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Abstract: We give an overview of the history of fast algorithms for matrix multiplication.
Along the way, we look at some other fundamental problems in algebraic complexity like
polynomial evaluation.

This exposition is self-contained. To make it accessible to a broad audience, we only
assume a minimal mathematical background: basic linear algebra, familiarity with polyno-
mials in several variables over rings, and rudimentary knowledge in combinatorics should be
sufficient to read (and understand) this article. This means that we have to treat tensors in
a very concrete way (which might annoy people coming from mathematics), occasionally
prove basic results from combinatorics, and solve recursive inequalities explicitly (because
we want to annoy people with a background in theoretical computer science, too).
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1 Introduction

Given two n×n-matrices x = (xik) and y = (yk j) whose entries are indeterminates over some field K, we
want to compute their product xy = (zi j). The entries zi j are given by the following well-known bilinear
forms

zi j =
n

∑
k=1

xikyk j , 1≤ i, j ≤ n . (1.1)

Each zi j is the sum of n products. Thus every zi j can be computed with n multiplications and n− 1
additions. This gives an algorithm that altogether uses n3 multiplications and n2(n− 1) additions.
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This algorithm looks so natural and intuitive that it is very hard to imagine that there is better way to
multiply matrices. However, in 1969, Strassen [31] found a way to multiply 2×2-matrices with only 7
multiplications but 18 additions.

Let zi j, 1≤ i, j ≤ 2, be given by(
z11 z12
z21 z22

)
=

(
x11 x12
x21 x22

)(
y11 y12
y21 y22

)
.

We compute the seven products

p1 = (x11 + x22)(y11 + y22) ,

p2 = (x21 + x22)y11 ,

p3 = x11(y12− y22) ,

p4 = x22(−y11 + y21) ,

p5 = (x11 + x12)y22 ,

p6 = (−x11 + x21)(y11 + y12) ,

p7 = (x12− x22)(y21 + y22) .

We can express each of the zi j as a linear combination of these seven products, namely,(
z11 z12
z21 z22

)
=

(
p1 + p4− p5 + p7 p3 + p5

p2 + p4 p1 + p3− p2 + p6

)
.

The number of multiplications in this algorithm is optimal (we will see this later), but already for 3×3-
matrices, the optimal number of multiplication is not known. We know that it lies between 19 and 23,
cf. [5, 21].

But is it really interesting to save one multiplication but have an additional 14 additions instead?1 The
important point is that Strassen’s algorithm does not only work over fields but also over noncommutative
rings. In particular, the entries of the 2×2-matrices could also be matrices and we can apply the algorithm
recursively. And for matrices, multiplications—at least if we use the naive method—are much more
expensive than additions, namely O(n3) compared to n2.

Proposition 1.1. One can multiply n×n-matrices with O(nlog2 7) arithmetic operations (and even without
using divisions).2

1There is a variant of Strassen’s algorithm that uses only 15 additions [38]. However, de Groote [15] showed that, using an
appropriate notion of equivalence, there is only one algorithm for multiplying 2×2-matrices using seven multiplications. And
one can even show that 15 additions is optimal, i. e., every algorithms that uses only seven multiplications needs at least 15
additions [7].

2What is an arithmetic operation? We will make this precise in the next section. For the moment, we compute over the field
of rational functions K(xi j,yi j | 1≤ i, j ≤ n). We start with the constants from K and the indeterminates xi j and yi j. Then we
can take any two of the elements that we computed so far and compute their product, their quotient (if the second element is not
zero), their sum, or their difference. We are done if we have computed all the zi j in (1.1).
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Proof. W. l. o. g. let n = 2`, ` ∈ N. If this is not the case, then we can embed our matrices into matrices
whose size is the next largest power of two and fill the remaining positions with zeros.3 Since the
algorithm does not use any divisions, substituting an indeterminate by a concrete value will not cause a
division by zero.

We will show by induction in ` that we can multiply with 7` multiplications and 6 · (7`−4`) addi-
tions/subtractions.
Induction start (`= 1): See above.
Induction step (`− 1→ `): We think of our matrices as 2× 2-matrices whose entries are 2`−1× 2`−1

matrices, i. e., we have the following block structure:( )
·
( )

=

( )
.

We can multiply these matrices using Strassen’s algorithm with seven multiplications of 2`−1× 2`−1-
matrices and 18 additions of 2`−1×2`−1-matrices.

For the seven multiplications of the 2`−1× 2`−1-matrices, we need 7 · 7`−1 = 7` multiplications
by the induction hypothesis. And we need 7 · 6 · (7`−1− 4`−1) additions/subtractions for the seven
multiplications. The 18 additions of 2`−1× 2`−1-matrices need 18 · (2`−1)2 additions. Thus the total
number of additions/subtractions is

7 ·6 · (7`−1−4`−1)+18 · (2`−1)2 = 6 · (7`−7 ·4`−1 +3 ·4`−1) = 6 · (7`−4`) .

This finishes the induction step. Since 7` = nlog2 7, we are done.

2 Computations and costs

2.1 Karatsuba’s algorithm

Let us start with a very simple computational problem, the multiplication of univariate polynomials of
degree one. We are given two polynomials a0+a1X and b0+b1X and we want to compute the coefficients
c0,c1,c2 of their product, which are given by

(a0 +a1 ·X) · (b0 +b1 ·X) = a0b0︸︷︷︸
=:c0

+(a0b1 +a1b0)︸ ︷︷ ︸
=:c1

·X +a1b1︸︷︷︸
=:c2

·X2 .

We here consider the coefficients of the two polynomials to be indeterminates over some field K. The
coefficients of the product are rational functions (in fact, bilinear forms) in a0,a1,b0,b1, so the following
model of computation seems to fit well. We have a sequence (w1,w2, . . . ,w`) of rational functions such
that each wi is either a0, a1, b0, or b1 (inputs) or a constant from K or can be expressed as wi = w j op wk
for indices j,k < i and op is one of the arithmetic operations ·, /, +, or −.

3Asymptotically, this is o.k. For practical purposes, it is better to directly recurse if n is even and add a row and column with
zeros if n is odd.
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Here is one possible computation that computes the three coefficients c0, c1, and c2.

w1 = a0 ,
w2 = a1 ,
w3 = b0 ,
w4 = b1 ,

(c0 =) w5 = w1 ·w3 ,
(c2 =) w6 = w2 ·w4 ,

w7 = w1 +w2 ,
w8 = w3 +w4 ,
w9 = w7 ·w8 ,
w10 = w5 +w6 ,

(c1 =) w11 = w9−w10 .

The above computation only uses three multiplications instead of four, which the naive algorithm needs.
This is also called Karatsuba’s algorithm [20].4 Like Strassen’s algorithm, it can be generalized to
higher degree polynomials. If we have two polynomials A(X) = ∑

n
i=0 aiX i and B(X) = ∑

n
j=0 b jX j with

n = 2`−1, then we split the two polynomials into halves, that is, A(X) = A0(X)+X (n+1)/2A1(X) with
A0(X) = ∑

(n+1)/2−1
i=0 aiX i and A1(X) = ∑

(n+1)/2−1
i=0 a(n+1)/2+iX i and the same for B. Then we multiply

these polynomials using the above scheme with A0 taking the role of a0 and A1 taking the role of a1 and
the same for B. All multiplications of polynomials of degree (n+1)/2−1 are performed recursively. Let
N(n) denote the number of arithmetic operations that the above algorithm needs to multiply polynomial
of degree ≤ n. The algorithm above gives the following recursive equation

N(n) = 3 ·N((n+1)/2−1)+O(n) and N(2) = 7 .

Similarly to the analysis of Strassen’s algorithm, one can show that N(n) = O(nlog2 3). Karatsuba’s
algorithm again trades one multiplication for a bunch of additional additions which is bad for degree
one polynomials but good in general, since polynomial addition only needs n operations but polynomial
multiplication—at least when using the naive method—is much more expensive, namely, O(n2).

2.2 A general model

We provide a framework to define computations and costs that is general enough to cover all the examples
that we will look at. For a set S, let fin(S) denote the set of all finite subsets of S.

Definition 2.1 (Computation structure). A computation structure is a set M together with a mapping
γ : M×fin(M)→ [0;∞] such that

1. im(γ) is well ordered, that is, every non-empty subset of im(γ) has a minimum,

2. γ(w,U) = 0 if w ∈U ,

3. U ⊆V ⇒ γ(w,V )≤ γ(w,U) for all w ∈M, U,V ⊆ fin(M).

4See [19] why Ofman is a coauthor and why this paper was not even written by Karatsuba.
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M is the set of objects that we are computing with. γ(w,U) is the cost of computing w from U “in
one step.” In the example of polynomial multiplication of degree one in the previous subsection, M is the
set of all rational functions in a0,a1,b0,b1. If we want to count the number of arithmetic operations of
Karatsuba’s algorithm, then γ(w,U) = 0 if w ∈U . (“There is no cost if we already computed w.”) We
have γ(w,U) = 1 if there are u,v ∈U such that w = uopv. (“w can be computed from u and v with one
arithmetical operation.”) In all other cases γ(w,U) = ∞. (“w cannot be computed in one step from U .”)

Often, we have a set M together with some operations φ : Ms→M of some arity s. If we assign to
each such operation a cost, then this induces a computation structure in a very natural way.

Definition 2.2. A structure (M,φ1,φ2, . . .) with (partial) operations φ j : Ms j →M and a cost function
¢ : {φ1,φ2, . . .}→ [0;∞] such that im(¢) is well ordered induces a computation structure in the following
way:

γ(w,U) := min{¢(φ j) | ∃u1, . . . ,us j ∈U : w = φ j(u1, . . . ,us j)} .

If the minimum is taken over the empty set, then we set γ(w,U) = ∞. If w ∈U , then γ(w,U) = 0.

Remark 2.3 (for hackers). We can always achieve γ(w,U) = 0 by adding the function φ0 = id to the
structure with ¢(φ0) = 0.

Definition 2.4 (Computation).

1. A sequence β = (w1, ...,wm) of elements in M is a computation with input X ⊆M if

∀ j ≤ m : w j ∈ X ∨ γ(w j,Vj)< ∞ where Vj = {w1, ...,w j−1}

2. β computes a set Y ∈ fin(M) if in addition Y ⊆ {w1, ...,wm}.

3. The cost of β is Γ(β ,X)
Def
=

m
∑
j=1

γ(w j,Vj).

In a computation, every wi can be computed from elements previously computed, i. e., elements in Vj

or from elements in X (“inputs”). The cost of a computation is the sum of the costs of the individuals
steps.

Definition 2.5 (Complexity). The complexity of Y given X is defined by

C(Y,X) := min{Γ(β ,X) | β computes Y from X} .

The complexity of a set Y is nothing but the cost of a cheapest computation that computes Y .

Notation 2.6.

1. If we compute only one element y, we will write C(y,X) instead of C({y},X) and so on.

2. If X = /0 or X is clear from the context, then we will just write C(Y ).
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2.3 Examples

The following computation structure will appear quite often in these notes.

Example 2.7 (Ostrowski measure). Our structure is M = K(X1, . . . ,Xn), the field of rational functions
in indeterminates X1, . . . ,Xn. We have four (or three) operations of arity 2, namely, multiplication,
division, addition, and subtraction. Division is a partial operation which is only defined if the second
input is nonzero (as a rational function). If we are only interested in computing polynomials, we might
occasionally disallow divisions. For every λ ∈ K, there is an operation λ · of arity 1, the multiplication
with the scalar λ . The cost is given by:

Operation Arity Cost
· , / 2 1
+, − 2 0

λ · 1 0

While in today’s computer chips, multiplication takes about the same number of cycles as addition,
Strassen’s algorithm and also Karatsuba’s algorithm show that this is nevertheless a meaningful way of
charging cost.

The complexity induced by the Ostrowski measure will be denoted by C∗/, or C∗ if we disallow
divisions. In particular, Karatsuba’s algorithm yields C∗/({c0,c1,c2},{a0,a1,b0,b1}) = 3. (The lower
bound follows from the fact, that c0,c1,c2 are linearly independent over K.)

Example 2.8 (Addition chains). Our structure is M = N with the following operations:

Operation Arity Cost
1 0 0
+ 2 1

C(n) measures how many additions we need to generate n from 1.

Additions chains are motivated by the problem of computing a power Xn from X with as few
multiplications as possible. We have logn≤C(n)≤ 2logn. The lower bound follows from the fact that
we can at most double the largest number computed so far with one more addition. The upper bound is
the well-known “square and multiply” algorithm. This is an old problem from the 1930s, which goes
back to Scholz [26] and Brauer [6], but quite some challenging questions still remain open.

Research problem 2.9. Prove the Scholz-Brauer conjecture:

C(2n−1)≤ n+C(n)−1 for all n ∈ N.

Research problem 2.10. Prove Stolarsky’s conjecture [29]:

C(n)≥ logn+ log(q(n)) for all n ∈ N,

where q(n) is the sum of the bits of the binary expansion of n. Schönhage [27] proved that

C(n)≥ logn+ log(q(n))−2.13 .
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3 Evaluation of polynomials

Let us start with a simple example, the evaluation of univariate polynomials. Our input are the coefficients
a0, . . . ,an of the polynomial and the point x at which we want to evaluate the polynomial. We model them
as indeterminates, so our set M = K0(a0, . . . ,an,x). We are interested in determining C( f ,{a0, . . . ,an,x})
where

f = a0 +a1x+ · · ·+anxn ∈ K0(a0, . . . ,an,x) .

A well known algorithm to compute f is Horner’s scheme. We write f as

f = ((anx+an−1)x+an−2)x+ · · ·+a0 .

This representation immediately gives a way to compute f with n multiplications and n additions. We will
show that this is best possible: Even if we can make as many additions/subtractions as we want, we still
need n multiplications/divisions. And even if we are allowed to perform as many multiplications/divisions
as we want, n additions/subtractions are required. In the former case, we will use the well-known
Ostrowski measure. In the latter case, we will use the so-called additive complexity, denoted by C+,
which is “the opposite” of the Ostrowski model. Here multiplications and divisions are for free but
additions and subtractions count.

Operation Costs
C∗/ C+

· , / 1 0
+, − 0 1

λ · 0 0
p ∈ K0(x) 0 0

We will even allow that we can get elements from K := K0(x) for free (operation with arity zero).
So we, e. g., can compute arbitrary powers of x at no cost. (This is a special feature of this section. In
general, this is neither the case under the Ostrowski measure nor under the additive measure.)

Theorem 3.1. Let a0, . . . ,an,x be indeterminates over K0 and f = a0+a1x+ · · ·+anxn. Then C∗/( f )≥ n
and C+( f )≥ n. This is even true if all elements from K0(x) are free of cost.

The question about the optimality of Horner’s scheme was raised by Ostrowski [23]. It is one of the
founding problems of algebraic complexity theory. It took one decade until Pan [24] was able to prove
that Horner’s scheme is optimal with respect to multiplications. Prior to this, Motzkin [22] proved that it
is optimal with respect to additions. We will prove both results in the next two subsections.

3.1 Multiplications

The first statement of Theorem 3.1 is implied by the following lower bound due to Winograd [37].
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Theorem 3.2. Let K0 ⊆ K be fields, Z = {z1, . . . ,zn} be indeterminates and F = { f1, . . . , fm} where

fµ =
n
∑

ν=1
pµ,νzν +qµ with pµν ,qµ ∈ K, 1≤ µ ≤ m. Then C∗/(F,Z)≥ r−m where

r = col-rkK0

 p11 . . . p1n 1 . . . 0
...

...
...

. . .
...

pm1 . . . pmn 0 . . . 1

 .

We get the first part of Theorem 3.1 from Theorem 3.2 as follows: We set

K = K0(x) ,

zν = aν ,

m = 1 ,

f1 = f ,

p1ν = xν , 1≤ ν ≤ n ,

q1 = a0 .

Then P = (x,x2, . . . ,xn,1) and col-rkK0 P = n+ 1.5 We get C∗/( f1,{a0, . . . ,an}) ≥ n+ 1− 1 = n by
Theorem 3.2.

Proof of Theorem 3.2. The proof is by induction in n.
Induction start (n = 0): We have

P =

1
. . .

1


and therefore, r = m. Thus C∗/(F)≥ 0 = r−m.
Induction step (n−1→ n): If r = m, then there is nothing to show. Thus we can assume that r > m. We
claim that in this case, C∗/(F,Z)≥ 1. This is due to the fact that the set of all rational functions that can
be computed with zero cost is

W0 = {w ∈ K(z1, . . . ,zm) |C(w,Z) = 0}= K +K0z1 +K0z2 + · · ·+K0zn .

