monotone case, we will
partition the terms off into nine disjoint groups depending on whether each ofv1,v2 is unnegated,
negated, or absent:

f = g∗∗∨ (v1g1∗)∨ (v1g0∗)∨ (v2g∗1)∨ (v1v2g11)∨ (v1v2g01)∨ (v2g∗0)∨ (v1v2g10)∨ (v1v2g00)

Thusg∗∗ contains those terms off which contain neitherv1 nor v2 in any form;g0∗ contains the terms
of f which containv1 but notv2 in any form (withv1 removed from each term);g∗1 contains the terms
of f which containv2 but notv1 in any form (withv2 removed from each term); and so on. Eachg·,· is
thus a DNF (possibly empty) over literals formed fromv3, . . . ,vn.

For all four possible values of(a,b) ∈ (0,1)2, we can empirically estimate

pab := Prx[g∗∗∨ga∗∨g∗b∨gab] = Prx[f (x) = 1 | x1 = a,x2 = b] .

It is easy to see that Pr[g11] is either 0 or else at least 4/2k depending on whetherg11 is empty or
not. Ideally we would like to be able to accurately estimate each of Pr[g00], Pr[g01], Pr[g10], and Pr[g11];
if we could do this then we would have complete information about which pairs of literals involving
variablesv1 andv2 co-occur in terms off . Unfortunately, the probabilities Pr[g00], Pr[g01], Pr[g10], and
Pr[g11] cannot in general be obtained fromp00, p01, p10, andp11. However, we will show that we can
efficiently obtain some partial information which enables us to learn to fairly high accuracy.

As before, our approach is to accurately estimate the quantityP = p11− p10− p01+ p00. We have
the following two lemmas:

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 162

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

Lemma 4.4. If all four of g00, g01, g10, and g11 are empty, then P equals

Pr[g1∗∧g∗0∧ (no other g·,·)] +Pr[g0∗∧g∗1∧ (no other g·,·)]
−Pr[g1∗∧g∗1∧ (no other g·,·)] −Pr[g0∗∧g∗0∧ (no other g·,·)] . (4.1)

Proof. Since all four ofg00, g01, g10, andg11 are empty we need only consider the five eventsg∗∗, g∗0,
g0∗, g∗1, andg1∗. We now analyze the contribution toP from each possible subset of these 5 events:

• P gets a net contribution of 0 from thosex which belong tog∗,∗ (and to any other subset of the
remaining four events) since each suchx is counted in each ofp00, p01, p10, andp11. It remains
to consider all 16 subsets of the four eventsg∗0, g0∗, g∗1, andg1∗.

• P gets a net contribution of 0 from thosex which are in at least 3 of the four eventsg∗0,g0∗, g∗1,
andg1∗ since each suchx is counted in each ofp00, p01, p10, andp11. P also gets a net contribution
of 0 from thosex which are in exactly one of the four eventsg∗0, g0∗, g∗1, andg1∗. It remains to
consider thosex which are in exactly two of the four eventsg1∗, g0∗, g∗1, andg∗0.

• P gets a net contribution of 0 from thosex which are ing1∗ andg0∗ and no other events, since each
suchx is counted in each ofp00, p01, p10, andp11. The same is true for thosex which are ing∗1
andg∗0 and no other events.

• P gets a net contribution of

−Pr[g1∗∧g∗1∧ (no otherg·,· occurs)]

from thosex which are ing1∗ andg∗1 and no other event. Similarly,P gets a net contribution of

−Pr[g0∗∧g∗0∧ (no otherg·,· occurs)]

from thosex which are ing0∗ andg∗0 and no other event.P gets a net contribution of

Pr[g1∗∧g∗0∧ (no otherg·,· occurs)]

from thosex which are ing1∗ andg∗0 and no other event, and gets a net contribution of

Pr[g0∗∧g∗1∧ (no otherg·,· occurs)]

from thosex which are ing0∗ andg∗1 and no other event.

Lemma 4.5. If exactly one of g00,g01,g10 and g11 is nonempty (say g11), then P equals (4.1) plus

Pr[g11∧g1∗∧g∗0∧ (no other g·,·)]+Pr[g11∧g0∗∧g∗1∧ (no other g·,·)]
−Pr[g11∧g1∗∧g∗1∧ (no other g·,·)]−Pr[g11∧g0∗∧g∗0∧ (no other g·,·)]
+Pr[g11∧g0∗∧ (no other g·,·)]+Pr[g11∧g∗0∧ (no other g·,·)]+Pr[g11∧ (no other g·,·)] .