(Clearly, every element in W0 can be computed without any cost. But W0 is also closed under all operations
that are free of cost.) If r > m, then there are µ and i such that pµ,i 6∈ K0 and therefore fµ 6∈W0.

W. l. o. g. K0 is infinite, because if we replace K0 by K0(t) for some indeterminate t, the complexity
cannot go up, since every computation over K0 is certainly a computation over K0(t). W. l. o. g. fµ 6= 0
for all 1≤ µ ≤ m.

Let β = (w1, . . . ,w`) be an optimal computation for F and let each wλ = pλ/qλ with pλ ,qλ ∈
K0[z1, . . . ,zn]. Let j be minimal such that γ(w j,Vj) = 1, where Vj = {w1, . . . ,w j−1}. Then there are
u,v ∈W0 such that

w j =

{
u · v or
u/v .

5Remember that we are talking about the rank over K0. And over K0, pairwise distinct powers of x are linearly independent!
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By definition of W0, there exist α1, . . . ,αn ∈ K0, b ∈ K and γ1, . . . ,γn ∈ K0, d ∈ K such that

u =
n

∑
ν=1

ανzν +b ,

v =
n

∑
ν=1

γνzν +d .

Because b ·d,b/d ∈W0, there is a ν1 such that αν1 6= 0 or there is a ν2 such that γν2 6= 0. W. l. o. g.
ν1 = n or ν2 = n.

Now the idea is the following. We define a homomorphism S : M′→ M̄ where M′ is an appropriate
subset of M and M̄ = K[z1, . . . ,zn−1] in such a way that

C(S( f1), . . . ,S( fm))≤C( f1, . . . , fm)−1 .

Such an S is also called a substitution and the proof technique that we are using is called the substitution
method. Then we apply the induction hypothesis to S( f1), . . . ,S( fm).

Case 1: w j = u · v. We can assume that γn 6= 0. Our substitution S is induced by

zn→
1
γn

(
λ︸︷︷︸
∈K0

−
n−1

∑
ν=1

γνzν −d
)
,

zν → zν for 1≤ ν ≤ n−1 .

The parameter λ will be chosen later. We have S(zn)∈W0, so there is a computation (x1, . . . ,xt) computing
zn at no cost. In the following, for an element g ∈ K(z1, . . . ,zn), we set ḡ := S(g). We claim that the
sequence

β̄ = ( x̄1, . . . , x̄t︸ ︷︷ ︸
compute z̄n for free

, w̄1, . . . , w̄`)

is a computation for f̄1, . . . , f̄m, since S is a homomorphism. There are two problems that have to be fixed:
First zn (an input) is replaced by something, namely z̄n, that is not an input. But we compute z̄n in the
beginning. Second, the substitution might cause a “division by zero,” i. e., there might be an i such that
q̄i = 0 and then w̄i = p̄i/q̄i is not defined. But since qi considered as an element of K(z1, . . . ,zn−1)[zn]
can only have finitely many zeros, we can choose the parameter λ in such a way that none of the q̄i is
zero. (K0 is infinite!)

By definition of S,
w̄ j = ū · v̄︸︷︷︸

=λ

,

thus
γ(w̄ j,V̄j) = 0 .

This means that
Γ(β ,Z)−1≥ Γ̄(β̄ , Z̄)
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and
C∗/(F,Z) = Γ(β ,Z)≥ Γ̄(β̄ , Z̄)+1 ≥︸︷︷︸

induction
hypothesis

col-rkK0 P̄−m+1 .

It remains to estimate col-rkK0 P̄. We have

f̄µ =
n−1

∑
ν=1

p̄µνzν + q̄µ ,

p̄µν = pµν −
γν

γn
pµn ,

q̄µ = qµ −
pµn

γn
(λ −d) .

Thus P̄ is obtained from P by adding a K0-multiple of the nth column to the other ones and then deleting
the nth column. Therefore, col-rkK0 P̄≥ r−1 and C∗/(F,Z)≥ r−m.

Case 2: w j = u/v. If γn 6= 0, then v̄ = λ ∈ K0 and the same substitution as in the first case works. If
γν = 0 for all ν , then v = d and αn 6= 0. Now we substitute

zn 7→
1

αn
(λd−

n−1

∑
ν=1

ανzν −b) ,

zν 7→ zν for 1≤ ν ≤ n−1 .

Then ū = λd and w̄ j = ū/v̄ = λ ∈ K0. We can now proceed as in the first case.

3.1.1 Further applications

Here are two other applications of Theorem 3.2.

Several polynomials

We can also look at the evaluation of several polynomials at one point x, i. e., at the complexity of

fµ(x) =
nµ

∑
ν=0

aµνxν , 1≤ µ ≤ m .

Here the matrix P looks like

P =


x x2 . . . xn1 0 0 . . . 0 . . . 0 0 . . . 0
0 0 . . . 0 x x2 . . . xn2 . . . 0 0 . . . 0
...

...
...

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 . . . 0 . . . x x2 . . . xnm

∣∣∣∣∣∣∣∣∣
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


and we have col-rkK0 P = n1 +n2 + · · ·+nm +m. Thus

C∗/( f1, . . . , fm)≥ n1 +n2 + · · ·+nm ,

that is, evaluating each polynomial using the Horner scheme is optimal. On the other hand, if we want to
evaluate one polynomial at several points, this can be done much faster, see [8].
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Matrix vector multiplication

Here, we consider the polynomials f1, . . . , fm given bya11 . . . a1k
...

...
am1 . . . amk


x1

...
xk

=

 f1
...
fm

 .

The matrix P is given by

P =


x1 x2 . . . xk 0 0 . . . 0 . . . 0 0 . . . 0
0 0 . . . 0 x1 x2 . . . xk . . . 0 0 . . . 0
...

...
...

...
...

...
. . .

...
...

...
0 0 . . . 0 0 0 . . . 0 . . . x1 x2 . . . xk

∣∣∣∣∣∣∣∣∣
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 .

Thus col-rkK0(P) = km+m and
C∗/( f1, . . . , fm)≥ mk .

This means that here—opposed to general matrix multiplication—the trivial algorithm is optimal.

3.2 Additions

The second statement of Theorem 3.1 follows from the Theorem 3.3 below. We need the concept of
transcendence degree. If we have two fields K ⊆ L, then the transcendence degree of L over K, tr-degK(L)
is the maximum number t of elements a1, . . . ,at ∈ L such that a1, . . . ,at do not fulfill any algebraic relation
over K, that is, there is no t-variate polynomial p with coefficients from K such that p(a1, . . . ,at) = 0.6

Theorem 3.3. Let K0 be a field and K = K0(a0, . . . ,an). Let f = a0 + · · ·+anxn. Then

C+( f )≥ tr-degK0
(a0,a1, . . . ,an)−1 .

Proof. Let β = (w1, . . . ,w`) be a computation that computes f . W. l. o. g. wλ 6= 0 for all 1≤ λ ≤ `.
We want to characterize the set Wm of all elements that can be computed with m additions. We claim

that there are polynomials gi(x,z1, . . . ,zi) and elements ζi ∈ K, 1≤ i≤ m such that

W0 = {bxt0 | t0 ∈ Z,b ∈ K} and

Wm = {bxt0 f1(x)t1 . . . fm(x)tm | ti ∈ Z,b ∈ K}

where fi(x) = gi(x,z1, . . . ,zi) |z1→ζ1,...,zi→ζi , 1≤ i≤ m. The proof of this claim is by induction in m.
Induction start (m = 0): clear by construction.
Induction step (m→m+1): Let wi = u±v be the last addition/subtraction in our computation with m+1
additions/subtractions. u,v can be computed with m additions/subtractions, therefore u,v ∈Wm by the
induction hypothesis. This means that

wi = bxt0 f1(x)t1 . . . fm(x)tm± cxs0 f1(x)s1 . . . fm(x)sm .

6Note the similarity to dimension of vector spaces. Here the dimension is the maximum number of elements that do not
fulfill any linear relation.
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W. l. o. g. b 6= 0, otherwise we would add 0. Therefore,

wi = b(xt0gt1
1 . . .g

tm
m ±

c
b
· xs0gs1

1 . . .gsm
m ) |z1→ζ1,...,zm→ζm .

We set
gm+1 := (xt0gt1

1 . . .g
tm
m ± zm+1xs0gs1

1 . . .gsm
m ) .

Then

wi = bgm+1 |z1→ζ1,...,zm+1→ζm+1 with ζm+1 =
c
b
.

This shows the claim.
Since wi was the last addition/subtraction in β for every j > i, w j can be computed using only

multiplications and is therefore in Wm+1. Since the gi depend on m + 1 variables z1, . . . ,zm+1, the
polynomials fi have transcendence degree at most m+1. Henceforth, the transcendence degree of the
coefficients of f is at most m+1, since they are polynomials in the fi.

Exercise 3.4. Show that the additive complexity of matrix-vector multiplication is m(k−1) (multiplica-
tion of an m× k-matrix with a vector of size k, see the specification in the previous section). Thus the
trivial algorithm is optimal.

4 Bilinear problems

Let K be a field and let M = K(x1, . . . ,xN). We will use the Ostrowski measure in the following. We will
ask questions of the form

C∗/(F) = ?

where F = { f1, . . . , fk} is a set of quadratic forms,

fκ =
N

∑
µ,ν=1

tκµνxµxν , 1≤ κ ≤ k .

Most of the time, we will consider the special case of bilinear forms, that is, our variables are divided into
two disjoint sets and only products of one variable from the first set with one variable of the second set
appear in fκ .

The “three dimensional array” t := (tκµν)κ=1,...,k;µ,ν=1,...,N ∈ Kk×N×N is called the tensor correspond-
ing to F . Since xµxν = xνxµ , there are several tensors that represent the same set F . A tensor s is
symmetrically equivalent to t if

sκµν + sκνµ = tκµν + tκνµ for all κ , µ , ν .

Two tensors describe the same set of quadratic forms if they are symmetrically equivalent.
The two typical problems that we will deal with in the following are:
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a0 a1 a2 a3
b0 1 2 3 4
b1 2 3 4 5
b2 3 4 5 6
b3 4 5 6 7

Figure 1: The tensor of the multiplication of polynomials of degree three. The rows correspond to the
coefficients of the first polynomial, the columns to the coefficients of the second. The tensors consist of 7
layers. The entries of the tensor are from {0,1}. The entry ` in position (i, j) means that ti, j,` = 1, i. e.,
ai ·b j occurs in c`.

x1,1 x1,2 x2,1 x2,2
y1,1 (1,1) (2,1)
y2,1 (1,1) (2,1)
y1,2 (1,2) (2,2)
y2,2 (1,2) (2,2)

Figure 2: The tensor of 2×2-matrix multiplication. Again, it is {0,1}-valued. An entry (κ,ν) in the row
(κ,µ) and column (µ,ν) means that xκ,µyµ,ν appears in fκ,ν .

Matrix multiplication: We are given two n×n-matrices x = (xi j) and y = (yi j) with indeterminates as
entries. The entries of xy are given by the well-known quadratic (in fact bilinear) forms

fi j =
n

∑
k=1

xikyk j , 1≤ i, j ≤ n .

Polynomial multiplication: Here our input consists of two polynomials p(z) = ∑
m
i=0 aizi and q(z) =

∑
n
j=0 b jz j. The coefficients are again indeterminates over K. The coefficients c`, 0≤ `≤ m+n of

their product pq are given by the bilinear forms

c` = ∑
i+ j=`

aib j , 0≤ `≤ m+n .

Figure 1 shows the tensor of multiplication of degree 3 polynomials. It is shown as an element of
K4×4×7. Strictly speaking, it would be an element of K8×8×7. But since polynomial multiplication is a
bilinear map, the rest of the entries are zero. We will look at tensors of bilinear maps in this way in the
following. Figure 2 shows the tensor of 2×2-matrix multiplication. It lives in K4×4×4.

4.1 Vermeidung von Divisionen

Strassen [32] showed that for computing sets of quadratic forms, divisions do not help (provided that the
field of scalars is large enough). For a polynomial g ∈ K[x1, . . . ,xN ], H j(g) denotes the homogenous part
of degree j of g, that is, the sum of all monomials of degree j of g.
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Theorem 4.1. Let Fκ =
N
∑

µ,ν=1
tκµνxµxν , 1 ≤ κ ≤ k, and F = {F1, . . . ,Fk}. If #K = ∞ and C∗/(F) ≤ `

then there are products

Pλ =
( N

∑
i=1

uλ ixi
)( N

∑
i=1

vλ ixi
)
, 1≤ λ ≤ ` ,

such that F ⊆ linK{P1, . . . , P̀ }. In particular, C∗(F) = C∗/(F).

Note that each factor of the products is a linear form in the variables that is free of cost. We can write
each Fκ as a linear combination of the products, again at no cost.

Proof. Let β = (w1, . . . ,wL) be an optimal computation for F , w. l. o. g. 0 6∈ F and wi 6= 0 for all 1≤ i≤ L.
Let wi = gi/hi with gi,hi ∈ K[x1, . . . ,xN ], hi,gi 6= 0.

As a first step, we want to achieve that

H0(gi) 6= 0 6= H0(hi) , 1≤ i≤ L .

We substitute
xi→ x̄i−αi , 1≤ i≤ N ,

for some αi ∈ K. Let the resulting computation be β̄ = (w̄1, . . . , w̄L) where w̄i = ḡi/h̄i,

ḡi(x̄1, . . . , x̄N) = gi(x1 +α1, . . . ,xN +αN) and h̄i(x̄1, . . . , x̄N) = hi(x1 +α1, . . . ,xN +αN) .

Since fκ ∈ {w1, . . . ,wL},

f̄κ(x̄1, . . . , x̄N) = fκ(x̄1 +α1, . . . , x̄N +αN) ∈ {w̄1, . . . , w̄L} .

Because

f̄κ(x̄1, . . . , x̄N) =
N

∑
µ,ν=1

tκµν x̄µ x̄ν =
N

∑
µ,ν=1

tκµνxµxν + terms of degree ≤ 1 ,

we can extend the computation β̄ without increasing the cost such that the new computation computes
fκ(x1, . . . ,xN), 1≤ κ ≤ k. All we have to do is to compute the terms of degree one, which is free of cost,
and subtract them from the f̄κ(x̄1, . . . , x̄N), which is again free of cost. We call the resulting computation
again β̄ .

By the following well-known fact, we can choose the αi in such a way that all H0(ḡi) 6= 0 6= H0(h̄i),
since H0(ḡi) = gi(α1, . . . ,αN) and H0(h̄i) = hi(α1, . . . ,αN).

Fact 4.2. For any finite set of polynomials φ1, . . . ,φn, φi 6= 0 for all i, there are α1, . . . ,αN ∈ K such that
φi(α1, . . . ,αN) 6= 0 for all i provided that #K = ∞.7

7Hint:
if type = mathematician then

return “It’s an open set!”
else if type = theoretical computer scientist then

use the Schwartz-Zippel lemma
else

prove it by induction on n
end if
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Next, we substitute
x̄i→ xiz , 1≤ i≤ N .

Let β̃ = (w̃1, . . . , w̃L̃) be the resulting computation. We view the w̃i as elements of K(x1, . . . ,xN)[[z]], that
is, as formal power series in z with rational functions in x1, . . . ,xN as coefficients. This is possible, since
every w̄i = ḡi/h̄i. The substitution above transforms ḡi and h̄i into the power series

g̃i = H0(ḡi)+H1(ḡi)z+H2(ḡi)z2 + · · · and

h̃i = H0(h̄i)+H1(h̄i)z+H2(h̄i)z2 + · · · .

By the fact below, h̃i has in inverse in K(x1, . . . ,xN)[[z]] because H0(h̄i) 6= 0. Thus w̃i = g̃i/h̃i is an element
of K(x1, . . . ,xN)[[z]] and we can write it as

w̃i = ci + c
′
iz+ c

′′
i z2 + · · · .

Fact 4.3. A formal power series ∑
∞
i=0 aizi ∈ L[[z]] is invertible iff a0 6= 0. Its inverse is given by

1
a0

(1+q+q2 + · · ·)

where q =−∑
∞
i=1

ai
a0

zi.8

Since in the end, we compute a set of quadratic forms, it is sufficient to compute only w̃i up to degree
two in z. Because ci and c′i can be computed for free in the Ostrowski model, we only need to compute c′′i
in every step.
First case: ith step is a multiplication. We have

w̃i = ũ · ṽ = (u+u′z+u′′z2 + . . .)(v+ v′z+ v′′z2 + . . .) .

We can compute
c′′i = u︸︷︷︸

∈K

v′′︸ ︷︷ ︸
free of cost

+u′v′+ u′′ v︸︷︷︸
∈K︸ ︷︷ ︸

free of costs

.

with one bilinear multiplication.
Second case: ith step is a division. Here,

w̃i =
ũ
ṽ

=
u+u

′
z+u

′′
z+ . . .