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 163

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

Proof. We suppose thatg11 is nonempty. We wish to analyze the contribution toP from all 64 subsets
of the six eventsg∗∗, g1∗, g0∗, g∗1, g∗0, andg11. FromLemma 4.4we know this contribution for the 32
subsets which do not includeg11 is (4.1) so only a few cases remain:

• P gets a net contribution of 0 from thosex which are ing11 and ing∗∗ and in any other subset of
events (each suchx is counted in each ofp11, p01, p10, andp00). Similarly, P gets a contribution
of 0 from thosex which are ing11 and in at least three ofg1∗, g0∗, g∗1, andg∗0. So it remains only
to analyze the contribution from subsets which containg11, contain at most two ofg1∗, g0∗, g∗1,
g∗0, and contain nothing else.

• An analysis similar to that ofLemma 4.4shows thatP gets a net contribution of

Pr[g11∧g1∗∧g∗0∧ (no otherg·,·)]+Pr[g11∧g0∗∧g∗1∧ (no otherg·,·)]
−Pr[g11∧g1∗∧g∗1∧ (no otherg·,·)]−Pr[g11∧g0∗∧g∗0∧ (no otherg·,·)]

from thosex which are ing11, in exactly two of{g1∗,g0∗,g∗1,g∗0}, and in no other events. So
it remains only to consider subsets which containg11 and at most one ofg1∗, g0∗, g∗1, g∗0, and
nothing else.

• P gets a contribution of 0 fromx which are ing11 andg1∗ and in nothing else; likewise fromx
which are ing11 andg∗1 and in nothing else.P gets a contribution of

Pr[g11∧g0∗∧ (no otherg·,·)]

from x which are ing11 andg0∗ and in nothing else, and a contribution of

Pr[g11∧g∗0∧ (no otherg·,·)]

from x which are ing11 andg∗0 and in nothing else.

• P gets a net contribution of Pr[g11∧ (no otherg·,·)] from thosex which are ing11 and in no other
event.

Using the above two lemmas we can show that the value ofP is a good indicator for distinguishing
between all four ofg00, g01, g10, andg11 being empty versus exactly one of them being nonempty:

Lemma 4.6. For n sufficiently large and t≥ 4, with probability at least1− δ ′usat− δshared− δmany

over a random draw of f fromDt,k
n , we have that: (i) if v1 and v2 do not co-occur in any term of f then

P≤ α2/8t; (ii) if v 1 and v2 do co-occur in some term of f and exactly one of g00, g01, g10, and g11 is
nonempty, then P≥ 3α2/16t.

Proof. With probability at least 1− δ ′usat− δshared− δmany a randomly chosenf from D
t,k
n will have

all of the following properties:

1. Each term inf is uniquely satisfied with probability at leastα/2k+1 (by Lemma 4.3);

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 164

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

2. Each variable inf appears in at most 2k−1α2/(
√

t logt) terms (byLemma 3.4); and

3. Each pair of termsTi and Tj in f are both satisfied with probability at most logt/22k (by
Lemma 4.2).

For the sequel assume that we have such anf . We first prove (i) by showing thatP—as represented
by (4.1) of Lemma 4.4—is at mostα4/(t logt). By property 3 above, for any pair of terms consisting of
one term fromg1∗ and the other fromg∗0, the probability that both terms are satisfied is at most logt/22k.
Since each ofg1∗ andg∗0 contains at most 2k−1α2/(

√
t logt) terms by property 2, a union bound gives

Pr[g1∗∧g∗0∧ (no otherg·,·)]≤ Pr[g1∗∧g∗0]≤
α4

4t logt
.

A similar bound holds for Pr[g0∗ ∧ g∗1∧ (no otherg·,·)], which is the only other positive summand in
(4.1), soP is certainly at mostα4/(t logt). This is at mostα2/8t sinceα ≤ 1/2 andt ≥ 4.

We now prove (ii). By an argument similar to the above we have that the first six summands (not
including (4.1) in the expression ofLemma 4.5, namely Pr[g11∧ g1∗ ∧ g∗0∧ (no otherg·,·)] through
Pr[g11∧g∗0∧ (no otherg·,·)], are each at mostα4/(4t logt) in magnitude. Now observe that each in-
stancex that uniquely satisfies a termTj in f containing bothv1 unnegated andv2 unnegated must
satisfyg11 and no otherg·,·. Thus under the conditions of (ii) the last summand inLemma 4.5, namely
Pr[g11∧ (no otherg·,·)], is at leastα/2k+1 by property 1 above, so we have that (ii) is at least

α

2k+1 −
5
2

α4

t logt
.