1+ v′z+ v′′z2 + . . .

= (u+u
′
z+u

′′
z2 + . . .)(1− (v

′
z+ v

′′
z2 + . . .)+(v

′
z+ . . .)2− (v

′
z+ . . .)3 + . . .) .

Thus
c′′i = u

′′−u
′
v
′−u(−v

′′
+(v

′
)2) = u

′′− (u
′− uv

′︸︷︷︸
free of costs

)v
′
+ uv

′′︸︷︷︸
free of costs

can be computed with one costing operation.
8Hint: 1

1−q = ∑
∞
i=0 qi.
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4.2 Rank of bilinear problems

Polynomial multiplication and matrix multiplication are bilinear problems. We can separate the variables
into two sets {x1, . . . ,xM} and {y1, . . . ,yN} and write the quadratic forms as

fκ =
M

∑
µ=1

N

∑
ν=1

tκµνxµyν , 1≤ κ ≤ k .

The tensor (tκµν) ∈ Kk×M×N is unique once we fix a ordering of the variables and quadratic forms and
we do not need the notion of symmetric equivalence.

Theorem 4.1 tell us that under the Ostrowski measure, we only have to consider products of linear
forms. When computing bilinear forms, it is a natural to restrict ourselves to products of the form linear
form in {x1, . . . ,xM} times a linear form in {y1, . . . ,yN}.

Definition 4.4. The minimal number of products

Pλ =
( M

∑
µ=1

uλ µxµ

)( N

∑
ν=1

vλνyν

)
, 1≤ λ ≤ `

such that F ⊆ lin{P1, . . . ,Pl} is called rank of F = {F1, . . . ,Fk} or bilinear complexity of F . We denote it
by R(F).

We can define the rank in terms of tensors, too. Let t = (tκµν) be the tensor of F as above. We have

R(F)≤ `⇔ there are linear forms u1, . . . ,u` in x1, . . . ,xM

and v1, . . . ,v` in y1, . . . ,yN such that F ⊆ lin{u1v1, . . . ,u`v`}
⇔ there are wλκ ∈ K, 1≤ λ ≤ `, 1≤ κ ≤ k,

such that fκ =
l

∑
λ=1

wλκuλ vλ =
`

∑
λ=1

wλκ

( M

∑
µ=1

uλ µxµ

)( N

∑
ν=1

vλνyν

)
, 1≤ κ ≤ k .

Comparing coefficients, we get

tκµν =
l

∑
λ=1

wλκuλ µvλν , 1≤ κ ≤ k, 1≤ µ ≤M, 1≤ ν ≤ N .

Definition 4.5. Let w ∈ Kk, u ∈ KM, v ∈ KN . The tensor w⊗ u⊗ v ∈ Kk×M×N with entry wκuµvν in
position (κ,µ,ν) is called a triad.

From the calculation above, we get

R(F)≤ `⇔ there are w1, . . .w` ∈ Kk, u1 . . .u` ∈ KM, and v1 . . .v` ∈ KN such that

t = (tκµν) =
`

∑
λ=1

wλ ⊗uλ ⊗ vλ︸ ︷︷ ︸
triad

.
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We define the rank R(t) of a tensor t to be the minimal number of triads such that t is the sum of these
triads.9 To every set of bilinear forms F there is a corresponding tensor t and vice versa. As we have
seen, their rank is the same.

Example 4.6 (Complex multiplication). Consider the multiplication of complex number viewed as an
R-algebra. Its multiplication is described by the two bilinear forms f0 and f1 defined by

(x0 + x1i)(y0 + y1i) = x0y0− x1y1︸ ︷︷ ︸
f0

+(x0y1 + x1y0)︸ ︷︷ ︸
f1

i .

It is clear that R( f0, f1)≤ 4. But also R( f0, f1)≤ 3 holds. Let

P1 = x0y0 ,

P2 = x1y1 ,

P3 = (x0 + x1)(y0 + y1) .

Then

f0 = P1−P2 ,

f1 = P3−P1−P2 .

This is essentially Karatsuba’s algorithm. Note that C ∼= K[X ]/(X2 + 1). We first multiply the two
polynomials x0 + x1X and y0 + y1X and then reduce modulo X2−1, which is free of cost in the bilinear
model.

Multiplicative complexity and rank are linearly related.

Theorem 4.7. Let F = { f1, . . . , fk} be a set of bilinear forms in variables {x1, . . . ,xM} and {y1, . . . ,yN}.
Then

C∗/(F)≤ R(F)≤ 2C∗/(F) .

Proof. The first inequality is clear. For the second, assume that C∗/(F) = ` and consider an optimal
computation. We have

fκ =
`

∑
λ=1

wλκ

( M

∑
µ=1

uλ µxµ +
N

∑
ν=1

u
′

λν
yν

)( M

∑
µ=1

v
′

λ µ
xµ +

N

∑
ν=1

vλνyν

)
=

`

∑
λ=1

wλκ

( M

∑
µ=1

uλ µxµ

)( N

∑
ν=1

vλνyν

)
+

`

∑
λ=1

wλκ

( M

∑
µ=1

v
′

λ µ
xµ

)( N

∑
ν=1

u
′

λν
yν

)
.

The terms of the form xix j and yiy j have to cancel each other, since they do not appear in fκ .

9Note the similarity to the definition of rank of a matrix. The rank of a matrix M is the minimum number of rank-1 matrices
(“diads”) such such that M is the sum of these rank-1 matrices.
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Example 4.8 (Winograd’s algorithm [36]). Do products that are not bilinear help in for the computation
of bilinear forms? Here is an example. We consider the multiplication of M× 2 matrices with 2×N
matrices. Then entries of the product are given by

fµν = xµ1y1ν + xµ2y2ν .

Consider the following MN products

(xµ1 + y2ν)(xµ2 + y1ν) 1≤ µ ≤M, 1≤ ν ≤ N .

We can write
fµν = (xµ1 + y2ν)(xµ2 + y1ν)− xµ1xµ2− y1νy2ν ,

thus a total of MN +M+N products suffice. Setting M = 2, we can multiply 2×2 matrices with 2×n
matrices with 3N +2 multiplications. For the rank, the best we know is d3 1

2 Ne multiplications, which we
get by repeatedly applying Strassen’s algorithm and possibly one matrix-vector multiplication if N is odd.

Waksman [34] showed that if charK 6= 2, then even MN +M+N−1 products suffice. We get that
the multiplicative complexity of 2× 2 with 2× 3 matrix multiplication is ≤ 10. On the other hand,
Alekseyev [1] proved that the rank is 11.

5 The exponent of matrix multiplication

In the following 〈k,m,n〉 : Kk×m×Km×n→ Kk×n denotes the bilinear map that maps a k×m-matrix A
and an m×n-matrix B to their product AB. Since there is no danger of confusion, we will also use the
same symbol for the corresponding tensor and for the set of bilinear forms{ m

∑
µ=1

XκµYµν

∣∣∣ 1≤ κ ≤ k, 1≤ ν ≤ n
}
.

Definition 5.1. ω = inf{β | R(〈n,n,n〉)≤ O(nβ )} is called the exponent of matrix multiplication.

In the definition of ω above, we only count bilinear products. For the asymptotic growth, it does not
matter whether we count all operations or only bilinear products. Let ω̃ = inf{β |C(〈n,n,n〉)≤ O(nβ )}
with ¢(±) = ¢(∗/) = ¢(λ ·) = 1.

Theorem 5.2. ω = ω̃ , if K is infinite.

Proof. ω ≤ ω̃ is obvious. For the other inequality, note that from the definition of ω , it follows that there
is an α such that

∀ε > 0 : ∃m0 > 1 : ∀m≥ m0 : R(〈m,m,m〉)≤ α ·mw+ε .

Let ε > 0 be given and choose such an m that is large enough. Let r = R(〈m,m,m〉).
To multiply mi×mi-matrices we decompose them into blocks of mi−1×mi−1-matrices and apply

recursion. Let A(i) be the number of arithmetic operations for the multiplication of mi×mi-matrices with
this approach. We obtain

A(i)≤ rA(i−1)+ c m2(i−1)
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where c is the number of additions and scalar multiplications that are performed by the chosen bilinear
algorithm for 〈m,m,m〉 with r bilinear multiplications. Expanding this, we get

A(i)≤ riA(0)+ cm2(i−1)

(
i−2

∑
j=0

r j

m2 j

)

= riA(0)+ c m2(i−1)

( r
m2

)i−1
−1

r
m2−1

= riA(0)+ c m2 ri−1−m2(i−1)

r−m2

=
(

A(0)+
c m2

r(r−m2)

)
︸ ︷︷ ︸

constant

ri−
c

r−m2 m2 .

(Obviously, r ≥ m2. But it is also very easy to show that r > m2, so we are not dividing by zero.) We
have C(〈n′,n′,n′〉)≤C(〈n,n,n〉) if n′ ≤ n. (Recall that we can eliminate divisions, so we can fill up with
zeros.) Therefore,

C(〈n,n,n〉)≤C(
〈

mdlogm ne,mdlogm ne,mdlogm ne
〉
)

≤ A(dlogm ne)
= O(rdlogm ne)

= O(rlogm n)

= O(nlogm r) .

Since r ≤ α ·mω+ε , we have logm r ≤ ω + ε + logm α . With ε ′ = ε + logm α ,

C(〈n,n,n〉) = O(nlogm r) = O(nω+ε ′) .

Thus
ω̃ ≤ ω + ε for all ε > 0 ,

since logm α → 0 if m→ ∞. This means ω̃ = ω , since ω̃ is an infimum.

To prove good upper bounds for ω , we introduce some operation on tensors and analyze the behavior
of the rank under these operations.

5.1 Permutations (of tensors)

Let t ∈ Kk×m×n and t = ∑
r
j=1 t j with triads t j = a j1⊗a j2⊗a j3, 1≤ j ≤ r. Let π ∈ S3, where S3 denotes

the symmetric group on {1,2,3}. For a triad t j, let πt j = a jπ−1(1)⊗a jπ−1(2)⊗a jπ−1(3) and πt = ∑
r
j=1 πt j.
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Figure 3: Permutation of the dimensions.

πt is well-defined. To see this, let t = ∑
s
i=1 bi1⊗bi2⊗bi3 be a second decomposition of t. We claim that

r

∑
j=1

a jπ−1(1)⊗a jπ−1(2)⊗a jπ−1(3) =
s

∑
i=1

biπ−1(1)⊗biπ−1(2)⊗biπ−1(3) .

Let a j1 = (a j11, . . . ,a j1k) and bi1 = (bi11, . . . ,bi1k) and let a j2, a j3, bi2, and bi3 be given analogously.
We have

te1e2e3 =
r

∑
j=1

a j1e1 ·a j2e2 ·a j3e3 =
s

∑
i=1

bi1e1 ·bi2e2 ·bi3e3 .

Thus

πte1e2e3 =
r

∑
j=1

a jπ−1(1)e
π−1(1)

·a jπ−1(2)e
π−1(2)

·a jπ−1(3)e
π−1(3)

=
s

∑
i=1

biπ−1(1)e
π−1(1)

·biπ−1(2)e
π−1(2)

·biπ−1(3)e
π−1(3)

.

The proof of the following lemma is obvious.

Lemma 5.3. R(t) = R(πt).

Instead of permuting the dimensions, we can also permute the slices of a tensor. Let t = (ti j`) ∈
Kk×m×n and σ ∈ Sk. Then, for t ′ = (tσ(i) j`), R(t ′) = R(t).

More generally, let A : Kk→Kk′ , B : Km→Km′ , and C : Kn→Kn′ be homomorphisms. Let t =∑
r
j=1 t j

with triads t j = a j1⊗a j2⊗a j3. We set

(A⊗B⊗C)t j = A(a j1)⊗B(a j2)⊗C(a j3)

and

(A⊗B⊗C)t =
r

∑
j=1

(A⊗B⊗C)t j .

By looking at a particular entry of t, it is easy to see that this is well-defined.
The proof of the following lemma is again obvious.
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Figure 4: Permutation of the slices.

Lemma 5.4. R((A⊗B⊗C)t)≤ R(t).

Equality holds if A, B, and C are isomorphisms. How does the tensor of matrix multiplication look
like? Recall that the bilinear forms are given by

Zκν =
m

∑
µ=1

XκµYµν , 1≤ κ ≤ k , 1≤ ν ≤ n .

The entries of the corresponding tensor

(tκµ̄,µν̄ ,νκ̄) = t ∈ K(k×m)×(m×n)×(n×k)

are given by
tκµ̄,µν̄ ,νκ̄ = δκ̄κδµ̄µδν̄ν

where δi j is Kronecker’s delta. (Here, each dimension of the tensor is addressed with a two-dimensional
index, which reflects the way we number the entries of matrices. If you prefer it, you can label the entries
of the tensor with indices from 1, . . .km, 1, . . .mn, and 1, . . . ,nk. We also “transposed” the indices in the
third slice, to get a symmetric view of the tensor.)

Let π = (123). Then for πt =: t ′ ∈ K(n×k)×(k×m)×(m×n), we have

t ′νκ̄,κµ̄,µν̄ = δν̄νδκ̄κδµ̄µ

= δκ̄κδµ̄µδν̄ν

= tκµ̄,µν̄ ,νκ̄ .

Therefore,
R(〈k,m,n〉) = R(〈n,k,m〉) = R(〈m,n,k〉) .
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Figure 5: Sum of two tensors.

Now, let t ′′ = (tµκ̄,νµ̄,κ̄ν). We have R(t) = R(t ′′), since permuting the “inner” indices corresponds to
permuting the slices of the tensor.

Next, let π = (12)(3). Let πt ′′ =: t ′′′ ∈ K(n×m)×(m×k)×(k×n). We have,

t ′′′νµ̄,µκ̄,κν̄ = δµ,µ̄δκ,κ̄δν ,ν̄

= tκ̄µ,µ̄ν ,ν̄κ .

Therefore,
R(〈k,m,n〉) = R(〈n,m,k〉) .

The second transformation corresponds to the well-known fact that AB =C implies BT AT =CT .
To summarize:

Lemma 5.5. R(〈k,m,n〉) = R(〈n,k,m〉) = R(〈m,n,k〉) = R(〈m,k,n〉) = R(〈n,m,k〉) = R(〈k,n,m〉).

5.2 Products and sums

Let t ∈Kk×m×n and t ′ ∈Kk′×m′×n′ . The direct sum of t and t ′, s := t⊕ t ′ ∈K(k+k′)×(m+m′)×(n+n′), is defined
as follows:

sκµν =


tκµν if 1≤ κ ≤ k, 1≤ µ ≤ m, 1≤ ν ≤ n ,
t ′
κ−k,µ−m,ν−n if k+1≤ κ ≤ k+ k′, m+1≤ µ ≤ m+m′, n+1≤ ν ≤ n+n′ ,

0 otherwise.

Lemma 5.6. R(t⊕ t ′)≤ R(t)+R(t ′) .

Proof. Let t =
r
∑

i=1
ui⊗ vi⊗wi and t ′ =

r
∑

i=1
u′i⊗ v′i⊗w′i. Let

ûi = (ui1, · · · ,uik︸ ︷︷ ︸
ui

,0, · · · ,0︸ ︷︷ ︸
k′

) and

û′i = (0, · · · ,0︸ ︷︷ ︸
k

,u′i1, · · · ,u′ik︸ ︷︷ ︸
u′i

)
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⊗

Figure 6: Product of two tensors.

and define v̂i, ŵi and v̂′i, ŵ′i analogously. An easy calculation shows that

t⊕ t ′ =
r

∑
i=1

ûi⊗ v̂i⊗ ŵi +
r′

∑
j=1

û′i⊗ v̂′i⊗ ŵ′i ,

which proves the lemma.

Research problem 5.7 (Strassen’s additivity conjecture). Show that for all tensors t and t ′, R(t⊕ t ′) =
R(t)+R(t ′), that is, equality always holds in the lemma above.

The tensor product t⊗ t ′ ∈ Kkk′×mm′×nn′ of two tensors t ∈ Kk×m×n and t ′ ∈ Kk′×m′×n′ is defined by

t⊗ t ′ =
(
tκµν t ′κ ′µ ′ν ′

)
1≤κ≤k,1≤κ ′≤k′
1≤µ≤m,1≤µ ′≤m′
1≤ν≤n,1≤ν ′≤n′

.

It is very convenient to use double indices κ,κ ′ to “address” the slices 1, . . . ,kk′ of the tensor product.
The same is true for the other two dimensions.

Lemma 5.8. R(t⊗ t ′)≤ R(t)R(t ′).

Proof. Let t =
r
∑

i=1
ui⊗ vi⊗wi and t ′ =

r′

∑
i=1

u′i⊗ v′i⊗w′i. Let

ui⊗u′j := (uiκu′jκ ′)1≤κ≤k,1≤κ ′≤k′ ∈ Kkk′ .

In the same way we define vi⊗ v′j, wi⊗w′j. We have

(ui⊗u′j)⊗ (vi⊗ v′j)⊗ (wi⊗w′j) = (uiκu′jκ ′ · viµv′jµ ′ ·wiνw′jν ′)1≤κ≤k,1≤κ ′≤k′
1≤µ≤m,1≤µ ′≤m′
1≤ν≤n,1≤ν ′≤n′

∈ Kkk′×mm′×nn′ ∼= K(k×k′)×(m×m′)×(n×n′)
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and

r

∑
i=1

r′

∑
j=1

(ui⊗u′j)⊗ (vi⊗ v′j)⊗ (wi⊗w′j) = (
r

∑
i=1

r′

∑
j=1

uiκu′jκ ′viµv′jµ ′wiνw′iν ′)1≤κ≤k,1≤κ ′≤k′
1≤µ≤m,1≤µ ′≤m′
1≤ν≤n,1≤ν ′≤n′

=
(( r

∑
i=1

uiκviµwiν
)

︸ ︷︷ ︸
tκµν

·
( r′

∑
j=1

u′jκv′jµw′jν ′
)

︸ ︷︷ ︸
t ′
κ ′µ ′ν ′

)
1≤κ≤k,1≤κ ′≤k′
1≤µ≤m,1≤µ ′≤m′
1≤ν≤n,1≤ν ′≤n′

= t⊗ t ′ ,

which proves the lemma.

For the tensor product of matrix multiplications, we have

〈k,m,n〉⊗
〈
k′,m′,n′

〉
= (δκκ̄δµµ̄δνν̄δκ ′κ̄ ′δµ ′ µ̄ ′δν ′ν̄ ′)

= (δκκ̄δκ ′κ̄ ′δµµ̄δµ ′ µ̄ ′δνν̄δν ′ν̄ ′)

=
(
δ(κ,κ ′),(κ̄,κ̄ ′)δ(µ,µ ′),(µ̄,µ̄ ′)δ(ν ,ν ′),(ν̄ ,ν̄ ′)

)
=
〈
kk′,mm′,nn′

〉
.

Thus, the tensor product of two matrix tensors is a bigger matrix tensor. This corresponds to the
well known identity (A⊗B)(A′⊗B′) = (AA′⊗BB′) for the Kronecker product of matrices. (Note that
we use quadruple indices to address the entries of the Kronecker products and also of the slices of
〈k,m,n〉⊗〈k′,m′,n′〉.) It follows that the inequality in Lemma 5.8 can be strict. We have R(〈2,2,2〉) = 7,
but there are faster ways to multiply matrices than Strassen’s algorithm.

Using this machinery, we can show that whenever we can multiply matrices of a fixed format
efficiently, then we get good bounds for ω .

Theorem 5.9. If R(〈k,m,n〉)≤ r, then ω ≤ 3 · logkmn r.

Proof. If R(〈k,m,n〉)≤ r, then R(〈n,k,m〉)≤ r and R(〈m,n,k〉)≤ r by Lemma 5.5. Thus, by Lemma 5.8,

R(〈k,m,n〉⊗〈n,k,m〉⊗〈m,n,k〉︸ ︷︷ ︸
=〈kmn,kmn,kmn〉

)≤ r3

and, with N = kmn,
R(
〈
Ni,Ni,Ni〉≤ r3i = (N3logN r)i = (Ni)3logN r

for all i≥ 1. Therefore, ω ≤ 3logN r.

Example 5.10 (Matrix tensors of small format). What do we know about the rank of matrix tensors of
small formats?

• R(〈2,2,2〉)≤ 7 =⇒ ω ≤ 3 · log23 7 = log2 7≈ 2.81.
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• R(〈2,2,3〉)≤ 11. (This is achieved by doing Strassen once and one trivial matrix-vector product.)
This gives a worse bound than 2.81. A lower bound of 11 is shown by [1].

• 14≤ R(〈2,3,3〉)≤ 15, see [8] for corresponding references.

• 19≤ R(〈3,3,3〉)≤ 23. The lower bound is shown in [5], the upper bound is due to Laderman [21].
(We would need ≤ 21 to get an improvement.)

• R(〈70,70,70〉) ≤ 143.640 [25]. This gives ω ≤ 2.80. (Don’t panic, there is a structured way to
come up with this algorithm.)

Research problem 5.11. What is the complexity of tensor rank? Håstad [17] has shown that this problem
is NP-complete over Fq and NP-hard over Q. What upper bounds can we show over Q? Over R, the
problem is decidable, even in PSPACE, since it reduces to the existential theory over the reals.

6 Border rank

Over R or C, the rank of matrices is semi-continuous. Let

Rn×n 3 A j→ A = lim
j→∞

A j .

If for all j, rk(A j)≤ r, then rk(A)≤ r as rk(A j)≤ r means all (r+1)× (r+1) minors vanish. But since
minors are continuous functions, all (r+1)× (r+1) minor of A vanish, too.

The same is not true for 3-dimensional tensors. Consider the multiplication of univariate polynomials
of degree one modulo X2:

(a0 +a1X)(b0 +b1X) = a0b0 +(a1b0 +a0b1)X +a1b1X2 .

The tensor corresponding to the two bilinear forms a0b0 and a1b0 +a0b1 has rank 3:

1 0
0 0

0 1
1 0

To show the lower bound, we use the substitution method. We first set a0 = 0, b0 = 1. Then we still
compute a1. Thus there is a product that depends on a1, say one factor is αa0 +βa1 with β 6= 0. When
we replace a1 by −α

β
a0, we kill one product. We still compute

a0b0 and − α

β
a0b0 +a0b1 .

Next, set a0 = 1, b0 = 0. Then we still compute b1. We can kill another product by substituting b1 as
above. After this, we still compute a0b0, which needs one product.

However, we can approximate the tensor above by tensors of rank two. Let

t(ε) = (1,ε)⊗ (1,ε)⊗ (0, 1
ε
)+(1,0)⊗ (1,0)⊗ (1,− 1

ε
) .

t(ε) obviously has rank two for every ε > 0. The slices of t(ε) are
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1 0
0 0

0 1
1 ε

Thus t(ε)→ t if ε → 0.
Bini, Capovani, Lotti and Romani [4] used this effect to design better matrix multiplication algorithms.

They started with the following partial matrix multiplication:(
x11 x12
x21 x22

)(
y11
y21

∣∣∣∣ y12
y22

)
=

(
z11
z21

∣∣∣∣ z12
z22///

)

where we only want to compute three entries of the result. We have R({z11,z12,z21}) = 6 but we can
approximate {z11,z12,z21} with only five products.

That the rank is six can be shown using the substitution method. Consider z12. It clearly depends on
y12, so there is (after appropriate scaling) a product with one factor being y12 + `(y11,y21,y22) where ` is
a linear form. Substitute y12→−`(y11,y21,y22). This substitution only affects z12. After this substitution
we still compute z̄12 = x11(−`(y11,y21,y22))+ x12y22. z̄12 still depends on y22. Thus we can substitute
again y22→−`′(y11,y21). This kills two products and we still compute z11,z21. But this is nothing else
than 〈2,2,1〉, which has rank four.

Consider the following five products:

p1 = (x12 + εx22)y21 ,

p2 = x11(y11 + εy12) ,

p3 = x12(y11 + y21 + εy22) ,

p4 = (x11 + x12 + εx21)y11 ,

p5 = (x12 + εx21)(y11 + εy22) .

We have

εz11 = ε p1 + ε p2 +O(ε2) ,

εz12 = p2− p4 + p5 +O(ε2) ,

εz21 = p1− p3 + p5 +O(ε2) .

Here, O(ε i) collects terms of degree i or higher in ε . Now we take a second copy of the partial matrix
multiplication above, with new variables. With these two copies, we can multiply 2×2-matrices with
2×3-matrices (by identifying some of the variables in the copy). So we can approximate 〈2,2,3〉 with 10
multiplications. If approximation would be as good as exact computation, then we would get ω ≤ 2.78
out of this, an improvement over Strassen’s algorithm.

We will formalize the concept of approximation. Let K be a field and K[[ε]] =: K̂. The role of the
small quantity ε in the beginning of this section is now taken by the indeterminate ε .

Definition 6.1. Let h ∈ N, t ∈ Kk×m×n.

1. Rh(t) = min
{

r
∣∣ ∃uρ ∈ K[ε]k,vρ ∈ K[ε]m,wρ ∈ K[ε]n :

r
∑

ρ=1
uρ ⊗ vρ ⊗wρ = εht +O(εh+1)

}
.
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2. R(t) = min
h

Rh(t). R(t) is called the border rank of t.

Remark 6.2.

1. R0(t) = R(t).

2. R0(t)≥ R1(t)≥ ·· ·= R(t).

3. For Rh(t) it is sufficient to consider powers up to εh in uρ ,vρ ,wρ .

Theorem 6.3. Let t ∈ Kk×m×n, t ′ ∈ Kk′×m′×n′ . We have

1. ∀π ∈ S3 : Rh(πt) = Rh(t).

2. Rmax{h,h′}(t⊕ t ′)≤ Rh(t)+Rh′(t ′).

3. Rh+h′(t⊗ t ′)≤ Rh(t) ·Rh′(t ′).

Proof.

1. Clear.

2. W. l. o. g. h≥ h′. There are approximate computations such that

r

∑
ρ=1

uρ ⊗ vρ ⊗wρ = ε
ht +O(εh+1) and (6.1)

r′

∑
ρ=1

ε
h−h′u′ρ ⊗ v′ρ ⊗w′ρ = ε

h
6h′ t ′+O(ε

h
6h′+1) . (6.2)

Now we can combine these two computations as we did in the case of rank.

3. Let t = (ti jl) and t ′ = (t ′i′ j′l′). We have t⊗ t ′ = (ti jl · t ′i′ j′l′) ∈ Kkk′×mm′×nn′ . Take two approximate
computations for t and t ′ as above. Viewed as exact computations over K[[ε]], their tensor product
computes over the following:

T = ε
ht + ε

h+1s, T ′ = ε
h′t ′+ ε

h′+1s′

with s ∈ K[ε]k×m×n and s′ ∈ K[ε]k
′×m′×n′ . The tensor product of these two computations computes:

T ⊗T ′ = (εhti jl + ε
h+1si jl)(ε

h′t ′i′ j′l′+ ε
h′+1s′i′ j′l′)

= (εh+h′ti jlt ′i′ j′l′+O(εh+h′+1))

= ε
h+h′t⊗ t ′+O(εh+h′+1) .

But this is an approximate computation for t⊗ t ′.

The next lemma shows that we can turn approximate computations into exact ones.
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Lemma 6.4. There is a constant ch such that for all t : R(t)≤ chRh(t). ch depends polynomially on h, in
particular ch ≤

(
h+2

2

)
.

Remark 6.5. Over infinite fields, even ch = 1+2h works.

Proof. Let t be a tensor with border rank r and let

r

∑
ρ=1

(
h

∑
α=0

ε
αuρα

)
︸ ︷︷ ︸

∈K[ε]k

⊗

(
h

∑
β=0

ε
β vρβ

)
⊗

(
h

∑
γ=0

ε
γwργ

)
= ε

ht +O(εh+1) .

The left-hand side of the equation can be rewritten as follows:

r

∑
ρ=1

h

∑
α=0

h

∑
β=0

h

∑
γ=0

ε
α+β+γuρα ⊗ vρβ ⊗wργ .

By comparing the coefficients of ε powers, we see that t is the sum of all uρα⊗vρβ⊗wργ with α+β +γ =

h. Thus to compute t exactly, it is sufficient to compute
(

h+2
2

)
products for each product in the

approximate computation.

A first attempt to apply the results above is to proceed as follows: We have R1(〈2,2,3〉) ≤ 10.
R1(〈3,2,2〉) ≤ 10 and R1(〈2,3,2〉) ≤ 10 follows by Theorem 6.3(1). By Theorem 6.3(3), we may
conclude R3(〈12,12,12〉)≤ 1000. By Lemma 6.4

R(〈12,12,12〉)≤
(

3+2
2

)
·1000 = 10 ·1000 = 10000 .

But trivially, R(〈12,12,12〉)≤ 123 = 1728. It turns out that it is better to first “tensor up” and then turn
the approximate computation into the exact one.

Theorem 6.6. If R(〈k,m,n〉)≤ r then ω ≤ 3logkmn r.

Proof. Let N = kmn and let Rh(〈k,m,n〉) ≤ r. By Theorem 6.3, we get R3h(〈N,N,N〉) ≤ r3 and
R3hs(〈Ns,Ns,Ns〉)≤ r3s for all s. By Lemma 6.4, this yields R(〈Ns,Ns,Ns〉)≤ c3hsr3s. Therefore,

ω ≤ logNs(c3hsr3s) = 3s logNs(r)+ logNs(c3hs) = 3logN(r)+
1
s

logN(poly(s))︸ ︷︷ ︸
→0

.

Since ω is an infimum, we get ω ≤ 3logN(r).

Corollary 6.7. ω ≤ 2.78.
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7 Schönhage’s τ-Theorem

Strassen “just” gave a clever algorithm for multiplying 2× 2-matrices to obtain a fast algorithm for
multiplying matrices. Bini et al. showed that is sufficient to approximate a fixed size matrix tensor
instead of computing it exactly. In this section, we will show how to make use of a fast algorithm that
approximates a tensor that is not a matrix tensor at all! In in the subsequent two sections, we will see the
same with tensors that are even “less” matrix tensors than the one in this section.

Note that Bini et al. start with a tensor corresponding to a partial matrix multiplication. They glue two
of them together to get a matrix tensor. Schönhage [28] observed that it is better to take the partial matrix
multiplication, tensor up first, and then try to get a large total matrix multiplication out of the resulting
tensor. The interested reader is referred to Schönhage’s original paper. We will not deal with this method
here, since the same paper contains a second, related method that gives even better results, the so-called
τ-Theorem.10

We will consider an extreme case of a partial matrix multiplication, namely direct sums of matrix
tensors. Direct sums of matrix tensors correspond to independent matrix multiplications and we can
view them as partial matrix multiplications by embedding the factors in large block diagonal matrices. In
particular, we will look at sums of the form R(〈k,1,n〉⊕〈1,m,1〉). The first summand is the product of a
vector of length k with a vector of length n, forming a rank-one matrix. The second summand is a scalar
product of two vectors of length m.

Lemma 7.1.

1. R(〈k,1,n〉⊕〈1,m,1〉) = k ·n+m.

2. R(〈k,1,n〉) = k ·n and R(〈1,m,1〉) = m.

3. R(〈k,1,n〉⊕〈1,m,1〉)≤ k ·n+1 with m = (n−1)(k−1).

The first statement is shown by using the substitution method. We first substitute m variables belonging
to one vector of 〈1,m,1〉. Then we set the variables of the other vector to zero. We still compute 〈k,1,n〉.

For the second statement, it is sufficient to note that both tensors consist of kn and m linearly
independent slices, respectively, even over K(ε).

For the third statement, we just prove the case k = n = 3. From this, the general construction becomes

10According to Schönhage, the term τ-Theorem was coined by Hans F. de Groote in his lecture notes [16].
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obvious. So we want to approximate aib j for 1≤ i, j≤ 3 and ∑
4
µ=1 uµvµ . Consider the following products

p1 = (a1 + εu1)(b1 + εv1) ,

p2 = (a1 + εu2)(b2 + εv2) ,

p3 = (a2 + εu3)(b1 + εv3) ,

p4 = (a2 + εu4)(b2 + εv4) ,

p5 = (a3− εu1− εu3)b1 ,

p6 = (a3− εu2− εu4)b2 ,

p7 = a1(b3− εv1− εv2) ,

p8 = a2(b3− εv3− εv4) ,

p9 = a3b3 .

These nine product obviously compute aib j up to terms of order ε , 1≤ i, j ≤ 3. Furthermore,

ε
2

4

∑
µ=1

uµvµ = p1 + · · ·+ p9− (a1 +a2 +a3)(b1 +b2 +b3) .

Thus ten products are sufficient to approximate 〈3,1,3〉⊕〈1,4,1〉.11

The second and the third statement together show, that the additivity conjecture is not true for the
border rank.

Definition 7.2. Let t ∈ Kk×m×n and t ′ ∈ Kk′×m′×n′ .

1. t is called a restriction of t ′ if there are homomorphisms α : Kk′ → Kk, β : Km′ → Km, and
γ : Kn′ → Kn such that t = (α⊗β ⊗ γ)t ′. We write t ≤ t ′.