(Here the 5α4/(2t logt) comes from the ten summands – four from (4.1) and six from the first six
summands ofLemma 4.5– each of which contributes at mostα4/(4t logt) in magnitude.) Since(k, t) is
α-interesting we havet/2k≥ α, and from this and the constant bounds onα andt it is easily shown that

α

2k+1 ≥
α2

2t
and

5
2

α4

t logt
≤ 5α2

16t
,

from which the lemma follows.

It is clear that an analogue ofLemma 4.6holds for any pair of variablesvi ,v j in place ofv1,v2. Thus,
for each pair of variablesvi ,v j , if we decide whethervi andv j co-occur (negated or otherwise) in any
term on the basis of whetherPi j is large or small, we will err only if two or more ofg00, g01, g10, andg11

are nonempty.
We now show that forf ∈D

t,k
n , with very high probability there are not too many pairs of variables

(vi ,v j) which co-occur (with any sign pattern) in at least two terms off . Note that this immediately
bounds the number of pairs(vi ,v j) which have two or more of the correspondingg00, g01, g10, andg11

nonempty.

Lemma 4.7. Let d> 0 and f ∈D
t,k
n . The probability that more than(d+1)t2k4/n2 pairs of variables

(vi ,v j) each co-occur in two or more terms of f is at mostexp(−d2t3k4/n4).

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 165

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

Proof. We use McDiarmid’s inequality, where the random variables are the termsT1, . . . ,Tt chosen in-
dependently from the set of all possible terms of lengthk andF(T1, . . . ,Tt) denotes the number of pairs
of variables(vi ,v j) that co-occur in at least two terms. For each` = 1, . . . , t we have

Pr[T̀ contains bothv1 andv2]≤
k2

n2 ,

so by a union bound we have

Pr[f contains at least two terms which contain bothv1 andv2 in any form]≤ t2k4

n4 .

By linearity of expectation we haveµ = E[F] ≤ t2k4/n2. Since each term involves at mostk2 pairs of
co-occurring variables, we have

|F(T1, . . . ,Tt)−F(T1, . . . ,Ti−1,T
′
i ,Ti+1, . . . ,Tt)| ≤ ci = k2 .

We thus have by McDiarmid’s inequality that Pr[F ≥ t2k4/n2 + τ] ≤ exp(−τ2/(tk4)). Taking τ =
dt2k4/n2, we have Pr[F ≥ (d+1)t2k4/nx2]≤ exp(−d2t3k4/n4).

Taking d = n2/(t5/4k4) in the above lemma (note thatd > 1 for n sufficiently large sincet5/4 =
O(n15/8)), we have(d+1)t2k4/n2≤ 2t3/4 and the failure probability is at most exp(−

√
t/k4) (we hence-

forth write δco-occurto denote this quantity exp(−
√

t/k4)). The results of this section (together with a
standard analysis of error in estimating eachPi j) thus yield:

Theorem 4.8.For n sufficiently large and for anyδ > 0, with probability at least1−δco-occur−δ ′usat−
δshared−δmany−δ over the random draw of f fromDt,k

n and the choice of random examples, the above
algorithm runs in O(n2t2 log(n/δ)) time and outputs a list of pairs of variables(vi ,v j) such that: (i)
if (vi ,v j) is in the list then vi and vj co-occur in some term of f ; and (ii) at most N0 = 2t3/4 pairs of
variables(vi ,v j) which do co-occur in f are not on the list.

4.4 Reconstructing an accurate DNF hypothesis

It remains to construct a good hypothesis for the target DNF from a list of pairwise co-occurrence
relationships as provided byTheorem 4.8. As in the monotone case, we consider the graphG with
verticesv1, . . . ,vn and edges for precisely those pairs of variables(vi ,v j) which co-occur (with any sign
pattern) in some term off . As before this graph is a union oft randomly chosenk-cliquesS1, . . . ,St

which correspond to thet terms in f , and as before we would like to find a set ofk-cliques inG that
contains thet k-cliques corresponding to the terms off as a subset. However, there are two differences
now: the first is that instead of having the true graphG, we instead have access only to a graphG′

which is formed fromG by deleting some set of at mostN0 = 2t3/4 edges. The second difference is
that the final hypothesis must take the signs of literals in each term into account. To handle these two
differences, we use a different reconstruction procedure than we used for monotone DNF inSection3.4;
this reconstruction procedure only works fort = O(n3/2−γ) whereγ > 0.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 166

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

We first show how to identify (with high probability over the choice off) the set ofall k-cliques in
G′; clearly, thek-cliques corresponding to terms inf are a subset of this set. We then show how to form
a DNF hypothesis from the set of allk-cliques inG′.