2. t and t ′ are isomorphic if α,β ,γ are isomorphisms (t ∼= t ′).

In the following, 〈r〉 denotes the tensor in Kr×r×r that has a 1 in the positions (ρ,ρ,ρ), 1≤ ρ ≤ r,
and 0s elsewhere (a “diagonal,” the three-dimensional analogue of the identity matrix). This tensor
corresponds to the r bilinear forms xρyρ , 1≤ ρ ≤ r (r independent products).

Lemma 7.3. R(t)≤ r⇔ t ≤ 〈r〉.

Proof. "⇐": follows immediately from Lemma 5.4.

11Note how amazing this is: Asume that in the good old times, when computers were rare and expensive, you were working
at the computer center of your university. A chemistry professor approaches you and tells you that he has some data and needs
to compute a large rank one matrix from it. He needs the results the next day. Since computers were not only rare and expensive,
but also slow, the computing capacity of the center barely suffices to compute the product in one day. But then a physics
professor calls you: She needs to compute a scalar product of a similar size and again, she wants the result the next day. When
you compute exactly, you have to upset one of them, no matter what. But if you are willing to approximate the results, and, hey,
they will not recognize this anyway because of measurement errors, then you can satisfy both of them!
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"⇒": 〈r〉=
r
∑

ρ=1
eρ ⊗ eρ ⊗ eρ , where eρ is the ρth unit vector. If the rank of t is ≤ r, then we can write t

as the sum of r triads,

t =
r

∑
ρ=1

uρ ⊗ vρ ⊗wρ .

We define three homomorphisms

α :eρ 7→ uρ , 1≤ ρ ≤ r ,

β :eρ 7→ vρ , 1≤ ρ ≤ r ,

γ :eρ 7→ wρ , 1≤ ρ ≤ r .

By construction,

(α⊗β ⊗ γ)〈r〉=
r

∑
ρ=1

α(eρ)︸ ︷︷ ︸
=uρ

⊗β (eρ)︸ ︷︷ ︸
=vρ

⊗γ(eρ)︸ ︷︷ ︸
=wρ

= t .

Observation 7.4.

1. t⊗ t ′ ∼= t ′⊗ t ,

2. t⊗ (t ′⊗ t ′′)∼= (t⊗ t ′)⊗ t ′′ ,

3. t⊕ t ′ ∼= t ′⊕ t ,

4. t⊕ (t ′⊕ t ′′)∼= (t⊕ t ′)⊕ t ′′ ,

5. t⊗〈1〉 ∼= t ,

6. t⊕〈0〉 ∼= t ,

7. t⊗ (t ′⊕ t ′′)∼= t⊗ t ′⊕ t⊗ t ′′ .

Above, 〈0〉 is the empty tensor in K0×0×0. So the (isomorphism classes of) tensors form a semi-ring.12

The main result of this section is the following theorem due to Schönhage [28]. It is often called the
τ-theorem in the literature, because the letter τ has a leading role in the original proof. But in our proof,
it only has a minor one.

Theorem 7.5 (Schönhage’s τ-theorem). If R(
p⊕

i=1
〈ki,mi,ni〉) ≤ r with r > p then ω ≤ 3τ where τ is

defined by
p

∑
i=1

(ki ·mi ·ni)
τ = r .

12If two tensors are isomorphic, then the live in they same space Kk×m×n. If t is any tensor and n is a tensor that is completely
filled with zeros, then t is not isomorphic to t⊕n. But from a computational viewpoint, these tensors are the same. So it is also
useful to use this wider notion of equivalence: Two tensors t and t ′ are ˜isomorphic, if there are tensors n and n′ completely filled
with zeros such that t⊕n and t ′⊕n′ are isomorphic.
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Notation 7.6. Let f ∈ N and t be a tensor. f � t := t⊕·· ·⊕ t︸ ︷︷ ︸
f times

.

Lemma 7.7. If R( f �〈k,m,n〉)≤ g, then ω ≤ 3 ·
log
⌈g

f

⌉
log(kmn)

.

Proof. We first show that for all s,

R( f �〈ks,ms,ns〉)≤
⌈g

f

⌉s
· f .

The proof is by induction on s. If s = 1, this is just the assumption of the lemma. For the induction step
s 7→ s+1, note that

f �
〈
ks+1,ms+1,ns+1〉= ( f �〈k,m,n〉)︸ ︷︷ ︸

≤〈g〉

⊗〈ks,ms,ns〉

≤ 〈g〉⊗〈ks,ms,ns〉

= g�〈ks,ms,ns〉.

Therefore,

R( f �
〈
ks+1,ms+1,ns+1〉)≤ R(g�〈ks,ms,ns〉)

≤ R
(⌈g

f

⌉
· f �〈ks,ms,ns〉

)
=
⌈g

f

⌉
·
⌈g

f

⌉s
· f

=
⌈g

f

⌉s+1
f .

This shows the claim. Now use the claim to prove our lemma: R( f �〈ks,ms,ns〉)≤
⌈g

f

⌉s
· f implies

ω ≤
3s log

⌈ g
f

⌉
+ log( f ) ·3

s · log(kmn)
=

3log
⌈ g

f

⌉
+

→0 for s→∞︷ ︸︸ ︷
log( f ) · 3

s
log(kmn)

.

Since ω is an infimum, we get ω ≤
3log

⌈ g
f

⌉
log(kmn)

.

Proof of Theorem 7.5. There is an h such that

Rh(
p⊕

i=1

〈ki,mi,ni〉)≤ r .
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By taking tensor powers and using the fact that the tensors form a ring, we get

Rhs

 ⊕
σ1+...+σp=s

s!
σ1! · . . . ·σp!

�

〈
p

∏
i=1

kσi
i︸ ︷︷ ︸

=k′

,
p

∏
i=1

mσi
i︸ ︷︷ ︸

=m′

,
p

∏
i=1

nσi
i︸ ︷︷ ︸

=n′

〉≤ rs .

k′,m′,n′ depend on σ1, . . . ,σp. Next, we convert the approximate computation into an exact one and get

R

( ⊕
σ1+...+σp=s

s!
σ1! · . . . ·σp!

�
〈
k′,m′,n′

〉)
≤ rs · chs .

Recall that chs is a polynomial in h and s. By raising the defining equation for τ in the statement of the
theorem to the sth power, we see that

∑
s=σ1+...+σp

s!
σ1! · . . . ·σp!

(k′ ·m′ ·n′)τ︸ ︷︷ ︸
=(∗)

= rs .

Fix σ1, . . . ,σp such that (*) is maximized. Then k′, m′, and n′ are constant. To apply Lemma 7.7, we
set

f =
s!

σ1! · . . . ·σp!
< ps ,

g = rs · chs ,

m = m′ ,

k = k′ ,

n = n′ .

The number of all ~σ with σ1 + . . .+σp = s is(
s+ p−1

p−1

)
=

s+ p−1
p−1

·
s+ p−2

p−2
· · · ≤ (s+1)p−1 .

Thus

f · (kmn)τ ≥
rs

(s+1)p−1 .

We get that ⌈g
f

⌉
≤

rs · chs

f
+1≤ (kmn)τ · (s+1)p−1 · chs .

Furthermore,

(kmn)τ ≥
rs

(s+1)p−1 f
≥

rs

(s+1)p−1 ps . (7.1)
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By Lemma 7.7,

ω ≤ 3 ·
τ · log(kmn)+(p−1) · log(s+1)+ log(chs)

log(kmn)

= 3τ +
(p−1) log(s+1)+ log(chs)

log(kmn)
→

s→∞
3τ .

because
log(kmn)≥ s

τ
· (logr− log p)︸ ︷︷ ︸
>0 by assumption

−O(log(s))

by (7.1).
By using the example at the beginning of this section with k = 4 and n = 3, we get the following

bound out of the τ-theorem.

Corollary 7.8. ω ≤ 2.55.

What is the algorithmic intuition behind the τ-theorem? If we take the sth tensor power of a sum of
N independent matrix products, we get a sum of Ns independent matrix products. From these matrix
products, we choose a subset with isomorphic tensors. In the proof of the theorem, this is done when
maximizing the quantity (*). Assume we get ` matrix products of the form 〈k,m,n〉. What can we do with
this? Well, we can compute a large matrix product 〈tk, tm, tn〉 with t3 ≤ ` by using the trivial algorithm
for multiplying 〈t, t, t〉 together with the ` independent products for 〈k,m,n〉, each of them replacing one
of the multiplications in the trivial algorithm. We get a new improved algorithm for multiplying matrices.
If we use this new algorithm for computing 〈t, t, t〉, we get an even better algorithm, and so on. The bound
on the exponent that we get in the limit is the one given by the τ-theorem. Along with this, we also get an
algorithm to compute the value of τ , see the original paper by Schönhage.

Coppersmith and Winograd [12] optimize this approach by introducing the concept of null-like
tensors. They were able to get an upper bound < 2.5 with their approach. Before this result, according
to Schönhage, quite a few researchers conjectured that ω might be 2.5, since there were some further
improvements, for instance by V. Pan, by using better starting algorithms, moving the upper bounds close
to 2.5 (see the original paper by Schönhage).

8 Strassen’s Laser method

Consider the following tensor (see Figure 7 for a pictorial description)

Str =
q

∑
i=1

(ei⊗ e0⊗ ei︸ ︷︷ ︸
〈q,1,1〉

+e0⊗ ei⊗ ei︸ ︷︷ ︸
〈1,1,q〉

) .

This tensor is similar to 〈1,2,q〉, only the “directions” of the two scalar products are not the same. But
Strassen’s tensor can be approximated very efficiently. We have

q

∑
i=1

(e0 + εei)⊗ (e0 + εei)⊗ ei =
q

∑
i=1

e0⊗ e0⊗ ei + ε

q

∑
i=1

(ei⊗ e0⊗ ei + e0⊗ ei⊗ ei)+O(ε2) .
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Figure 7: Strassen’s tensor.

If we subtract the triad e0⊗ e0⊗∑
q
i=1 ei, we get an approximation of Str. Thus R(Str)≤ q+1. On the

other hand, R(〈1,2,q〉) = 2q. Can we make use of this very cheap tensor?

Definition 8.1. Let t ∈ Kk×m×n be a tensor. Let I1, . . . , Ip, J1, . . . ,Jq, and L1, . . . ,Ls be sets such that

Ii ⊆ {1, . . . ,k} , 1≤ i≤ p ,
J j ⊆ {1, . . . ,m} , 1≤ j ≤ q ,
L` ⊆ {1, . . . ,n} , 1≤ `≤ s .

1. The sets are called a decomposition D of format k×m×n if

I1 ∪̇ I2 ∪̇ · · · ∪̇ Ip = {1, . . . ,k} ,
J1 ∪̇J2 ∪̇ · · · ∪̇Jq = {1, . . . ,m} ,
L1 ∪̇L2 ∪̇ · · · ∪̇Ls = {1, . . . ,n} .

2. tIi,J j,L`
∈ K|Ii|×|J j|×|L`| is the tensor that one gets when restricting t to the slices in Ii,J j,L`, i. e.,

tIi,J j,L`
(a,b,c) = t(â, b̂, ĉ)

where â = the ath smallest element in Ii and b̂ and ĉ are defined analogously.13

3. tD ∈ K p×q×s is defined by

tD(i, j, l) =

{
1 if tIi,J j,L`

6= 0 ,
0 otherwise.

4. Finally, suppD t = {(i, j, `) | tIi,J j,L`
6= 0}.

We can think of giving the tensors an “inner” and an “outer” structure. A decomposition cuts the
tensor into (combinatorial) cuboids tIi,J j,L`

, these cuboids need not be connected. The cuboids form the
inner structure. For the outer structure tD, we interpret each set Ii or J j or L` as a single index. If the
corresponding inner tensor tIi,J j,L`

is nonzero, we put a 1 into position (i, j, `). The support is just the set
of all places where we put a 1 in tD.

13To avoid multiple indices, we here use the notation t(a,b,c) to access the element in position (a,b,c) instead of ta,b,c.
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Definition 8.2. Let D and D′ be two decompositions for format k×m×n and k′×m′×n′ consisting of
sets I1, . . . , Ip, J1, . . . , Iq, and L1, . . . ,Ls and I′1, . . . , I

′
p′ , J′1, . . . ,J

′
q′ , and L′1, . . . ,L

′
s′ . Their product D⊗D′ is

a decomposition of format kk′×mm′×nn′ and is given by the sets

Ii× I′i′ , 1≤ i≤ p , 1≤ i′ ≤ p′ ,
J j× J′j′ , 1≤ j ≤ q , 1≤ j′ ≤ q′ ,
L`×L′`′ , 1≤ l ≤ s , 1≤ l′ ≤ s′ .

Lemma 8.3. Let ρ and ρ ′ be two sets of tensors. Let t ∈ Kk×m×n and t ′ ∈ Kk′×m′×n′ with decompositions
D and D′ be given. Assume that tIi,J j,L`

∈ ρ for all (i, j, `) ∈ suppDt and the same for t ′. Then D⊗D′ is
a decomposition of t⊗ t ′ such that

(t⊗ t ′)D⊗D′ ∼= tD⊗ t ′D′ .
14

Furthermore, (t⊗ t ′)Ii×I′i′ ,J j×J′j′ ,L`×L′
`′
∈ ρ⊗ρ ′ for all (i, j, `) ∈ suppDt and (i′, j′, `′) ∈ suppD′t ′, where

ρ⊗ρ ′ is defined elementwisely.

The proof of the lemma is a somewhat tedious but easy exercise which we leave to the reader.
Next, we decompose Strassen’s tensor and analyse its outer structure. We define a decomposition D

as follows:
{0} ∪̇ {1, . . . ,q} = {0, . . . ,q} ,
I0 I1
{0} ∪̇ {1, . . . ,q} = {0, . . . ,q} ,
J0 J1

{1, . . . ,q} = {1, . . . ,q} .
L1

With respect to D, we have

StrD =

(
1 0
0 1

)
= 〈1,2,1〉 ,

StrIi,J j,Ll ∈ {〈1,1,q〉,〈q,1,1〉} ⊆ {〈k,m,n〉 | k ·m ·n = q}.

The format of Str is (q+ 1)× (q+ 1)× q. Next, we make Str symmetric. Take the permutation
π = (1 2 3). We have

π StrπD = 〈1,1,2〉 and π
2 Strπ2D = 〈2,1,1〉 ,

where πD and π2D are the defined by permuting the sets accordingly. Let

Sym-Str = Str⊗π Str⊗π
2 Str .

By Lemma 8.3, D̂=D⊗πD⊗π2D is a decomposition of Sym-Str such that

Sym-StrD = 〈2,2,2〉

and every inner tensor is in
{〈k,m,n〉 | k ·m ·n = q3} .

14The order of the indices, when building t⊗ t ′ and D⊗D′ should be the same.
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Definition 8.4. Let t ∈ Kk×m×n, t ′ ∈ Kk′×m′×n′ .

1. Let t ′=
r
∑

ρ=1
uρ⊗vρ⊗wρ as well as A(ε)∈K[ε]k×k′ , B(ε)∈K[ε]m×m′ , and C(ε)∈K[ε]n×n′ . Define

(A(ε)⊗B(ε)⊗C(ε))t ′ =
r

∑
ρ=1

A(ε)uρ ⊗B(ε)vρ ⊗C(ε)wρ .

(This is well-defined.)

2. t is a degeneration of t ′ if there are A(ε) ∈ K[ε]k×k′ , B(ε) ∈ K[ε]m×m′ , C(ε) ∈ K[ε]n×n′ , and q ∈ N
such that

ε
qt = (A(ε)⊗B(ε)⊗C(ε))t ′+O(εq+1) .

We will write t Eq t ′ or t E t ′.

Remark 8.5. R(t)≤ r⇔ t E 〈r〉.

The remark above can be interpreted as follows: If you want to “buy” a tensor, then it costs r
multiplications. Then next lemma is a kind of a converse. It tells you, that when you bought a matrix
tensor 〈n,n,n〉, then you can “resell” it and get Ω(n2) single multiplications back.

Lemma 8.6. 〈⌈
3
4
n2

⌉〉
E 〈n,n,n〉 .

Proof. First assume that n is odd, n = 2ν +1. We label rows and columns from −ν , . . . ,ν . We define the
linear mappings A,B,C : Kn×n→ K[ε]n×n by

A : ei j 7→ ei j · ε i2+2i j ,

B : e jk 7→ e jk · ε j2+2 jk ,

C : eki 7→ eki · εk2+2ki ,

where ei, j denotes the standard basis. A, B, and C define matrices in K[ε]n
2×n2

. Recall that

〈n,n,n〉=
ν

∑
i, j,k=−ν

ei j⊗ e jk⊗ eki .