We now describe an algorithm which, fort = O(n3/2−γ) with γ > 0, with high probability runs in
polynomial time and identifies all thek-cliques inG′ which contain edge(v1,v2). SinceG′ has at most
tk2 edges, running the algorithm at mosttk2 times on all edges inG′ will give us with high probability
all thek-cliques inG′. The algorithm is:

• Let ∆ be the set of verticesv j such thatv1, v2, andv j form a triangle inG′. Run a brute-force
algorithm to find all(k− 2)-cliques in the subgraph induced by∆ (this is the subgraph ofG′

whose vertices are the vertices of∆, and whose edges are the edges that are present inG′ between
vertices of∆).

It is clear that the algorithm finds everyk-clique which contains edge(v1,v2). To bound the algo-
rithm’s running time, it suffices to give a high probability bound on the size of∆ in the graphG (clearly
∆ only shrinks in passing fromG to G′). The following lemma gives such a bound:

Lemma 4.9. Let G be a random graph as described above. For any t= O(n3/2−γ) and any C> 0 we

have that with probability1−O
(

log6C n
n2γC

)
the size of∆ in G is at most Ck.

Proof. In order forv1, v2, andv j to form a triangle inG, it must be the case that either (i) some cliqueSi

contains{1,2, j}; or (ii) there is some pair of cliquesSa,Sb with 2 /∈ Sa and{1, j} ⊂ Sa and 1/∈ Sb and
{2, j} ⊂ Sb.

For (i), we have fromLemma 3.11that v1 andv2 co-occur in more thanC terms with probability
at most(tk2/n2)C. Since each term in whichv1 and v2 co-occur contributes at mostk− 2 vertices
v j to condition (i), the probability that more thanC(k− 2) verticesv j satisfy condition (i) is at most
(tk2/n2)C = O(1/nC/2).

For (ii), let A be the set of those indicesa ∈ {1, . . . , t} such that 2/∈ Sa and 1∈ Sa, and letSA be
∪a∈ASa. Similarly let B be the set of indicesb such that 1/∈ Sb and 2∈ Sb, and letSB be∪b∈BSb. It is
clear thatA andB are disjoint. For each̀= 1, . . . , t we have that̀ ∈ A independently with probability
at mostp = k/n, soE[|A|]≤ tk/n. We now consider two cases:
Case 1:t ≤ n/ logn. In this case we may takeβ = nlogn/(tk) in the Chernoff bound, and we have that
Pr[|A| ≥ β pt] equals

Pr[|A| ≥ logn]≤
(

e
β

)β pt

≤
(

ek

log2n

)logn

=
(

e
Ω(logn)

)logn

=
1

nω(1) .

The same bound clearly holds forB. Note that in Case 1 we thus have|SA|, |SB| ≤ k logn with probability
1−1/nω(1).
Case 2:t > n/ logn. In this case we may takeβ = logn in the Chernoff bound and we obtain

Pr[|A| ≥ β pt] = Pr

[
|A| ≥ tk logn

n

]
≤
(

e
logn

)kt(logn)/n

<

(
e

logn

)k

=
1

nω(1)

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 167

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

where the last inequality holds sincek = Ω(logn) (sincet > n/ logn and(k, t) is α-interesting). In Case
2 we thus have|SA|, |SB| ≤ (tk2 logn)/n with probability 1−1/nω(1).

Let S′A denoteSA−{1} andS′B denoteSB−{2}. SinceA andB are disjoint, it is easily seen that
conditioned onS′A being of some particular sizes′A, all

(n−2
s′A

)
s′A-element subsets of{3, . . . ,n} are equally

likely for S′A. Likewise, conditioned onS′B being of sizes′B, all
(n−2

s′B

)
s′B-element subsets of{3, . . . ,n}

are equally likely forS′B. Thus, the probability that|S′A∩S′B| ≥C is at most(
s′B
C

)(
s′A

n−2

)C

≤
(

s′As′B
n−2

)C

≤
(

2s′As′B
n

)C

(4.2)

(since the expression on the left is an upper bound on the probability that any collection ofC elements
in S′B all coincide with elements ofS′A).

In Case 1 (t ≤ n/ logn) we may assume thats′A,s′B are each at mostk logn (recall from above that this
holds with probability 1−n−ω(1)), and thus (4.2) is at most[(2k2 log2n)/n]C. In Case 2 (t > n/ logn)
we may assume thats′A,s′B≤ (tk2 logn)/n (here too from above we have that this holds with probability
1−n−ω(1)) and thus (4.2) is at most(

2t2k4 log2n
n3

)C

= O

(
log6C n
n2γC

)
.

Thus all in all, we have that except with probabilityO(1/nC/2) event (i) contributes at mostC(k−2)
verticesv j such that{1,2, j} forms a triangle, and except with probabilityO

(
log6C n
n2γC

)
event (ii) con-

tributes at mostC verticesv j such that{1,2, j} forms a triangle. This proves the lemma.

By Lemma 4.9, doing a brute-force search which finds all(k−2)-cliques in the graph induced by

∆ takes at most
(Ck

k

)
≤
(

eCk
k

)k
= (eC)O(logn) = nO(logC) time steps. Thus we can efficiently with high

probability identify all thek-cliques inG′. How many of the “true” cliquesS1, . . . ,St in G are not
present ask-cliques inG′? By Lemma 3.11, with probability at least 1− t2(tk2/n2)C each edge(vi ,v j)
participates in at mostC cliques fromS1, . . . ,St . SinceG′ is missing at mostN0 edges fromG′, with
probability at least 1− t2(tk2/n2)C the set of allk-cliques inG′ is missing at mostCN0 “true” cliques
from S1, . . . ,St .

Summarizing the results of this section so far, we have:

Theorem 4.10.Fix C≥ 2. Given a DNF formula f drawn fromDt,k
n and a list of pairs of co-occurring

variables as described inTheorem 4.8, with probability at least1−1/nΩ(C) the above procedure runs
in nO(logC) time and constructs a a list Z1, . . . ,ZN′ (where N′ = nO(logC)) of k-cliques which contains all
but at most CN0 of the cliques S1, . . . ,St .

We construct a hypothesis DNF from the listZ1, . . . ,ZN′ of candidatek-cliques as follows: for each
Zi we form all 2k possible terms which could have given rise toZi (corresponding to all 2k sign patterns
on thek variables inZi). We then test each of these 2kN′ potential terms against a sample ofM randomly
drawn negative examples and discard any terms which output 1 on any negative example; the final
hypothesish is the OR of all surviving terms. Any candidate termT ′ which has

Pr
x∈Un

[T ′(x) = 1∧ f (x) = 0]≥ ε

2k+1N′

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 168

http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

will survive this test with probability at most exp(−εM/(2k+1N′)). Takingε = 1/2k and

M =
2k+1N′ log2n

ε

we have that with probability 1−1/nω(1) each term in the final hypothesis contributes at mostε/(2k+1N′)
toward the false positive rate ofh, so with high probability the false positive rate ofh is at mostε = 1/2k.

The false negative rate ofh is at most 1
2k times the number of terms inf which are missing inh.

Since the above algorithm clearly will not discard any term inf (since such a term will never cause a
false negative mistake), we need only bound the number of terms inf which are not among our 2kN′

candidates. With probability at least 1−δclique := 1− t2/
(n

k

)
, each true cliqueS1, . . . ,St in G gives rise

to exactly one term off (the only way this does not happen is if two terms consist of literals over the
exact same set ofk variables, and the probability that this occurs is at mostt2/

(n
k

)
), soTheorem 4.10

implies thath is missing at mostCN0 terms of f . Thus the false negative rate is at most

CN0

2k ≤
2Ct3/4

2k =
1

Ω(t1/4)
.

All in all the following is our main learning result for non-monotone DNF:

Theorem 4.11. Fix γ, α > 0 and C≥ 2. Let (k, t) be a monotoneα-interesting pair. For f randomly
chosen fromD

t,k
n , with probability at least1− δco-occur− δ ′usat− δshared− δmany− δclique−1/nΩ(C)

the above algorithm runs iñO(n2t2+nO(logC)) time and outputs a hypothesis h whose error rate relative
to f under the uniform distribution is at most1/Ω(t1/4).

It can be verified from the definitions of the variousδ ’s that for anyt = ω(1) as a function ofn, the
failure probability iso(1) and the accuracy is 1−o(1).