We have

(A⊗B⊗C)〈n,n,n〉=
ν

∑
i, j,k=−nu

ε
i2+2i j+ j2+2 jk+k2+2ki︸ ︷︷ ︸

=ε(i+ j+k)2

ei j⊗ e jk⊗ eki .

If i+ j+ k = 0 then
i,k
i, j
j,k

determine
j
k
i
.

So all terms with exponent 0 form a set of independent products. It is easy to see that there are ≥ (3/4)n2

triples (i, j,k) with i+ j+ k = 0. The case when n is even is treated in a similar way.
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Definition 8.7. Let t ∈ Kk×m×n, t ′ ∈ Kk′×m′×n′ . t is a monomial degeneration of t ′ if the entries of the
matrices A, B, and C in Definition 8.4 are monomials.

The matrices constructed in Lemma 8.6 are monomial matrices. Therefore,〈⌈
3
4
n2

⌉〉
is a monomial degeneration of 〈n,n,n〉.

Now we want to apply Lemma 8.6 to Sym-StrD̂. First, we raise Sym-Str to the sth tensorial power.
We get 〈

3
4
22s

〉
E︸︷︷︸

Lemma 8.6

(Sym-Str)⊗s
D̂⊗s E6s

〈
(q+1)3s〉 .

The inner tensors or Sym-Str⊗s are ∈ {〈k,m,n〉 | k ·m ·n = q3s}. How does this inner structure behave
with respect to the degeneration 〈

3
4

22s
〉
E (Sym-Str)⊗s

D̂⊗s ?

Since this degeneration is a monomial degeneration, every 1 in the tensor
〈3

4 22s
〉

will correspond to
one tensor in {〈k,m,n〉 | k ·m ·n = q3s}.15 So we get a direct sum of 3

4 22s tensors each of them being in
{〈k,m,n〉 | k ·m ·n = q3s}. The border rank of this sum is bound by (q+1)3s. But in this situation, we
can apply the τ-theorem! We get

(q3s)τ 3
4

22s ≤ (q+1)3s ,

q3τ s

√
3
4︸︷︷︸

→1

22 ≤ (q+1)3 ,

ω ≤ logq
(q+1)3

4
.

The right-hand side is minimal for q = 5 and gives us the result ω ≤ 2.48.

Corollary 8.8 (Strassen [33]). ω ≤ 2.48.

Research problem 8.9. What is R(Sym-Str)? It is quite easy to see that R(Str) = q+1, since it consists
of q+1 linearly independent slices. But the format of Sym-Str is q(q+1)2×q(q+1)2×q(q+1)2, so it
is not clear whether the upper bound (q+1)3 is tight.

Why is the laser method called laser method? Here is an explanation I heard from Amin Shokrollahi
who claimed to have heard it from Volker Strassen: In a laser, one generates coherent light. You can think
of the two inner tensors in Strassen’s tensor as light waves having different polarization. In the end we
obtain a diagonal with “light waves” having the same polarization.

15If the degeneration were not monomial, then every 1 in
〈 3

4 22s〉 would be linear combination of several entries of the tensor
(Sym-Str)⊗s

D̂⊗s . Per se, this is fine. But when looking at the inner structures, then every 1 will correspond to a linear combination
of matrix tensor of formats that do not match.
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Figure 8: Coppersmith and Winograd’s tensor.

9 Coppersmith and Winograd’s method

Strassen’s tensor is asymmetric, its format is (q+1)× (q+1)×q. For only one additional multiplication,
we can compute the following symmetric variant (see Figure 8 for a pictorial description)

CW =
q

∑
i=1

(ei⊗ e0⊗ ei︸ ︷︷ ︸
〈q,1,1〉

+e0⊗ ei⊗ ei︸ ︷︷ ︸
〈1,1,q〉

+ei⊗ ei⊗ e0︸ ︷︷ ︸
〈1,q,1〉

) .

This tensor can be approximated efficiently. We have

ε
5 ·CW =

q

∑
i=1

ε · (e0 + ε
2ei)⊗ (e0 + ε

2ei)⊗ (e0 + ε
2ei)

− (e0 + ε
3

q

∑
i=1

ei)⊗ (e0 + ε
3

q

∑
i=1

ei)⊗ (e0 + ε
3

q

∑
i=1

ei)

+(1−qε) · e0⊗ e0⊗ e0

+O(ε6) .

Thus, R(CW)≤ q+2. We define a decomposition D as follows:

{0} ∪̇ {1, . . . ,q} = {0, . . . ,q} ,
I0 I1
{0} ∪̇ {1, . . . ,q} = {0, . . . ,q} ,
J0 J1
{0} ∪̇ {1, . . . ,q} = {0, . . . ,q} .
L0 L1
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With respect to D, we have

CWD =

(
2 1
1

)
,

CWIi,J j,L`
∈ {〈1,1,q〉,〈q,1,1〉,〈1,q,1〉} .

The right-hand side of the first equation represents a tensor of format 2×2×2. An entry k in position
(i, j) means that the (i, j,k)th entry of the tensor is 1. All other entries are 0.

The inner structures with respect to D are the same as in the previous section. However, CWD

is not a matrix product anymore. Therefore, we cannot apply the machinery of the previous section.
Coppersmith and Winograd [13] found a way to get fast matrix multiplication algorithms from the bound
R(CW)≤ q+2. The proof of their bound that we present here is due to Strassen, see also [8, Sect. 15.7,
15.8]. We follow the proof in the book [8] quite closely. In particular, we use the same notation.

9.1 Tight sets

The question that we have to deal with is the following: Given a tensor t, what is the largest N for
which we can show that 〈N〉E t⊗s by a monomial degeneration? Strassen gave an answer for tensors
t = 〈n,n,n〉. Next, we want to develop a general method.

Definition 9.1. Let I, J, and L be finite sets. Let A,B⊆ I×J×L. A is called a combinatorial degeneration
of B if there are functions a : I→ Z, b : J→ Z, and c : L→ Z such that

1. ∀(i, j, `) ∈ A : a(i)+b( j)+ c(`) = 0,

2. ∀(i, j, `) ∈ B\A : a(i)+b( j)+ c(`)> 0.

Combinatorial degenerations can be turned into monomial degenerations, this is essentially done in
Lemma 8.6. Let tA ∈ K|I|×|J|×|L| be the tensor that has a 1 in every positions corresponding to tuples in A
and 0 elsewhere. Define tB in the same way. Define mappings X , Y , and Z by

X : ei 7→ εa(i)ei ,

Y : e j 7→ εb( j)e j ,

Z : e` 7→ εc(k)e` .

Then tA = (X⊗Y ⊗Z)tB +O(ε), i. e., tA is a monomial degeneration of tB.

Definition 9.2.

1. A ⊆ I× J×L is called tight if there are an r ≥ 1 and injective maps a : I→ Zr, b : J→ Zr, and
c : L→ Zr such that for all (i, j, `) ∈ A, a(i)+b( j)+ c(`) = 0.

2. A set ∆⊆ I× J×L is called diagonal if the three canonical projections pI : ∆→ I, pJ : ∆→ J, and
pL : ∆→ L are injective. This means that ∆ = {(1,1,1),(2,2,2), . . .} up to permutations.
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If a (combinatorial) diagonal is a combinatorial degeneration of some set A, then we can get a diagonal
from tA via a monomial degeneration.

Let ZM = Z/MZ. The set ψM below will play an important role in the following.

Lemma 9.3. Let M ∈N. Let ψM = {(i, j, `) ∈ Z3
M | i+ j+ `= 0 in ZM}. ψM contains a diagonal ∆ with

|∆| ≥M/2, which is a combinatorial degeneration of ψM.

Proof. By shifting one of the indices, we can assume that ψM = {(i, j, `)∈Z3
M | i+ j+`+1= 0 mod M}.

We write ψM = A∪B with

A = {(i, j, `) | i+ j+ `= M−1 in Z} ,
B = {(i, j, `) | i+ j+ `= 2M−1 in Z} .

∆ = {(i, i,M−1−2i) | 0≤ i≤ (M−1)/2} is a diagonal with |∆| ≥M/2.
We define functions a,b,c : ZM → Z by

a(i) = 4i2 ,

b( j) = 4 j2 ,

c(`) =−2(M−1− `)2 .

For (i, j, `) ∈ A,

a(i)+b( j)+ c(`) = 4i2 +4 j2−2(M−1− `)2︸ ︷︷ ︸
i+ j

= 2i2 +2 j2−4i j = 2(i− j)2 ≥ 0 .

Equality holds iff (i, j, `) ∈ ∆, because if i = j, then `= M−1−2i since (i, j, `) ∈ A.
For (i, j, `) ∈ B,

a(i)+b( j)+ c(`) = 4i2 +4 j2−2(M−1− `)2︸ ︷︷ ︸
i+ j−M

= 4i2 +4 j2−2(i+ j)2 +4M (i+ j)︸ ︷︷ ︸
≥M

−2M2

≥ 2(i− j)2 +2M2 > 0 .

This proves the lemma.

The next lemma gives a simple lower bound on the size of a diagonal by just removing “collisions.”

Lemma 9.4. Let Φ⊆ I× J×L and

Π =
{
{(i, j, `),(i′, j′, `′)} ∈

(
Φ

2

) ∣∣∣ i = i′∨ j = j′∨ `= `′
}
.

Then there are I′ ⊆ I, J′ ⊆ J, and L′ ⊆ L such that

∆ := (I′× J′×L′)∩Φ

is a diagonal of size ≥ |Φ|− |Π| and ∆ E Φ.
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Φ
Fw→ ΨM

E E

Φw
Fw→ D

=⋃
d∈D Φw(d)

E⋃
d∈D ∆d

Figure 9: The construction in the proof of Theorem 9.6.

Proof. We interpret G = (Φ,Π) as a graph. G has ≥ |Φ|− |Π| connected components, since every edge
in Π can connect at most two components when adding the edges of Π to the empty graph one after
another. Choose one node of every connected component. These nodes form the set ∆. We set I′ = pI(∆),
and J′ = pJ(∆), and L′ = pL(∆), where pI , pJ , and pL are the canonical projections.

It remains to show that ∆ is a combinatorial degeneration of Φ. Define the mappings a, b and c by

a(i) =

{
0 i ∈ I′ ,
1 i ∈ I\I′ ,

b( j) =

{
0 j ∈ J′ ,
1 j ∈ J\J′ ,

c(`) =

{
0 l ∈ L′ ,
1 ` ∈ L\L′ .

By the definition of Φ and the choice of ∆,

• ∀(i, j, `) ∈ ∆ : a(i)+b( j)+ c(`) = 0 ,

• ∀(i, j, `) ∈Φ\∆ : a(i)+b( j)+ c(`)> 0 .

This shows that ∆ is a combinatorial degeneration of Φ.

Definition 9.5. Let β ∈ Z. A⊆ I×J×L is called β -tight if it is tight and if there are function a, b, and c
like in Definition 9.2 such that in addition, a(I),b(J),c(L)⊆ {−β , . . . ,β}r.

The following theorem is the main result of this subsection. It provides a way to find a large diagonal
in a tight set.

Theorem 9.6. Let Φ⊆ I× J×L be β -tight, |I| ≤ |J| ≤ |L| and assume that the projections pI : Φ→ I,
pJ : Φ→ J, and pL : Φ→ L are surjective. Let c > 1 such that

max
i∈I
|p−1

I (i)|, max
j∈J
|p−1

J ( j)|, max
`∈L
|p−1

L (`)| ≤ c · |Φ|
|L|

.
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Then there is a diagonal ∆ E Φ with

|∆| ≥ 2
27cβ

· |I| .

Proof. Let a : I → {−β ,0,β}r, b : J → {−β ,0,β}r, and c : L→ {−β ,0,β}r be injective such that
a(i) + b( j) + c(`) = 0 for all (i, j, `) ∈ Φ. Let M ≥ 2β + 1 be a prime to be chosen later and let
w1, . . . ,wr+3 ∈ZM . Let w= (w1, . . . ,wr+3). We define the following functions Aw : I→ZM , Bw : J→ZM ,
and Cw : L→ ZM by

Aw(i) = ∑
r
ρ=1 aρ(i)wρ +wr+1 −wr+2 mod M ,

Bw( j) = ∑
r
ρ=1 bρ( j)wρ +wr+2 −wr+3 mod M ,

Cw(`) = ∑
r
ρ=1 cρ(`)wρ −wr+1 +wr+3 mod M .

It is straightforward to check that for all (i, j, `)∈Φ, Aw(i)+Bw( j)+Cw(`) = 0, even when not computing
modulo M.

Let Fw : I× J×L→ Z3
M be defined by (i, j, `) 7→ (Aw(i),Bw( j),Cw(`)). By construction,

Fw(Φ)⊆ΨM = {(x,y,z) ∈ Z3
M | x+ y+ z = 0} .

By Lemma 9.3, there exists a diagonal D E ΨM with |D| ≥M/2. Let Φw = F−1
w (D)∩Φ.

We claim that Φw is a degeneration of Φ. Since D is a degeneration of ΨM there are functions aD, bD,
and cD such that

• ∀(i, j, `) ∈ D : aD(i)+bD( j)+ cD(`) = 0 and

• ∀(i, j, `) ∈ΨM \D : aD(i)+bD( j)+ cD(`)> 0 .

The functions aD ◦ Âw, bD ◦ B̂w, and cD ◦Ĉw prove the claim above, where Âw is defined like Aw but not
reduced modulo M. B̂w and Ĉw are defined in the same way.

For d ∈ D, set Φw(d) = F−1
w (d)∩Φ. Then:

Φw =
⋃

d∈D

Φw(d) .

Since D is a diagonal, the sets pI(Φw(d)) with d ∈ D are pairwise disjoint. (Note that Fw operates on the
three coordinates separately.) The same holds for pJ and pL. From this it follows that if ∆d E Φw(d) are
diagonals, then

∆ =
⋃

d∈D

∆d

is a diagonal and ∆ E Φw. (We can glue the functions pI(Φw(d))→ Zr for d ∈ D in the definition of
combinatorial degeneration together, since the sets pI(Φw(d)) are pairwise disjoint. The same is true for
the other two coordinates.) Figure 9 shows the construction we built so far.

Let

Πw(d) =
{
{(i, j, `),(i′, j′, `′)} ∈

(
Φw(d)

2

) ∣∣∣ i = i′∨ j = j′∨ `= `′
}
.

By Lemma 9.4 there exists ∆d E Φw(d) with |∆d | ≥ |Φw(d)|− |Πw(d)|.
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It remains to show the following claim:
Claim: We can choose M and w1, . . . ,wr+3 in such a way that

Sw := ∑
d∈D

(|Φw(d)|− |Πw(d)|)≥
2

27cβ
· |I| .

The proof of the claim is by the probabilistic method. We choose w1, . . . ,wr+3 uniformly at random
(and M depending on w1, . . . ,wr+3) and show that

E[Sw]≥
2

27cβ
· |I| .

In particular, for at least one choice of w1, . . . ,wr+3, Sw is large enough.
Fix (i, j, `) ∈ I× J×L. The random variables w→ Aw(i), w→ Bw( j), and w→Cw(`) are uniformly

distributed and pairwise independent since w→ (Aw(i),Bw( j)) is surjective (as a mapping from Zr+3
M →

Z2
M). This is due to the fact that wr+1 only appears in Aw and wr+3 only appears in Bw. The same is true

for the other two pairs.
Furthermore Aw(i),Aw(i′) and Cw(`) are pairwise independent for i 6= i′, since

w→ (Aw(i),Aw(i′),Cw(`))

is surjective because  a1(i) . . . ar(i) 1 −1 0
a1(i′) . . . ar(i′) 1 −1 0
c1(`) . . . cr(`) −1 0 1


has rank three over ZM . If one writes the zero vector as a linear combination of these three rows, then the
coefficient of the last row will be zero because of the 1 in the last column of the matrix. a is injective as a
mapping to Zr. But since M ≥ 2β +1, it is also injective as a mapping to Zr

M. Therefore, the first two
rows are not identical, since i 6= i′. Thus the coefficients of the first two rows must be zero, too.

The expected value of |Φw(d)| for d = (x,y,z) is the probability that we hit (x,y,z), i. e.,

E[|Φw(d)|] = ∑
(i, j,`)∈Φ

Pr
w
[Aw(i) = x,Bw( j) = y,Cw(`) = z]

= ∑
(i, j,`)∈Φ

Pr
w
[Aw(i) = x,Bw( j) = y]

= |Φ| ·
1

M2 .

We can drop the event Cw(`) = z, since it is implied by the other two events for (i, j, `) ∈ Φ and
(x,y,z) ∈ΨM.