5 Future work

We can currently only learn random DNFs witho(n3/2) terms (o(n2) terms for monotone DNF); can
stronger results be obtained which hold for all polynomial-size DNF? A natural approach here for learn-
ing nc-term DNF might be to first try to identify allc′-tuples of variables which co-occur in a term, where
c′ is some constant larger thanc. Also, our current results fort = ω(1)-term DNF let us learn to some
1−o(1) accuracy but we cannot yet achieve an arbitrary inverse polynomial error rate for non-monotone
DNF. Finally, another interesting direction is to explore other natural models of random DNF formulas,
perhaps by allowing some variation among term sizes or dependencies between terms.

Acknowledgement.Avrim Blum suggested to one of us (JCJ) the basic strategy that learning monotone
DNF with respect to uniform might be reducible to finding the co-occurring pairs of variables in the
target function. We thank the anonymous referees for helpful suggestions and corrections. This material
is based upon work supported by the National Science Foundation under Grant No. CCR-0209064 (JCJ)
and CCF-0347282 (RAS).

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 169

http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

References

[1] * H. A IZENSTEIN AND L. PITT: On the learnability of disjunctive normal form formulas.Machine
Learning, 19:183–208, 1995. [ML:n226835168336578]. 1.1

[2] * NOGA ALON AND JOEL H. SPENCER: The Probabilistic Method. John Wiley and Sons, 2000.
2.1

[3] * D. ANGLUIN: Queries and concept learning.Machine Learning, 2(4):319–342, 1988.
[ML:u228266621966h58]. 1.1

[4] * DANA ANGLUIN AND M ICHAEL KHARITONOV: When won’t membership queries help?Jour-
nal of Computer and System Sciences, 50(2):336–355, 1995. [JCSS:10.1006/jcss.1995.1026]. 1.1

[5] * A. BLUM : Learning a function ofr relevant variables (open problem). InProc. 16th Ann.
Conf. on Computational Learning Theory (COLT’03), volume 2777 ofLecture Notes in Computer
Science, pp. 731–733. Springer, 2003. [COLT:fxdg79cvndr6n05r]. 1.2

[6] * A. BLUM : Machine learning: a tour through some favorite results, direc-
tions, and open problems. FOCS 2003 tutorial slides, available at http://www-
2.cs.cmu.edu/ avrim/Talks/FOCS03/tutorial.ppt, 2003.1.1

[7] * A. BLUM , C. BURCH, AND J. LANGFORD: On learning monotone boolean func-
tions. In Proc. 39th FOCS, pp. 408–415. IEEE Computer Society Press, 1998.
[FOCS:10.1109/SFCS.1998.743491]. 1.1

[8] * A. BLUM , M. FURST, J. JACKSON, M. KEARNS, Y. MANSOUR, AND S. RUDICH: Weakly
learning DNF and characterizing statistical query learning using Fourier analysis. InProc. 26th
STOC, pp. 253–262. ACM Press, 1994. [STOC:195058.195147]. 1.1

[9] * B. BOLLOBÁS: Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinato-
rial Probability. Cambridge University Press, 1986.3.2

[10] * M. GOLEA, M. MARCHAND, AND T. HANCOCK: On learning µ-perceptron networks
on the uniform distribution. Neural Networks, 9(1):67–82, 1994. [NeuralNet:10.1016/0893-
6080(95)00009-7]. 2.2

[11] * T. HANCOCK: Learning kµ decision trees on the uniform distribution. InProc. 6th
Ann. Conf. on Computational Learning Theory (COLT’93), pp. 352–360. ACM Press, 1993.
[ACM:168304.168374]. 2.2

[12] * J. JACKSON: An efficient membership-query algorithm for learning DNF with respect to
the uniform distribution. Journal of Computer and System Sciences, 55(3):414–440, 1997.
[JCSS:10.1006/jcss.1997.1533]. 1.1

[13] * J. JACKSON, A. KLIVANS , AND R. SERVEDIO: Learnability beyondAC0. In Proc. 34th STOC,
pp. 776–784. ACM Press, 2002. [STOC:509907.510018]. 2.2

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 170

http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#AizensteinPitt:95
http://springerlink.metapress.com/link.asp?id=n226835168336578
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#AlonSpencer
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Angluin:88
http://springerlink.metapress.com/link.asp?id=u228266621966h58
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#angkha95
http://dx.doi.org/10.1006/jcss.1995.1026
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Blum:03problem
http://springerlink.metapress.com/link.asp?id=fxdg79cvndr6n05r
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Blum:03tutorial
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#BBL:98
http://doi.ieeecomputersociety.org//10.1109/SFCS.1998.743491
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#BFJ+:94
http://portal.acm.org/citation.cfm?id=195058.195147
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Bollobas:86
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#GHM:94
http://dx.doi.org/10.1016/0893-6080(95)00009-7
http://dx.doi.org/10.1016/0893-6080(95)00009-7
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Hancock:93
http://portal.acm.org/citation.cfm?id=168304.168374
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Jackson:97
http://dx.doi.org/10.1006/jcss.1997.1533
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#JKS:02
http://portal.acm.org/citation.cfm?id=509907.510018
http://dx.doi.org/10.4086/toc

LEARNING RANDOM DNF FORMULAS

[14] * J. JACKSON AND R. SERVEDIO: Learning random log-depth decision trees under the uniform
distribution. InProc. 16th Ann. Conf. on Computational Learning Theory (COLT’03) and 7th
Kernel Workshop, volume 2777 ofLecture Notes in Computer Science, pp. 610–624. Springer,
2003. [doi:10.1007/b12006, COLT:31wxjv7lb9l5]. 2.2

[15] * J. JACKSON AND R. SERVEDIO: On learning random DNF formulas under the uniform dis-
tribution. In Proc. 9th Internat. Workshop on Randomization and Computation (RANDOM’05),
volume 3624 ofLecture Notes in Computer Science, pp. 342–353. Springer, 2005. [RAN-
DOM:2y5933y326xhbgar]. 1.2

[16] * J. JACKSON AND C. TAMON: Fourier Analysis in Machine Learning. ICML/COLT 1997 tutorial
slides, available at http://learningtheory.org/resources.html, 1997.1.1

[17] * M. K EARNS: Efficient noise-tolerant learning from statistical queries.Journal of the ACM,
45(6):983–1006, 1998. [JACM:293347.293351]. 1.1

[18] * M. K EARNS, M. L I , L. PITT, AND L. VALIANT : On the learnability of Boolean formulae. In
Proc. 19th STOC, pp. 285–295. ACM Press, 1987. [STOC:28395.28426]. 3.1

[19] * M. K EARNS, M. L I , L. PITT, AND L. VALIANT : Recent results on Boolean concept learning. In
Proc. 4th Internat. Workshop on Machine Learning, pp. 337–352. Morgan Kaufmann, 1987.1.1

[20] * M. K EARNS AND U. VAZIRANI : An introduction to computational learning theory. MIT Press,
Cambridge, MA, 1994.3.4

[21] * A. K LIVANS , R. O’DONNELL, AND R. SERVEDIO: Learning intersections and thresh-
olds of halfspaces. InProc. 43rd FOCS, pp. 177–186. IEEE Computer Society Press, 2002.
[FOCS:10.1109/SFCS.2002.1181894]. 2.2

[22] * L. K UČERA, A. MARCHETTI-SPACCAMELA, AND M. PROTASSI: On learning monotone
DNF formulae under uniform distributions.Information and Computation, 110:84–95, 1994.
[IandC:10.1006/inco.1994.1024]. 2.2

[23] * Y. M ANSOUR: Learning Boolean functions via the Fourier transform, pp. 391–424. Kluwer
Academic Publishers, 1994.3.3

[24] * C. MCDIARMID : On the method of bounded differences. InSurveys in Combinatorics 1989, pp.
148–188. London Mathematical Society Lecture Notes, 1989.2.1, 3.1

[25] * R. SERVEDIO: On learning monotone DNF under product distributions. InProc. 14th Ann.
Conf. on Computational Learning Theory (COLT’01), volume 2111 ofLecture Notes in Computer
Science, pp. 558–573. Springer, 2001. [COLT:3j42gw4570jb08yt]. 1.1, 2.2

[26] * L. VALIANT : A theory of the learnable.Communications of the ACM, 27(11):1134–1142, 1984.
[CACM:1968.1972]. 1.1, 1.2, 3.1