To estimate the expected value of |Πw(d)|, we decompose it into three sets. Let

Uw(d) :=
{
{(i, j, `),(i′, j′, `′)} ∈

(
Φw(d)

2

) ∣∣∣ `= `′
}

=
⋃
`∈L

{
{(i, j, `),(i′, j′, `′)} ∈

(
p−1

L (`)

2

) ∣∣∣ Aw(i) = x = Aw(i′),Cw(`) = z
}
.
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Note that as above, Aw(i) = x = Aw(i′) and Cw(`) = z imply Bw( j) = y = Bw( j′). As we have seen, Aw(i),
Aw(i′), and Cw(`) are independent. Therefore,

E(|Uw(d)|) = ∑
`∈L

|p−1
L (`)|(|p−1

L (`)|−1)
2

M−3

≤ 1
2M3 ∑

`∈L
|p−1

L (`)|2

≤ c|Φ|2

2M3|L|
.

For the last inequality, we used that ∑`∈L |p−1
L (`)|= |Φ| and the assumption that |p−1

L (`)| ≤ c|Φ|/|L|. We
do the same for the other two coordinates and get

E[|Πw(d)|]≤
3c|Φ|2

2M3|I|
.

Recall that |I| ≤ |J|, |L|.
Now we can finish the proof of the claim:

E(Sw) = ∑
d∈D

(|Φw(d)|− |Πw(d)|)

≥ |D| ·
(
|Φ|
M2 −

3c|Φ|2

2M3|I|

)
≥ |I|

2c

(
c|Φ|
M|I|

− 3
2
·
(

c|Φ|
M|I|

)2
)
.

Now we choose the prime M such that

9
4
· βc|Φ|
|I|

≤M ≤ 9
2
· βc|Φ|
|I|

.

Such an M exists by Bertrand’s postulate. Since |I| ≤ |Φ|, M ≥ 2β +1, as required. It is easy to check
that with this choice of M,

E(Sw)≥
|I|
2c
· 4

27β
=

2|I|
27cβ

,

and we are done.

9.2 First construction

The support Φ of CW with respect to D is

{(1,1,0),(1,0,1),(0,1,1)} ⊆ {0,1}3 .
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It is obviously tight, since it fulfills i+ j+ `= 2. Take the Nth tensor power CW⊗N . All inner tensors
of CW⊗N with respect to D⊗N are tensors 〈x,y,z〉 with xyz = qN . By Theorem 9.6, the support ΦN of
CW⊗N contains a diagonal of size 2|I|N/(27c) where c is chosen such that

|p−1
IN (i)| ≤ c

|Φ|N

|I|N
.

Since p−1
I (1) = {(1,1,0),(1,0,1)}, |p−1

IN (1, . . . ,1)|= 2N . (We only need to check this for IN since the
situation is completely symmetric.) Therefore,

c≥ |I|
N2N

|Φ|N
=

4N

3N .

Thus, we get a diagonal of size (2/27) · (3/2)N . We now can apply the τ-Theorem (recall that combinato-
rial degenerations give rise to monomial degenerations) and get

2
27
·
(

3
2

)N

qω/3·N ≤ (q+2)N .

Taking Nth roots and letting N go to infinity, we get

ω ≤ 3logq

(
2(q+2)

3

)
.

For q = 18, this gives ω ≤ 2.69. 2.69? Really, 2.69!
So what went wrong? It turns out, that it is better to restrict ΦN . Let I′ be the set of all vectors

in IN with 2N/3 1’s. We assume that N is divisible by 3. We define J′ and L′ in the same way. Let
Φ′ = ΦN ∩ I′×J′×L′. Φ′ is nonempty, since the product containing N/3 factors of each of the 3 elements
in Φ is in I′∩ J′∩L′.

Now, |p−1
I′ (i)| have the same size for all i by construction. Then trivially,

|p−1
I′ (i)| ≤

|Φ′|
|I′|

,

so we can choose c = 1 in Theorem 9.6. We get a diagonal of size 2
27

( N
2N/3

)
. We apply the τ-theorem

once again and get this time
2
27
·
(

N
2N/3

)
qω/3·N ≤ (q+2)N .

By Stirling’s formula,

1
N

ln
(

N
2N/3

)
→−2

3
ln

2
3
− 1

3
ln

1
3
=−2

3
ln(2)+ ln3

for N→ ∞. Therefore, we get

ω ≤ 3 · logq

(
22/3(q+2)

3

)
= logq

(
4(q+2)3

27

)
.

For q = 8, we obtain the following result.
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Corollary 9.7 (Coppersmith & Winograd). ω ≤ 2.41.

It can be shown that R(CW) = q+ 2. So is this the end of this approach? Note that in the above
calculation, we always compute a huge power CW⊗N . The format of this tensor is (q+1)N× (q+1)N×
(q+1)N . So it could be the case that R(CW⊗N) = (q+1)N . The asymptotic rank R˜(t) of a tensor t is
defined as

R˜(t) := lim
N→∞

R(t⊗N)1/N .

This is well-defined. All the bounds that we have shown so far are still valid if we replace border rank by
asymptotic rank. If R˜(CW) = q+1, then ω = 2 would follow (from the construction above for q = 2).

Problem 9.8. What is R˜(CW)? Even simpler: Is R(CW⊗2)< (q+2)2?

9.3 Main theorem

Next we prove a general theorem, that formalizes the method used to prove Corollary 9.7. We will work
with arbitrary probability distributions on the support, since in this case, we can even handle the case
when the inner tensors are matrix tensors of different sizes.

Let P : I→ [0;1] be a probability distribution. The entropy H(P) of P is defined as

H(P) :=− ∑
i∈I:P(i)>0

P(i) · lnP(i) .

Fact 9.9. For all µ : I→ N with ∑i∈I µ(i) = N,∣∣∣∣∣ 1
N
· ln

(
N
µ

)
−H

(
µ

N

)∣∣∣∣∣→ 0 .

The fact can be easily shown using Stirling’s formula.
Let P : I× J×L→ [0;1] be a probability distribution. Then

P1(i) := ∑
( j,`)∈J×L

P(i, j, `)

is a probability distribution, the first marginal distribution. In the same way, we define P2( j) and P3(`).

Theorem 9.10 (Coppersmith & Winograd). Let D be a decomposition of a tensor t ∈ Kk×m×n with sets
I1, . . . , Ip, J1, . . . ,Jq, and L1, . . . ,Ls such that

1. suppD t is tight,

2. tIi,J j,L`
is a matrix tensor for all (i, j, `) ∈ suppD t.

Then
min

1≤m≤3
H(Pm)+ω · ∑

(i, j,`)∈suppD t
P(i, j, `) · ln(ζ (tIi,J j,L`

))≤ lnR(t)

for all probability distributions P on suppD t, where ζ (〈x,y,z〉) = (xyz)1/3.
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Proof. Assume that suppD t is β -tight. We choose a function Q : suppD t→ N and let

N = ∑
(i, j,`)∈suppD t

Q(i, j, `) .

(Think of Q being a discretization of our probability distribution P.) Let

µ(i) = ∑
j,`

Q(i, j, `) .

We define ν( j),π(`) analogously. Obviously ∑ µ(i) = N. We say that x = (x1, . . . ,xN) ∈ IN has distribu-
tion µ if for all i ∈ I, i appears in exactly µ(i) positions.

It is easy to check that the support of t⊗N with respect to the decomposition D⊗N is again β -tight. Let

Iµ := {x ∈ IN | x has distribution µ} ,
Jν := {y ∈ JN | y has distribution ν} ,
Lπ := {z ∈ LN | z has distribution π} ,
Φ := Iν × Jν ×Lπ ∩ (suppD t)N .

We have |Iµ |=
(N

µ

)
, |Jν |=

(N
ν

)
, and |Lπ |=

(N
π

)
. Furthermore, Φ is not empty. The projection p1 : Φ→ Iµ

is surjective with |p−1
1 (i)|= |Φ|/|Iµ |. All fibers p−1

1 (i) have the same size, namely |Φ|/|Iµ |. The same
holds for Jν and Lπ .

What do the inner tensors of t⊗N with respect to the decomposition t⊗N look like? They are tensor
products of the inner tensors of t, i. e., matrix tensors itself. Take (x,y,z) ∈ Φ. The inner tensor
corresponding to (x,y,z) is

t⊗N
Ix1×···×IxN ,Jy1×···×JyN ,Lz1×···×JzN

=
N⊗

s=1

tIxs ,Jys ,Lzs
.

Assume that tIi,J j,L`
∈Ui⊗Vj⊗W` with dimUi = ki, dimVj = m j, and dimW` = n`. Then ζ (tIi,J j,L`

) =

(kim jn`)1/6. Thus,

ζ (t⊗N
Ix1×···×IxN ,Jy1×···×yxN ,Lz1×···×LzN

) =
N

∏
s=1

(kxsmysnzs)
1/6

= ∏
i∈I

kµ(i)/6
i ∏

j∈J
]mν( j)/6

j ∏
`L

nπ(`)/6
`

= ∏
(i, j,`)∈suppD t

(kim jn`)Q(i, j,`)/6

= ∏
(i, j,`)∈suppD t

ζ (tIi,J j,L`
)Q(i, j,`) .

This means that all inner tensors of t⊗N restricted to Φ have the same ζ -value. This is another reason for
restricting the situation to the invariant sets Iµ , Jν , and Lπ .
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Next, we apply Theorem 9.6 to the β -tight set Φ⊆ Iµ × Jν ×Lπ . We get a diagonal ∆ of size

|∆| ≥ 2
27β

min{|Iµ |, |Jν |, |Lπ |} .

Note that we can choose the constant c = 1. ∆ is a degeneration of Φ E (suppD t)N . Therefore,⊕
(x,y,z)∈∆

t⊗N
Ix1×···×IxN ,Jy1×···×JyN ,Lz1×···×LzN

E t⊗N .

We apply the τ-theorem and obtain

|∆| ∏
(i, j,`)∈suppD t

ζ (tQ(i, j,`)
Ii,J j,L`

)ω ≤ R(t⊗N)≤ R(t)N .

Taking logarithms, we get

1
N

ln |∆|+ω ∑
(i, j,`)∈suppD t

1
N

Q(i, j, `) lnζ (tLi,J j,L`
)≤ R(t) .

Now we approximate the given probability distribution P by the function Q such that

|P(i, j, `)− 1
N

Q(i, j, `)| ≤ ε .

ε solely depends on N and goes to 0 as N goes to ∞.
By Fact 9.9 we can approximate 1

N ln |∆| by min1≤m≤3 H(Pm). Therefore, we get

min
1≤m≤3

H(Pm)+ω ∑
(i, j,`)∈suppD t

P(i, j, `) logζ (tIi,J j,L`
)≤ lnR(t)+C · ε

for some constant C. The result follows by letting ε tend to zero.

Remark 9.11. The theorem above generalizes Strassen’s laser method, since matrix tensors are tight.

Consider the following enhanced Coppersmith and Winograd tensor

CW+ =
q

∑
i=1

(ei⊗ e0⊗ ei︸ ︷︷ ︸
〈q,1,1〉

+e0⊗ ei⊗ ei︸ ︷︷ ︸
〈1,1,q〉

+ei⊗ ei⊗ e0︸ ︷︷ ︸
〈1,q,1〉

)+ eq+1⊗ e0⊗ e0 + e0⊗ eq+1⊗ e0 + e0⊗ e0⊗ eq+1 .

Astonishingly, this larger tensor has border rank q+2, too:

ε
5 CW+ =

q

∑
i=1

ε · (e0 + ε
2ei)⊗ (e0 + ε

2ei)⊗ (e0 + ε
2ei)

− (e0 + ε
3

q

∑
i=1

ei)⊗ (e0 + ε
3

q

∑
i=1

ei)⊗ (e0 + ε
3

q

∑
i=1

ei)

+(1−qε) · (e0 + ε
5eq+1)⊗ (e0 + ε

5eq+1)⊗ (e0 + ε
5eq+1)

+O(ε6) .
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Thus, R(CW+)≤ q+2. We define a decomposition D as follows:

{0} ∪̇ {1, . . . ,q} ∪̇ {q+1} = {0, . . . ,q+1} ,
I0 I1 I2
{0} ∪̇ {1, . . . ,q} ∪̇ {q+1} = {0, . . . ,q+1} ,
J0 J1 J2
{0} ∪̇ {1, . . . ,q} ∪̇ {q+1} = {0, . . . ,q+1} .
L0 L1 L2

With respect to D, we have

CWD =

 3 2 1
2 1
1

 ,

CWIi,J j,L`
∈

{
{〈1,1,q〉,〈q,1,1〉,〈1,q,1〉} if (i, j, `) ∈ {(1,1,0),(1,0,1),(0,1,1)} ,
{〈1,1,1〉} if (i, j, `) ∈ {(0,0,2),(0,2,0),(2,0,0)} .

The support of t with respect to D is tight, since it is given by i+ j+ `= 2.
To apply Theorem 9.10, we distribute the probability β/3 over the “small” products and (1−β/3)

over the “large” products uniformly. Then we get:

H
(

1− β

3
+2

β

3
,2

1−β

3
,
β

3

)
+

ω

3
· (β log1+(1−β ) · logq)≤ log(q+2) .

Setting q = 6 and β = 0.048 yields ω ≤ 2.39.

Corollary 9.12 (Coppersmith & Winograd). ω ≤ 2.39.

9.4 Further improvements

Instead of starting with CW+ we can also start with CW⊗2
+ as our starting tensor. While this does not

give anything new when we take D⊗2 as the decomposition, we can gain something by choosing a new
decomposition. The elements of suppD⊗(CW⊗2

+ ) are contained in {0,1,2}2×{0,1,2}2×{0,1,2}2.
Coppersmith and Winograd build a new decomposition with support ⊆ {0, . . . ,4}3 by identifying
((i, i′),( j, j′),(`,`′)) with (i+ i′, j + j′, `+ `′). This gives a coarser outer structure. Tensors of the
old inner structure are now grouped together. Funnily, the new inner tensors are still matrix tensors with
one exception. To analyse this exception, Coppersmith an Winograd introduced the value of a tensor t:
Suppose that ω = 3τ is the exponent of matrix multiplication. If

⊕n
i=1 〈ki,mi,ni〉E t⊗N , then the value

of t is at least (∑n
i=1(kimini)

τ)1/N . Intuitively, the value is the contribution of t to the τ-theorem, when
we construct the diagonal in the proof of Theorem 9.10. Theorem 9.10 can be generalized to this more
general situation.

Coppersmith and Winograd do the analysis for CW⊗2
+ . Andrew Stothers [30] (see also [14]) does it

for CW⊗4
+ (CW⊗3

+ does not seem to give any improvement) and Virginia Vassilevska-Williams [35] for
CW⊗8

+ with the help of a computer program. We get the upper bounds 2.376, 2.3737, and 2.3727 for ω ,
respectively.

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 5 (2013), pp. 1–60 50

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


FAST MATRIX MULTIPLICATION

10 Group-theoretic approach

While the bounds on ω mentioned in the previous section are the best currently known, we present an
interesting approach due to Cohn and Umans [10]. We follow their exposition quite closely.

Let G be a finite group and C[G] denote the group algebra over C. The elements of C[G] are formal
sums of the form

∑
g∈G

agg with ag ∈ C for all g ∈ G .

Addition and scalar multiplication is defined component-wisely. Multiplication is defined such that it
distributes over addition: (

∑
g∈G

agg

)(
∑

h∈H
bgg

)
= ∑

f∈G
∑

g,h∈G:
g+h= f

agbh f .

Let Cn be the cyclic group of order n and g be a generator. The product of two elements ∑
n−1
i=1 aigi and

∑
n−1
i=1 bigi in C[Cn] is the cyclic convolution

n−1

∑
i=0

∑
j,k: j+k=i mod n

a jbkgi .

Wedderburn’s theorem for group algebras of finite groups states that every group algebra C[G] of a
finite group G is isomorphic to the direct product of square matrices over C:

C[G]∼= Cd1×d1×·· ·×Cdk×dk .

The numbers d1, . . . ,dk are called the character degrees. k is the number of conjugacy classes. By
comparing dimensions, it follows that |G|= d2

1 + · · ·+d2
k . See [18] for an introduction to representation

theory. For the cyclic group of order n, C[Cn]∼= Cn because C[Cn] is commutative. Since on the other
hand, C[Cn]∼= C[X ]/(Xn−1)—in both algebras, multiplication is cyclic convolution—multiplication of
polynomials of degree≤ (n−1)/2 can be performed by a cyclic convolution which in turn can performed
by n pointwise multiplications. Since an isomorphism C[Cn]→ Cn is a linear transformation and hence,
can be performed with scalar multiplications, this shows that the rank of multiplication of polynomials of
degree ≤ (n−1)/2 is bounded by n.