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 171

http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#JacksonServedio:03
http://dx.doi.org/10.1007/b12006
http://springerlink.metapress.com/link.asp?id=31wxjv7lb9l5
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#JacksonServedio:05random
http://springerlink.metapress.com/link.asp?id=2y5933y326xhbgar
http://springerlink.metapress.com/link.asp?id=2y5933y326xhbgar
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#JacksonTamon:97
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Kearns:98
http://portal.acm.org/citation.cfm?id=293347.293351
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#KLP+:87b
http://portal.acm.org/citation.cfm?id=28395.28426
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#KLP+:87a
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#KearnsVazirani:94
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#KOS:02
http://doi.ieeecomputersociety.org//10.1109/SFCS.2002.1181894
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#KMP:94
http://dx.doi.org/10.1006/inco.1994.1024
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Mansour:94
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#McDiarmid:89
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Servedio:01mdnf
http://springerlink.metapress.com/link.asp?id=3j42gw4570jb08yt
http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Valiant:84
http://portal.acm.org/citation.cfm?id=1968.1972
http://dx.doi.org/10.4086/toc

J. JACKSON AND R. SERVEDIO

[27] * K. V ERBEURGT: Learning DNF under the uniform distribution in quasi-polynomial time. In
Proc. 3rd Ann. Workshop on Computational Learning Theory (COLT ’90), pp. 314–326. Morgan
Kaufmann, 1990. [ACM:92571.92657]. 1.1, 2.2

AUTHORS

Jeffrey C. Jackson
Department of Mathematics and Computer Science
Duquesne University
Pittsburgh, PA 15282, USA
jacksonj duq edu
http://www.mathcs.duq.edu/~jackson

Rocco A. Servedio
Department of Computer Science
Columbia University
New York, NY 10027, USA
rocco cs columbia edu
http://www.cs.columbia.edu/~rocco

ABOUT THE AUTHORS

JEFFREY C. JACKSON has a distinctive educational background, having received his B. S.
from Oral Roberts Universityand his Ph. D. fromCarnegie Mellon, whereMerrick Furst
was his advisor. He has been a member of the faculty ofDuquesne Universitysince
1995, where he is currently chair of theDepartment of Mathematics and Computer
Science. Jeff has also been a software engineer and manager in both the aerospace
and dot-com industries and is the author of the textbookWeb Technologies: A Science
Computer Perspective. He is the proud father of four children (think about his last name
for a moment and you’ll know why he and his wife didn’t stop at three).

ROCCO A. SERVEDIO received his B. S., M. S. and Ph. D. fromHarvard University, where
his Ph. D. was supervised byLeslie Valiant. For a change of pace, he then held an
NSF postdoc atHarvard University, where he was supervised byLeslie Valiant. Since
2003 he has been an assistant professor atColumbia Universityin the Department of
Computer ScienceHe is interested in computational learning theory and computational
complexity, and has received the NSF Career award and a Sloan Foundation Fellowship.
He enjoys spending time with his family and hopes to have dinner withHerman Melville
in the afterlife.

THEORY OFCOMPUTING, Volume 2 (2006), pp. 147–172 172

http://theoryofcomputing.org/articles/main/v002/a008/bibliography.html#Verbeurgt:90
http://portal.acm.org/citation.cfm?id=92571.92657
http://www.mathcs.duq.edu/~jackson
http://www.mathcs.duq.edu/~jackson
http://www.mathcs.duq.edu/~jackson
http://www.cs.columbia.edu/~rocco
http://www.cs.columbia.edu/~rocco
http://www.cs.columbia.edu/~rocco
http://www.oru.edu
http://www.cmu.edu
http://www.cc.gatech.edu/component/option,com_peopledb/task,view/contact_id,285069031/
http://www.duq.edu
http://www.mathcs.duq.edu
http://www.mathcs.duq.edu
http://vig.prenhall.com/catalog/academic/product/0,1144,0131856030,00.html
http://vig.prenhall.com/catalog/academic/product/0,1144,0131856030,00.html
http://www.harvard.edu
http://people.deas.harvard.edu/~valiant
http://www.harvard.edu
http://people.deas.harvard.edu/~valiant
http://www.columbia.edu
http://www.cs.columbia.edu
http://www.cs.columbia.edu
http://en.wikipedia.org/wiki/Herman_Melville
http://dx.doi.org/10.4086/toc

	Introduction
	Motivation and background
	Our results

	Preliminaries
	Tail bounds
	The learning model

	Learning random monotone DNF
	Interesting parameter settings
	Properties of random monotone DNF
	Identifying co-occurring variables
	Forming a hypothesis from pairs of co-occurring variables

	Non-monotone DNF
	Interesting parameter settings
	Properties of random DNF
	Identifying (most pairs of) co-occurring variables
	Reconstructing an accurate DNF hypothesis

	Future work
	References