An isomorphism C[G]→ Cd1×d1×·· ·×Cdk×dk is called a discrete Fourier transform. For the cyclic
group Cn of order n, there are discrete Fourier transforms what can be implemented fast, even under the
total cost measure. Using one of the fast Fourier transform algorithms, polynomial multiplication of
polynomials of degree d can be done with O(d logd) total operations. Also other group algebras allow
fast Fourier transformations, see [3].16

16But note that in our setting, discrete Fourier transforms are free of cost, since they are linear transformations. So there is no
need for fast Fourier transforms for fast matrix multiplication But there is no cheating involved here, since it does not matter for
the exponent whether we only count all operations or only bilinear multiplications.
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10.1 Matrix multiplication via groups

In the light of this success for polynomial multiplication, it is now natural to try the same approach for
matrix multiplication. For a subset S of a finite group, let

Q(S) = {st−1 | s, t ∈ S}

denote the right quotient of S. Note that if S is a subgroup, then Q(S) = S.

Definition 10.1. A group G realizes 〈n1,n2,n3〉 if there are subsets S1,S2,S3 ⊆ G such that |Si|= ni for
1≤ i≤ 3 and for all qi ∈ Q(Si), 1≤ i≤ 3,

q1q2q3 = 1 implies q1 = q2 = q3 = 1 .

We call this condition on S1,S2,S3 the triple product property.

As a first example, consider the product of cyclic groups Ck×Cm×Cn. This group realizes 〈k,m,n〉
through the subgroups Ck×{1}×{1}, {1}×Cm×{1}, and {1}×{1}×Cn.

It is rather easy to verify that when G realizes 〈n1,n2,n3〉, then it realizes
〈
nπ(1),nπ(2),nπ(3)

〉
for every

π ∈ S3, too (see [10, Lem. 2.1] for a proof).

Lemma 10.2. Let G and G′ be groups. If G realizes 〈k,m,n〉 and G′ realizes 〈k′,m′,n′〉, then G×G′

realizes 〈kk′,mm′,nn′〉.

Proof. Assume that G realizes 〈k,m,n〉 through S1, S2, and S3 and G′ realizes 〈k′,m′,n′〉 through T1, T2,
and T3.

G×G′ realizes 〈kk′,mm′,nn′〉 through S1×T1, S2×T2, and S3×T3. To prove this, we need to verify
that for si,s′i ∈ Si and ti, t ′i ∈ Ti,

(s′1, t
′
1)(s1, t1)−1(s′2, t

′
2)(s2, t2)−1(s′3, t

′
3)(s3, t3)−1 = 1 (10.1)

implies (s′i, t
′
i)(si, ti)−1 = 1 for all i. (10.1) is equivalent to

s′1s−1
1 s′2s−1

2 s′3s−1
3 = 1 ,

t ′1t−1
1 t ′2t−1

2 t ′3t−1
3 = 1 .

By the triple product property, s′is
−1
i = 1 and t ′i t

−1
i = 1 for all i. Thus

(s′i, t
′
i)(si, ti)−1 = (s′i, t

′
i)(s

−1
i , t−1

i ) = (1,1) ,

as desired.

Multiplication in a group algebra C[G] is a bilinear mapping. By abuse of notation, we call the tensor
of this mapping C[G] again. We say that a tensor s is a restriction of a tensor t if (A⊗B⊗C)s = t. We
write s≤ t in this case. If s is a restriction of t, then it is a degeneration of t, too.

THEORY OF COMPUTING LIBRARY, GRADUATE SURVEYS 5 (2013), pp. 1–60 52

http://dx.doi.org/10.4086/toc
http://dx.doi.org/10.4086/toc.gs


FAST MATRIX MULTIPLICATION

Theorem 10.3. Let G be a finite group. If G realizes 〈k,m,n〉, then 〈k,m,n〉 ≤ C[G]. In particular,
R(〈k,m,n〉)≤ R(C[G]).

Proof. Assume that G realizes 〈k,m,n〉 through S, T , and U . Let A ∈ Ck×m and B ∈ Cm×n. We index the
rows and columns of A with elements from S and T , respectively. In the same way, we index the rows
and columns of B with T and U and the rows and columns of the result AB by S and U , respectively.

We have(
∑

s∈S,t ′∈T
As,t ′s−1t ′

)(
∑

t∈T,u′∈U
Bt,u′t−1u′

)
= ∑

s∈S,u′∈U

(
∑

t,t ′∈T
As,t ′Bt,u′

)
s−1t ′t−1u′

= ∑
s′∈S,u∈U

(AB)s,u′s′−1u ,

since (s−1t ′)(t−1u′) = s′−1u is equivalent to s′s−1t ′t−1u′u−1 = 1. The triple product property now yields
s = s′, t = t ′, and u = u′.

The group algebra C[G] is isomorphic to a product of matrix algebras. Therefore, when G realizes
〈k,m,n〉, Theorem 10.3 reduces the multiplication of k×m-matrices with m×n-matrices to many small
matrix multiplications.

10.2 The pseudo-exponent

The pseudo-exponent of a group measures the quality of the embedding provided by Theorem 10.3.

Definition 10.4. The pseudo-exponent α(G) of a nontrivial finite group G is

α(G) = min
{3log |G|

logkmn

∣∣∣ G realizes 〈k,m,n〉, max{k,m,n}> 1
}
.

The pseudo-exponent of the trivial group is 3.

Lemma 10.5. Let G be a finite group.

1. 2 < α(G)≤ 3.

2. If G is abelian, then α(G) = 3.

Proof. The upper bound of 3 follows directly from the observation above that every group realizes
〈|G|,1,1〉. Note that any group G realizes 〈|G|,1,1〉 by choosing subgroups H1 = G, H2 = {1}, and
H3 = {1}. For the lower bound, suppose that G realizes 〈k,m,n〉 through sets S, T , and U . The map
Q(S)×Q(T )→G defined by (x,y) 7→ xy is injective. Its image intersects Q(U) only in {1}. This follows
from the definition of “realizes”: Assume that st = u with s ∈ Q(S), t ∈ Q(T ), and u ∈ Q(U). Then
s = t = u = 1. Therefore,

|G| ≥ |Q(S)×Q(T )| ≥ km

where the last inequality is strict if |U | = n > 1. The same is true for the pairs T,U and S,U . Thus,
|G|3 > (kmn)2, which implies α(G)> 2.
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If G is abelian, then the map Q(S)×Q(T )×Q(U)→ G given by (x,y,z) 7→ xyz is injective, because
x′y′z′ = xyz implies x−1x′y−1y′z−1z′ = 1. Now, injectivity follows from the definition of “realizes.”
Therefore, |G| ≥ kmn, if G is abelian.

Example 10.6. The symmetric group S(n
2)

has pseudo-exponent 2+O(1/logn). To see this, we think of
S(n

2)
acting on triples (a,b,c) with a+b+ c = n−1 and a,b,c≥ 0. Let Hi be the subgroup of S(n

2)
that

fixes the ith coordinate. We claim that S(n
2)

realizes 〈N,N,N〉 via H1,H2,H3 where N = |Hi|= 1!2! · · ·n!.
If this were true, then

α(S(n
2)
) =

log
(n

2

)
!

logN
= 2+O

(
1

logn

)
.

So it remains to show that H1,H2,H3 satisfy the triple product property: Let h1h2h3 = 1. Order the triples
(a,b,c) lexicographically. Let (a,b,c) be the smallest triple such that hi(a,b,c) 6= (a,b,c) for some i.
Since (a,b,c) is the smallest such triple, h3(a,b,c) = (a+ j,b− j,c) for some j ≥ 0. (Note that hi fixes
(a,b,c) iff h−1

i fixes (a,b,c).) Next, h2(a+ j,b− j,c) = (a+ j+k,b− j,c−k) for some k. Since h1 fixes
the first coordinate, we have j+ k = 0. Since (a,b,c) was the smallest triple, h1 fixes (a,b− j,c+ j),
thus j = 0. Therefore, hi(a,b,c) = (a,b,c), a contradiction. Hence, hi = 1 for all i.

10.3 Bounds on ω

Unfortunately, if a group has pseudo exponent close to 2 it does not mean that we get a good bound on ω

from it. The group needs to have small character degrees in addition.

Theorem 10.7. Suppose G has pseudo exponent α and its character degrees are d1, . . . ,dt . Then

|G|ω/α ≤
t

∑
i=1

dω
i .

Proof. By the definition of pseudo exponent, there are k, m, and n such that G realizes 〈k,m,n〉 with
kmn = |G|3/α . By Theorem 10.3,

〈k,m,n〉 ≤ C[G]∼=
t⊕

i=1

〈di,di,di〉 .

If we take the `th tensor power of this, we get

〈
k`,m`,n`

〉
≤

(
t⊕

i=1

〈di,di,di〉
)⊗`

=
t⊕

i1,...,i`=1

〈di1 · · ·dit ,di1 · · ·dit ,di1 · · ·dit 〉 .

Taking ranks on both sides, we get

R(
〈

k`,m`,n`
〉
)≤ c ·

(
t

∑
i=1

dω+ε

i

)`

,
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where ε > 0 and c is a constant such that R(〈s,s,s〉)≤ c · sω+ε for all s. Since (xyz)ω/3 ≤ R(〈x,y,z〉) for
all x,y,z, we get by taking `th roots

|G|ω/α = (kmn)ω/3 ≤
t

∑
i=1

dω+ε

i .

Since ε > 0 was arbitrary, the claim of the theorem follows.

Corollary 10.8. Suppose G has pseudo exponent α and its largest character degree is dmax. Then
|G|ω/α ≤ |G|dω−2

max .

Proof. Use ∑
t
i=1 d2

i = |G|.

10.4 Applications

So is there a group that gives a nontrivial bound on the exponent? While in the first paper, no such
example was given, Cohn et al. [9] in a second paper gave several such examples. It is also possible to
match the upper bound by Coppersmith and Winograd within this group theoretic framework. To this
aim, they generalize the triple product property to a simultaneous triple product property. It is quite easy
to prove analogues of Lemma 10.2, Theorem 10.3, and of Theorem 10.7 with matrix tensors replaced by
sums of matrix tensors. The interested reader is referred to [9].

Furthermore, Cohn et al. [9] make two conjectures, both of which would imply ω = 2. One of them,
however, contradicts a variant of the sunflower conjecture [2].

Definition 10.9. Let G and H be two groups, with a left action of G on H. The semidirect product H oG
is the set H×G with the multiplication law

(h1,g1)(h2,g2) = (h1(g1 ·h2),g1g2)

where g1 ·h2 denotes the action of g1 on h2.

Example 10.10. Let Cn be the cyclic group of order n and set H =C3
n . Let G = H2 oC2 where C2 acts

on H2 by switching the two factors. Let z be the generator of C2. We write elements of G as (a,b)zi with
a,b ∈ H and i ∈ {0,1}. Let H1,H2,H3 be the three factors of H viewed as subgroups. We define subsets

Si = {(a,b)z j | a ∈ Hi \{1}, b ∈ Hi+1, j ∈ {0,1}} ,

where the index of Hi+1 is taken cyclically.
The character degrees of G are at most 2, because H2 is an Abelian subgroup of index 2. The sum of

the squares of the character degrees is |G|, therefore, the sum of their cubes is ≤ 2|G|, which is 4n6.
We will show below, that G realizes 〈|S1|, |S2|, |S3|〉. Each Si has size 2n(n− 1). Thus the pseudo

exponent is
3 log |G|

log(|S1|3)
=

log2n6

log2n(n−1)
.

By Corollary 10.8,
|G|ω/α = (2n(n−1))6 ≤ |G| ·2ω−2 = 2ω−22n6 .
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If we set n = 17, we get the bound ω ≤ 2.91.
It remains to show that S1, S2 and S3 satisfy the triple product property. Let qi ∈ Q(Si). We

have qi = (ai,bi)(c−1
i ,d−1

i ) or qi = (ai,bi)z(c−1
i ,d−1

i ). In a product q1q2q3 = 1, there are either two
appearances of z or none; since otherwise, q1q2q3 = (x,y)z 6= 1.

First assume that there are none. Then

q1q2q3 = (a1c−1
1 a2c−1

2 a3c−1
3 ,b1d−1

1 b2d−1
2 b3d−1

3 ) .

Thus q1q2q3 = 1 iff q1 = q2 = q3 = 1, since the triple product property holds for each factor H separately.
Now assume that there are two appearances of z. Assume that it appears in q1 and q2. The other cases

are treated similarly. We have

q1q2q3 = (a1d−1
1 b2c−1

2 a3c−1
3 ,b1c−1

1 a2d−1
2 b3d−1

3 )

a1 is the only element from Cn×{1}×{1} in the first product on the right-hand side. Since a1 6= 1, the
product q1q2q3 6= 1.

11 Support rank

Finally, we consider another relaxation of rank, introduced in [11].

Definition 11.1. 1. Two tensors t, t ′ ∈ Kk×m×n are support equivalent if for all h, i, j,

th,i, j 6= 0 ⇐⇒ t ′h,i, j 6= 0 .

We write t ∼s t ′.

2. The support rank (or s-rank for short) of a tensor t is defined by

Rs(t) = min{R(t ′) | t ′ ∼s t} .

By definition, the s-rank is a lower bound for the rank. But the s-rank can be much lower.

Example 11.2. Let I be the identity matrix and J be the all-ones matrix of size n×n. Then R(J− I) = n.
Let M = (ζ i− j) for some primitive nth root of unity ζ . M is a rank-one matrix. M− I and J− I are
support equivalent. But Rs(M− I)≤ 2, since s-rank is subadditive.

Like border rank, s-rank is a relaxation of rank. These two relaxations are however incomparable.
In the example above, J− I has border rank n, too. On the other hand, then tensor at the beginning of
Section 6 has s-rank 3 by the same proof given there. (Most lower bound proofs for the rank based on
substitution method also work for s-rank.)

Definition 11.3. The s-rank exponent of matrix multiplication is defined as

ωs = inf{τ | Rs(〈n,n,n〉) = O(nτ)} .
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Note that s-rank behaves like rank: It is subadditive and submultiplicative. We have (kmn)ωs ≤
Rs(〈k,m,n〉). We can define border s-rank and get a similar relation to s-rank. The asymptotic sum
inequality holds for the s-rank, too, and the laser methods works as well, provided that we replace ω by
ωs. How are ω and ωs related?

Theorem 11.4. ω ≤ (3ωs−2)/2.

Proof. Given ε > 0, choose C such that Rs(〈n,n,n〉)≤C ·nωs+ε . Let t be a tensor with t ∼s 〈n,n,n〉 and
R(t) ≤Cnωs+ε . Decompose 〈n,n,n〉 = 〈n,n,1〉⊗ 〈1,1,n〉. This induces a decomposition of t = t1⊗ t2
with t1 ∼s 〈n,n,1〉 and t2 ∼s 〈1,1,n〉. Now think of t having inner structure t1 and outer structure t2. By
Lemma 11.6 below, t1 is isomorphic to 〈n,n,1〉 and t2 is isomorphic to 〈1,1,n〉. But this is exactly the
situation we were in when applying the laser method to Str. In the same way, we get

n2n2ω ≤ n3(ωs+ε) .

Since this is true for any ε , we get the desired bound.

In other words, if ωs ≤ 2+ ε , then ω ≤ 2+ 3
2 ε . In particular, if ωs = 2, then ω = 2.

Problem 11.5. Can the factor 3
2 above be improved?

Lemma 11.6. Let t be a tensor with slices t1, . . . , tn. such that each ti has only one nonzero entry. If
t ′ ∼s t, then t ′ is isomorphic to t.

Proof. Assume that w. l. o. g. t1, . . . , tn are the 1-slices of t. We can assume that they are all nonzero. Let
t ′ be a tensor with t ′ ∼s t. Let t ′1, . . . , t

′
n be the slices of t ′. Then ti = αit ′i for some αi ∈ K, 1 ≤ i ≤ n.

Let A : Kn→ Kn be the isomorphism defined by multiplying the ith coordinate by αi, 1≤ i≤ n. Then
(A⊗ I⊗ I)t = t ′.

How to make use out of s-rank? Cohn and Umans [11] generalize their group theoretic approach by
replacing groups by coherent configurations and group algebras by adjacency algebras. The s-rank comes
into play because of the structural constants. In group algebras, these are either 0 or 1, in adjacency
algebras, they can be arbitrary. Because of the structural constants, adjacency algebras yield bounds
on ωs instead of ω . The interested reader is referred to the original paper [11]. Furthermore, Cohn and
Umans currently do not get any bound on ωs that is better then the current best upper bounds on ω . So a
lot of challenging open problems are waiting out there!
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